1.

Synchronous: - This type of data transfer is used when device which sends data and devices
which receives data are synchronised with the same clock. Works when 10 devices and the
CPU works with the same speed. IN/OUT instructions are used to transfer data from 10
devices to memory and vice versa. Generally used in IO mapped 10 scheme, can also be used
with memory mapped 10 scheme with proper memory read/write instruction. Data is
transferred as soon as CPU gives instruction to do so. There is no need to check if the device
is ready or not.

Asynchronous: - It means at “regular intervals”. This type of data transfer scheme is used
when speed of the 10 device does not match with that of CPU. There is no predictability of
timing characteristics. The microprocessor always pings the other device to check whether
it’s ready or not. During initiation the CPU checks whether device is ready to transfer data,
before the actual transfer of data the memory keeps sending signal to 10 device. This is
called handshaking. The CPU sends initialising signal to device during start and after actual
data transfer.

Interrupt Data transfer scheme: - The program initiates the program and then executes the

main program. When 10 device is ready to transfer data, the interrupt S|gn mes high.
The CPU completes the task at hand and then it attends tqthe 10 sfers the
data to the stack and then executes a subroutine c (x Serwce Subroutine).

ISS execution transfers data from 10 de&@t@w V|ce versa.

Direct memory accei(@ tPansfer to o i ng‘fhe above mentioned

technlqu'e nefficient. &@A Q s is ideal for transferring huge amount of
ce

eV|ce reque ssor by sending a signal. After receiving this
f%est signal the? ects itself from memory and 10 devices by tristating address,
data and control bus. The CPU sends the acknowledge signal to 10 device. After this data
transfer takes place, and on completion 10 device withdraws DMA request.

Advancement of architecture of microprocessor

1. Cache memory: - To speed up execution of data, a buffer between the CPU and memory
is used. It consists of high speed static ram. Execution speed is equal to microprocessor
speed.

2. Pipelining:- This is used to speed up execution of instruction. While the execution unit is
working on instructions, the queue in a CPU fetches the next set of instructions. As soon
as the working on instruction is over, the next set of instructions are fed into the
execution unit. There is no time wasted in fetching instructions. This technique is called
pipelining.

3. Multitasking or memory management: - Due to growth in hardware complexity of
computers, they were used in time sharing working environment. That means a fixed
amount of time is allocated to different programmes. To achieve relocatablity
segmented scheme is used.

4. Virtual memory system:- In this scheme the complete program is divided into several
pgs. and stored in hard disk. At same time the main memory is divided into small pages.

PIN NO - 23
TYPE - INPUT
FUNCTION:

The signal is used in wait instruction before execution the instruction microprocessor check the
(TEST)’ pin status.

If TEST =1, then microprocessor will not enter into wait state , that is - execution will continue.
If TEST = 0, then the microprocessor will enter into wait state.

NMI(NON MARKABLE INTERRUPT):

PIN- 17

TYPE: - INPUT

FUNCTION:

type 2 interrupt when signal is active high interrupt service is vector to via an inter ector.

RESET: cO
PIN NO.- 21 NO‘GSa’\e

TYPE- INPUT

FUNCTION:- \N "(l’l
When? v@ h h 1t 1mm mlcroprocessor When the pin status is high

immed?ately the segment cou t and so the base address at that moment is FFFFoH

This signal cannot be makeable internally by software. this is a edge triggered signal w cause a

3. REGISTER ORGANISATION:-
The INTEL 8086 contains the following register
(a) General purpose register
(b) Pointer and index register
(c) Segment register
(d) Instruction pointer
(e) Status Flags
(a) General Purpose register:-
(i) The AX, BX, CX and DX are the general purpose 16-bit register.
(ii) AX is used as 16-bit accumulator.
(iii) AX ->AH (For higher 8-bit)
= AL (For lower 8-bit)

MODULE 3

Instruction Set of 8086
The 8086 instructions are categorized into the following main types.

i. Data Copy / Transfer Instructions

ii. Arithmetic and Logical Instructions

iii. Branch Instructions

iv. Loop Instructions

v. Machine Control Instructions

vi. Flag Manipulation Instructions

vii. Shift and Rotate Instructions

viii. String Instructions

Data Copy / Transfer Instructions :

MOV :

This instruction copies a word or a byte of data from some source to a destination.
The destination can be a register or a memory location. The source can be a register, a
memory location, or an immediate number.

MOV AX,BX o u\(

MOV AX,5000H .

MOV AX,[SI] 56-\6 C

MOV AX,[2000H]
MOV AX,50H[BX] NO‘e
MOV [734AH],BX 1\ 'X_Ol

MOV DS,CX {xO

MOV CL,[357AH] ’n??m
Dwect@?@\,é%meﬁeﬁ@@ ediate data is not permitted.

PUSH : Push to Stack

This instruction pushes the contents of the specified register/memory location on

to the stack. The stack pointer is decremented by 2, after each execution of the
instruction.

E.g. PUSH AX

« PUSH DS

» PUSH [5000H]

Fig. 2 Push Data to stack memory

POP : Pop from Sack

This instruction when executed, loads the specified register/memory location with the
contents of the memory location of which the address is formed using the current stack
segment and stack pointer.

The stack pointer is incremented by 2

Eg. POP AX

POP DS

POP [5000H]

Fig 3 Popping Register Content from Stack Memory

XCHG : Exchange byte or word

This instruction exchange the contents of the specified source and destination
operands

Eg. XCHG [5000H], AX

multiplication and comparing two values.

ADD :

The add instruction adds the contents of the source operand to the destination
operand.

Eg. ADD AX, 0100H

ADD AX, BX

ADD AX, [SI]

ADD AX, [5000H]

ADD [5000H], 0100H

ADD 0100H

ADC : Add with Carry

This instruction performs the same operation as ADD instruction, but adds the carry
flag to the result.

Eg. ADC 0100H

ADC AX, BX

ADC AX, [SI]

ADC AX, [5000]

ADC [5000], 0100H

6

SUB : Subtract K
The subtract instruction subtracts the source operand from the destmatlon r%
and the result is left in the destination operand. ‘

Eg. SUB AX, 0100H \

SUB AX, BX x_eSa

SUB AX, [5000H] NO l

SUB [5000H], 0100H _‘(Om _‘ ’L

The subtract wﬁﬁf& nStruction su%i ource operand and the borrow flag

SBB : Subtract with Bor,
v?l(lect the r, Ia@ vious calculations, from the destination
opera p

Eg. SBB AX, 0100H

SBB AX, BX

SBB AX, [5000H]

SBB [5000H], 0100H

INC : Increment

This instruction increases the contents of the specified Register or memory location
by 1. Immediate data cannot be operand of this instruction.

Eg. INC AX

INC [BX]

INC [5000H]

DEC : Decrement

The decrement instruction subtracts 1 from the contents of the specified register or
memory location.

Eg. DEC AX

DEC [5000H]

NEG : Negate

The negate instruction forms 2’s complement of the specified destination in the
instruction. The destination can be a register or a memory location. This instruction can
be implemented by inverting each bit and adding 1 to it.

Eg. NEG AL

AL = 0011 0101 35H Replace number in AL with its 2’'s complement

Eg. OR AX, 0008H

OR AX, BX

NOT : Logical Invert

This instruction complements the contents of an operand register or a memory
location, bit by bit.

Eg. NOT AX

NOT [5000H]

XOR : Logical Exclusive OR

This instruction bit by bit XORs the source operand that may be an immediate ,
register or a memory location to the destination operand that may a register or a memory
location. The result is stored in the destination operand.

Eg. XOR AX, 0098H

XOR AX, BX

TEST : Logical Compare Instruction

The TEST instruction performs a bit by bit logical AND operation on the two

operands. The result of this ANDing operation is not available for further use, but flags
are affected.

Eg. TEST AX, BX

TEST [0500], 06H

10

SAL/SHL : SAL / SHL destination, count. \4
SAL and SHL are two mnemonics for the same instruction. This QfoS

each bit in the specified destination to the left and 0 is stor%ﬁ%ﬁo

is shifted into the carry flag. The destination ord

It can be in a register or in a memory Iﬁ\ & ber of !3‘3 indicated

by count.

Eg. SAL CX, 1 \N "(O 6
SAL AX, CL \L;t

SHR Px ion, ¢ g

This in ion shifts eachw% ecified destination to the right and 0 is

stored at MSB position. The LSB is shifted into the carry flag. The destination can be a
byte or a word.

It can be a register or in a memory location. The number of shifts is indicated by
count.

Eg. SHR CX, 1

MOV CL, 05H

SHR AX, CL

SAR : SAR destination, count

This instruction shifts each bit in the specified destination some number of bit
positions to the right. As a bit is shifted out of the MSB position, a copy of the old MSB
is put in the MSB position. The LSB will be shifted into CF.

Eg. SARBL, 1

MOV CL, 04H

SAR DX, CL

ROL Instruction : ROL destination, count

This instruction rotates all bits in a specified byte or word to the left some
number of bit positions. MSB is placed as a new LSB and a new CF.

Eg. ROL CX, 1

MOV CL, 03H

ROL BL, CL

ROR Instruction : ROR destination, count

ion. The MSB

CMPS : Compare String Byte or String Word

The CMPS instruction can be used to compare two strings of byte or words. The

length of the string must be stored in the register CX. If both the byte or word strings are
equal, zero Flag is set.

The REP instruction Prefix is used to repeat the operation till CX (counter)

becomes zero or the condition specified by the REP Prefix is False.

SCAN : Scan String Byte or String Word

This instruction scans a string of bytes or words for an operand byte or word

specified in the register AL or AX. The String is pointed to by ES:DI register pair. The
length of the string s stored in CX. The DF controls the mode for scanning of the string.
Whenever a match to the specified operand, is found in the string, execution stops and the
zero Flag is set. If no match is found, the zero flag is reset.

LODS : Load String Byte or String Word

The LODS instruction loads the AL / AX register by the content of a string

pointed to by DS : Sl register pair. The Sl is modified automatically depending upon DF,
If it is a byte transfer (LODSB), the Sl is modified by one and if it is a word transfer
(LODSW), the Sl is modified by two. No other Flags are affected by this instruction.

16

STOS : Store String Byte or String Word

The STOS instruction Stores the AL / AX register contents to a location in the K
string pointer by ES : DI register pair. The DI is modified accordingly, No FI

affected by this instruction.

The direction Flag controls the String mstructlon executlon @e‘lndex SI

and Destination Index DI are modified after e atlcally If DF=1, then
the execution follows autodecrement m re dec ed automatically
after each iteration. If DF=0, t wgcimo foIIows 63— t mode. In this
mode, Sl and DI arg |n maticall te@ it atlon

Flag Manlpula ocessor ions

Thes T ntrol tﬁx&g fthe available hardware inside the
proces§or Chip. These instr categorized into two types:

1. Flag Manipulation instructions.

Machine Control instructions.

Flag Manipulation instructions

The Flag manipulation instructions directly modify some of the Flags of 8086.
i. CLC — Clear Carry Flag.

ii. CMC — Complement Carry Flag.

iii. STC — Set Carry Flag.

iv. CLD — Clear Direction Flag.

v. STD — Set Direction Flag.

vi. CLI — Clear Interrupt Flag.

vii. STI — Set Interrupt Flag.

Machine Control instructions

The Machine control instructions control the bus usage and execution
i. WAIT — Wait for Test input pin to go low.

ii. HLT — Halt the process.

iii. NOP — No operation.

iv. ESC — Escape to external device like NDP

v. LOCK — Bus lock instruction prefix.

17

Addressing Modes

Addressing modes of 8086

when memory is accessed PA is computed from BX and DS when the stack is accessed
PA is computed from BP and SS.

Example : MOV AL, START [BX]

or

MOV AL, [START + BX]

based mode

EA : [START] + [BX]

PA : [DS] + [EA]

The 8 bit content of this memory location is moved to AL.
20

Indexed addressing mode:

CS

PA = DS SI

SS : or + 8 or 16bit displacement

ES DI

Example : MOV BH, START [SI]

PA : [SART] + [SI] + [DS]

The content of this memory is moved into BH.

Based Indexed addressing mode:

CS

PA = DS BX Sl 0. \)\L

SS : or + or + 8 or 16bit displacement

ES BP DI \ C
Example : MOV ALPHA [SI] [BX], CL ‘3 Sa

If [BX] = 0200, ALPHA — 08, [SI] = 100Q anmgl 000 ’L
Physical address (PA) = 3120 0

8 bit content of CLJS mQv; %3(2 memo l

String addres n 4

The s?& ohs auto | to point to the first byte or word of the
a

source nd and Dl to p rst byte or word of the destination operand. The
contents of Sl and DI are automatlcally incremented (by clearing DF to 0 by CLD
instruction) to point to the next byte or word.

Example : MOV S BYTE

If [DF] = 0, [DS] = 2000 H, [SI] = 0500,

[ES] = 4000, [DI] = 0300

Source address : 20500, assume it contains 38

PA : [DS] + [S]]

Destination address : [ES] + [DI] = 40300, assume it contains 45
After executing MOV S BYTE,

[40300] =

[SI] = 0501 incremented

[DI] = 0301

C. I/0 mode (direct) :

Port number is an 8 bit immediate operand.

Example : OUT 05 H, AL

Outputs [AL] to 8 bit port 05 H

/0 mode (indirect):

The port number is taken from DX.

Example 1 : INAL, DX

21

OR

Example : Block move program using the move string instruction

MOV AX, DATA SEG ADDR

MOV DS, AX

MOV ES, AX

MOV SI, BLK 1 ADDR

MOV DI, BLK 2 ADDR

32

MOV CK, N

CDF ; DF=0

NEXT : MOV SB

LOOP NEXT

HLT

Load and store strings :(LOD SB/LOD SW and STO SB/STO SW)

LOD SB: Loads a byte from a string in memory into AL. The address in Sl is used
relative to DS to determine the address of the memory location of the string element.
(AL) « [(DS) + (SI)]

(Sl) « (SI) + 1

LOD SW : The word string element at the physical address derived from DS and Sl is to
be loaded into AX. Sl is automatically incremented by

(AX) < [(DS) + (SI)] \4
(Sl) «(Sl) +2 Q

STO SB : Stores a byte from AL into a string location in mem ’[I@ contents
of ES and DI are used to form the address of the sto%’%gé] emory

[(ES) + (DI)] « (AL) O
S&',DT%S\%?I)[(E; DI]“X)‘(O N ."L l

(DI) < (DI) + 2

m?ﬁlm@ Mn\%rmaﬁ)perge: ér;lected

Move
String
Byte
MOV
SB
((ES)+(DI))«=((DS)+(SI))
(She(Sl) m 1

(D) «m 1

None

MOV SW

Move

String

Word

MOV

SW

LOD SW

Load

String

LOD

SB/

LOD

SW

(AL) or (AX) «((DS)+(SI))
(S)«(Slym 1 or 2

None

33

STOSB/

STOSW

Store

String

STOSB/

STOSW
((ES)+(Dl))«(AL) or (AX)
(DI) « (DI) 71 or 2

None \4
Example : Clearing a block of memory with a STOSB operation. O ‘u
MOV AX, 0 \e C

MOV DS, AX Sa'

MOV ES, AX NOte

MOV DI, A000

MOV CX, OF _‘(Om
CDF -\

AGAIN : ST

LOOPW?\m’ P age
NEXT

Clear A00O to AOOF to 0016

Repeat String : REP

The basic string operations must be repeated to process arrays of data. This is done by
inserting a repeat prefix before the instruction that is to be repeated.

Prefix REP causes the basic string operation to be repeated until the contents of register
CX become equal to zero. Each time the instruction is executed, it causes CX

to be tested for zero, if CX is found to be nonzero it is decremented by 1 and the basic
string operation is repeated.

Example : Clearing a block of memory by repeating STOSB

MOV AX, 0

MOV ES, AX

MOV DI, A000

MOV CX, OF

CDF

REP STOSB

NEXT:

The prefixes REPE and REPZ stand for same function. They are meant for use with the
CMPS and SCAS instructions. With REPE/REPZ the basic compare or scan operation
34

can be repeated as long as both the contents of CX are not equal to zero and zero flag is

1.
REPNE and REPNZ works similarly to REPE/REPZ except that now the operation is
repeated as long as CX#0 and ZF=0. Comparison or scanning is to be performed as long
as the string elements are unequal (ZF=0) and the end of the string is not yet found
(CX=#0).

Prefix Used with Meaning

REP

MOVS

STOS

Repeat while not end of

string CX+0

REPE/ REPZ

CMPS

SCAS

CX#0 & ZF=1

REPNE/REPNZ

CMPS

SCAS

CX#0 & ZF=0

Example : CLD ; DF =0 \4
MOV AX, DATA SEGMENT ADDR u
MOV DS, AX

MOV AX, EXTRA SEGMENT ADDR Sa\e
MOV ES, AX NO"G
MOV CX, 20

MOV S|, OFFSET MASTER .‘(()m A O

MOV DI, OFFSET ©

REP MQV h\é\ %
Moveﬁ) 32 conse?@% m the block of memory locations starting at
dr res

offset ess MASTER wit ectto the current data segment (DS) to a block of
locations starting at offset address copy with respect to the current extra segment (ES).
Auto Indexing for String Instructions :

S| & DI addresses are either automatically incremented or decremented based on the
setting of the direction flag DF.

When CLD (Clear Direction Flag) is executed DF=0 permits auto increment by 1.
When STD (Set Direction Flag) is executed DF=1 permits auto decrement by 1.

35

Mnemonic Meaning Format Operation Flags affected

CLD Clear DF CLD (DF) « 0 DF

STD Set DF STD (DF) « 1 DF

1. LDS Instruction:

LDS register, memory (Loads register and DS with words from memory)

This instruction copies a word from two memory locations into the register specified in
the instruction. It then copies a word from the next two memory locations into the DS
register. LDS is useful for pointing Sl and DS at the start of the string before using one
of the string instructions. LDS affects no flags.

Example 1 :LDS BX [1234]

Copy contents of memory at displacement 1234 in DS to BL. Contents of 1235H to BH.
Copy contents at displacement of 1236H and 1237H is DS to DS register.

Example 2 : LDS, Sl String — Pointer

(Sl) « [String Pointer]

(DS) « [String Pointer +2]

DS, Sl now points at start and desired string
LEA Instruction :

Load Effective Address (LEA register, source)
This instruction determines the offset of the variable or memory location named as the
source and puts this offset in the indicated 16 bit register.

LEA will not affect the flags.

Examples :

LEA BX, PRICES

Load BX with offset and PRICES in DS

LEA BP, SS : STACK TOP

Load BP with offset of stack-top in SS

LEA CX, [BX] [DI]

Loads CX with EA : (BX) + (DI)

36

3. LES instruction :

LES register, memory

Example 1: LES BX, [789A H]

(BX) « [789A] in DS \4
(ES) « [789C]in DS u
Example 2 : LES DI, [BX]

(DI) « [BX] in DS O‘_esa\e .

(ES) « [BX+2] in DS N

W
PROGRWI‘A% PERl%ERA%Qj%j}

The programmable peripheral mterface i s a low cost interfacing circuit used in many applications.its
function is to perform input output operation.it contains 3 I/O ports, 24 /0 pins which can be
programmed in three different modes.The various |/O operations can be performed by writing
instructions in its internal control word register. Along basic I/O operation it also performs time delay
generation counting generating signals and interrupts.

Features
1. High speed and low speed consumptions due to CMOS technology.
2. ltis PPl device .
3. Power supply ranges 3 volts to 6 volts.
4. PPl has 24 1/0 programmable pins in groups of 12 pins which are arranged as 3 8 bit ports (PORT

A,PORT B,PORT C).
5. itis used for the interface to keyboard and parallel to printer port.

BLOCK DIAGRAM OF 8255 AND ARCHITECTURE

Group A
Group A PORT /o
control <:| (@ PA7-PAD

Group A

H PORT C o
DATA BU A—’_N - liPPER bCrPCa
D?-m<:> BUFFER | (4) <

T 8-BIT INTERNAL
DATA BUS

F

BIDIRECTIONAL DATA BUS

Group B

PORTC
LOWER /o
(4) PC3-p(]

READ
H WRITE
CONTROL
A LOGIC ,
" S\

Ifo
PB7-PBp

O
T
e to e 90 e

he 8 bit bldlrectlonalg é us tonnected to data bus of the micro processor. The direction of
the data bus are decided by the read and write control signals . in read operation it transmit
data to the system bus and in write operation it receives data from system bus.

READ /WRITE CONTRO LOGIC

the block function is to accepts inputs from system control bus and system bus. The control
signal RD andWR CS and the address signal used as A1,A0.

Al and AO are connected to address lines A2 and Al resp. Of system address lines .if CS=08255
is selected else rejected.

GROUP A AND GROUP B CONTOL

Group A consist of PORT A AND PORT C(upper).Group consist of PORT B and PORT C lower.
Each grpup consist of 12 pins .selection of PORT bits are done by mode operation

PORT A,PORT B AND PORT C

Each port consist of 8 bit data input buffer. The function of these ports are decided by control
bit pattern control word register. PORT C is divided into PC (upper) and PC (lower), used as
simple input or output, hand shake signals and status signals .

Al AO PORT/register selection

channels and may be expanded to any number of channels by cascading additional controller
chips. Thethree basic transfer modes allow programmability of the types of DMA service by the
user. Each channel canbe individually programmed to Autoinitialize to its original condition
following an End of Process (EOP). Eachchannel has a full 64K address and word count
capability.

BLOCK DIAGRAM OF 8237

EOF +—»0| DECREMENTOR INC/DECREMENTOR 10 m
RESET —} TEMP WORD TEMP ADDRESS BUFFER
s —ol COUNT REG (16) REG (186)
READY ———p] | 16-BIT BUS
ok —] TminG I
AND 16-BIT BUS
AEN +—| conTROL l | OUTPUT
ADSTB + READ BUFFER READ WRITE BUFFER BUFFER A4 -AT7
MEMR +—of BASE gggi CURRENT CLJVROR:S'T
MEMW 4—o ADDRESS ADDRESS
P (16) COUNT (16) COUNT
TOR +—0) — (16) (16) o
IOW +—>»0 I | I < COMMAND,
+ T ® CONT
.
WRITE | C
BUFFER " DO - D1
DREQO- 4
e :
HLDA —] AND BUFFER
ROTATING
HRQ +—— pRIORI r~
DACKOQ. 3 a8
DA i RE =3) I
9 : STATUS TEMPORARY 2
MODE (8) (8) a

(4 x6)

REGISTER ORGANISATION OF 8237

1.CURRENT ADDRESS REGISTER:

Each of the four channels of 8237 has a 16 —bit current address register that hold the current
memory address. The address is automatically increamented or decremented after each
transfer and the resulting address value is again stored in the current address register.

2.CURRENT WORD REGISTER:

Each channel has 16 —bit current word register that hold the no of databyte transfers to be
carried out.The word count is decremented after each transfer and the new value is again
stored in control word register.When count becomes zero an EOP signal will be generated.after
EOP this may be reinitialized using autoinitialised command.

3.BASE ADRESS AND BASE WORD COUNT REGISTER:

Each channel has a pair of these register.These are automatically written along with the current
register.These cannot be read by the CPU.The contents of these registers are used for auto

initialization.

4.COMMAND REGISTER:

This 8-bit register controls the entire operation of 8237.This can be progammed by the CPU and
cleared by a reset operation.

4 ™
command register
7T 65 43 2 1 0+—Bit Number
LIt i1 iitrl
0 Memory-1o memory disable
1 Memory-1o-memaory enable
[Channel 0 address hold disable
1 Channel 0 address hold enable
Each LX Wbit0=0
ac [n Controller enabie
1 Contrallar disatile CO -\
[0 MNormal timing e
an 8- = .
: S
| X
0 and 4 'X_O
to be G&W "'EEISZIIZH- Bit Number
2ana D€ m?ea&} umsmumas
tg"\eﬂ A programs 'the mode of il it g
10 Channal 2 salect
. G Uﬁeratlf-l}” for a 11 Charinel 3 select
—_ channel. 00 Verily transher
yv?e?th?r » Each channel has its 4{ 10 Read vansie
Intialization i 11 Nlegal
or not own mode YEQISTEF as aX |ri.g§:53na? = 11
! 59'9:{::19'3 b? blt [0 Autoinialization disable
F}GEltlﬂrﬁ 1 and 1:] 1 Aubdirialization ennh!e
« Remaining bits of the 1 ¥ kot ot antas
mode register select 00 Demand mode select
operation, auto- 4[?,}, T
initialization, 11 Cascade mode select
increment/decrement,
and mode for the

i Il
FTTiAEATITTEL

Ve

5.MODE
REGISTER:

he DMA
channel has
bit mode
register.Bits
1 determine
which of the
channel is
written.Bits
3 indicates
type of
transfer.Bit
indicates
auto

is selected

The bit configuration of mode instruction is shown in Figures 2 and 3. In the case of synchronous mode,
it is necessary to write one-or two byte sync characters. If sync characters were written, a function will
be set because the writing of sync characters constitutes part of mode instruction.

D, Dg D;s D, Dy D, Dy Dy
S | S | EP | PEN| L | L, | B | B

' Baud Rate Factor
L 0 1 0 1
- 0 0 1 1
Toa | 1x | 16x | 6ax
SYNC
Charactor Length
- 0

¥
=

1 0o |
EPCI\S\
5bis oy {3 §7bIs | Bbits
A NO‘eb _ ARarity Check
O e AT o T
0

-\ Voo 1 1
\P ¢ ia\, P age Disable ng%, Disable ,E:ﬁg
Stop bit Length
» 0 1 0 1
- 0 0 1 1

Inhabit | 1 bit 1.5bits | 2 bits

Fig. 2 Bit Configuration of Mode Instruction (Asynchronous)

B.)FIFO STATUS WORD

It is used in keyboard and strobbed input mode to indicate error. If FIFO is full and write is attempted
then overrun error occurs .If FIFO is empty and read is attempted then underrun error occurs.

D7 D6 D5 D4 D3 D2 D1 DO

Du S/E o) u F N N N

Du-display RAM unavailable due to clearing operation
S/E-sensor closure or error flag for multiple closures

O-overrun error, if 0O=1

U-underrun error if U=1 u\‘
FIFO full If F=1 CO .

INTERFACING WITH 8086

