
 DEPT OF CSE & IT

 VSSUT, Burla

DISCLAIMER

THIS DOCUMENT DOES NOT CLAIM ANY ORIGINALITY AND

CANNOT BE USED AS A SUBSTITUTE FOR PRESCRIBED

TEXTBOOKS. THE INFORMATION PRESENTED HERE IS

MERELY A COLLECTION BY THE COMMITTEE MEMBERS FOR

THEIR RESPECTIVE TEACHING ASSIGNMENTS. VARIOUS

TEXT BOOKS AS WELL AS FREELY AVAILABLE MATERIAL

FROM INTERNET WERE CONSULTED FOR PREPARING THIS

DOCUMENT. THE OWNERSHIP OF THE INFORMATION LIES

WITH THE RESPECTIVE AUTHORS OR INSTITUTIONS.

Preview from Notesale.co.uk

Page 2 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

 Iterative Waterfall Model

 Prototyping Model

 Evolutionary Model

 Spiral Model

1. CLASSICAL WATERFALL MODEL

The classical waterfall model is intuitively the most obvious way to develop software. Though

the classical waterfall model is elegant and intuitively obvious, it is not a practical model in the

sense that it cannot be used in actual software development projects. Thus, this model can be

considered to be a theoretical way of developing software. But all other life cycle models are

essentially derived from the classical waterfall model. So, in order to be able to appreciate other

life cycle models it is necessary to learn the classical waterfall model. Classical waterfall model

divides the life cycle into the following phases as shown in fig.2.1:

Fig 2.1: Classical Waterfall Model

Feasibility study - The main aim of feasibility study is to determine whether it would be

financially and technically feasible to develop the product.

Preview from Notesale.co.uk

Page 11 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

 At first project managers or team leaders try to have a rough understanding of what is

required to be done by visiting the client side. They study different input data to the

system and output data to be produced by the system. They study what kind of processing

is needed to be done on these data and they look at the various constraints on the

behavior of the system.

 After they have an overall understanding of the problem they investigate the different

solutions that are possible. Then they examine each of the solutions in terms of what kind

of resources required, what would be the cost of development and what would be the

development time for each solution.

 Based on this analysis they pick the best solution and determine whether the solution is

feasible financially and technically. They check whether the customer budget would meet

the cost of the product and whether they have sufficient technical expertise in the area of

development.

Requirements analysis and specification: - The aim of the requirements analysis and

specification phase is to understand the exact requirements of the customer and to document

them properly. This phase consists of two distinct activities, namely

 Requirements gathering and analysis

 Requirements specification

The goal of the requirements gathering activity is to collect all relevant information from the

customer regarding the product to be developed. This is done to clearly understand the customer

requirements so that incompleteness and inconsistencies are removed.

The requirements analysis activity is begun by collecting all relevant data regarding the product

to be developed from the users of the product and from the customer through interviews and

discussions. For example, to perform the requirements analysis of a business accounting software

required by an organization, the analyst might interview all the accountants of the organization to

ascertain their requirements. The data collected from such a group of users usually contain

several contradictions and ambiguities, since each user typically has only a partial and

incomplete view of the system. Therefore it is necessary to identify all ambiguities and

contradictions in the requirements and resolve them through further discussions with the

customer. After all ambiguities, inconsistencies, and incompleteness have been resolved and all

the requirements properly understood, the requirements specification activity can start. During

this activity, the user requirements are systematically organized into a Software Requirements

Specification (SRS) document. The customer requirements identified during the requirements

gathering and analysis activity are organized into a SRS document. The important components of

this document are functional requirements, the nonfunctional requirements, and the goals of

implementation.

Preview from Notesale.co.uk

Page 12 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Functional requirements:-

The functional requirements part discusses the functionalities required from the system. The

system is considered to perform a set of high-level functions {f
i
}. The functional view of the

system is shown in fig. 5.1. Each function f
i
of the system can be considered as a transformation

of a set of input data (ii) to the corresponding set of output data (o
i
). The user can get some

meaningful piece of work done using a high-level function.

Fig. 5.1: View of a system performing a set of functions

Nonfunctional requirements:-

Nonfunctional requirements deal with the characteristics of the system which cannot be

expressed as functions - such as the maintainability of the system, portability of the system,

usability of the system, etc.

Goals of implementation:-

The goals of implementation part documents some general suggestions regarding development.

These suggestions guide trade-off among design goals. The goals of implementation section

might document issues such as revisions to the system functionalities that may be required in the

future, new devices to be supported in the future, reusability issues, etc. These are the items

which the developers might keep in their mind during development so that the developed system

may meet some aspects that are not required immediately.

Preview from Notesale.co.uk

Page 23 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Model-oriented vs. property-oriented approaches

Formal methods are usually classified into two broad categories – model – oriented and property

– oriented approaches. In a model-oriented style, one defines a system’s behavior directly by

constructing a model of the system in terms of mathematical structures such as tuples, relations,

functions, sets, sequences, etc.

In the property-oriented style, the system's behavior is defined indirectly by stating its properties,

usually in the form of a set of axioms that the system must satisfy.

Example:-

Let us consider a simple producer/consumer example. In a property-oriented style, it is

probably started by listing the properties of the system like: the consumer can start

consuming only after the producer has produced an item; the producer starts to produce

an item only after the consumer has consumed the last item, etc. A good example of a

producer-consumer problem is CPU-Printer coordination. After processing of data, CPU

outputs characters to the buffer for printing. Printer, on the other hand, reads characters

from the buffer and prints them. The CPU is constrained by the capacity of the buffer,

whereas the printer is constrained by an empty buffer. Examples of property-oriented

specification styles are axiomatic specification and algebraic specification.

In a model-oriented approach, we start by defining the basic operations, p (produce) and c

(consume). Then we can state that S1 + p → S, S + c → S1. Thus the model-oriented approaches

essentially specify a program by writing another, presumably simpler program. Examples of

popular model-oriented specification techniques are Z, CSP, CCS, etc.

Model-oriented approaches are more suited to use in later phases of life cycle because here even

minor changes to a specification may lead to drastic changes to the entire specification. They do

not support logical conjunctions (AND) and disjunctions (OR).

Property-oriented approaches are suitable for requirements specification because they can be

easily changed. They specify a system as a conjunction of axioms and you can easily replace one

axiom with another one.

Operational Semantics

Informally, the operational semantics of a formal method is the way computations are

represented. There are different types of operational semantics according to what is meant by a

single run of the system and how the runs are grouped together to describe the behavior of the

system. Some commonly used operational semantics are as follows:

Linear Semantics:-

In this approach, a run of a system is described by a sequence (possibly infinite) of events or

states. The concurrent activities of the system are represented by non-deterministic interleavings

of the automatic actions. For example, a concurrent activity a║b is represented by the set of

Preview from Notesale.co.uk

Page 31 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

 The mathematical basis of the formal methods facilitates automating the analysis of

specifications. For example, a tableau-based technique has been used to automatically

check the consistency of specifications. Also, automatic theorem proving techniques

can be used to verify that an implementation satisfies its specifications. The

possibility of automatic verification is one of the most important advantages of formal

methods.

 Formal specifications can be executed to obtain immediate feedback on the features

of the specified system. This concept of executable specifications is related to rapid

prototyping. Informally, a prototype is a “toy” working model of a system that can

provide immediate feedback on the behavior of the specified system, and is especially

useful in checking the completeness of specifications.

Limitations of formal requirements specification

It is clear that formal methods provide mathematically sound frameworks within large, complex

systems can be specified, developed and verified in a systematic rather than in an ad hoc manner.

However, formal methods suffer from several shortcomings, some of which are the following:

 Formal methods are difficult to learn and use.

 The basic incompleteness results of first-order logic suggest that it is impossible to

check absolute correctness of systems using theorem proving techniques.

 Formal techniques are not able to handle complex problems. This shortcoming results

from the fact that, even moderately complicated problems blow up the complexity of

formal specification and their analysis. Also, a large unstructured set of mathematical

formulas is difficult to comprehend.

Axiomatic Specification

In axiomatic specification of a system, first-order logic is used to write the pre and post-

conditions to specify the operations of the system in the form of axioms. The pre-conditions

basically capture the conditions that must be satisfied before an operation can successfully be

invoked. In essence, the pre-conditions capture the requirements on the input parameters of a

function. The post-conditions are the conditions that must be satisfied when a function completes

execution for the function to be considered to have executed successfully. Thus, the post-

conditions are essentially constraints on the results produced for the function execution to be

considered successful.

Preview from Notesale.co.uk

Page 33 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is unplanned and random cohesion, which might be the result

of breaking the program into smaller modules for the sake of modularization. Because it

is unplanned, it may serve confusion to the programmers and is generally not-accepted.

 Logical cohesion - When logically categorized elements are put together into a module,

it is called logical cohesion.

 Temporal Cohesion - When elements of module are organized such that they are

processed at a similar point in time, it is called temporal cohesion.

 Procedural cohesion - When elements of module are grouped together, which are

executed sequentially in order to perform a task, it is called procedural cohesion.

 Communicational cohesion - When elements of module are grouped together, which are

executed sequentially and work on same data (information), it is called communicational

cohesion.

 Sequential cohesion - When elements of module are grouped because the output of one

element serves as input to another and so on, it is called sequential cohesion.

 Functional cohesion - It is considered to be the highest degree of cohesion, and it is

highly expected. Elements of module in functional cohesion are grouped because they all

contribute to a single well-defined function. It can also be reused.

 Coupling

Coupling is a measure that defines the level of inter-dependability among modules of a

program. It tells at what level the modules interfere and interact with each other. The lower the

coupling, the better the program.

There are five levels of coupling, namely -

 Content coupling - When a module can directly access or modify or refer to the content

of another module, it is called content level coupling.

 Common coupling- When multiple modules have read and write access to some global

data, it is called common or global coupling.

 Control coupling- Two modules are called control-coupled if one of them decides the

function of the other module or changes its flow of execution.

 Stamp coupling- When multiple modules share common data structure and work on

different part of it, it is called stamp coupling.

 Data coupling- Data coupling is when two modules interact with each other by means of

passing data (as parameter). If a module passes data structure as parameter, then the

receiving module should use all its components.

Ideally, no coupling is considered to be the best.

Preview from Notesale.co.uk

Page 37 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 10

SOFTWARE ANALYSIS & DESIGN TOOLS

Software analysis and design includes all activities, which help the transformation of

requirement specification into implementation. Requirement specifications specify all functional

and non-functional expectations from the software. These requirement specifications come in

the shape of human readable and understandable documents, to which a computer has nothing to

do.

Software analysis and design is the intermediate stage, which helps human-readable

requirements to be transformed into actual code.

Let us see few analysis and design tools used by software designers:

Data Flow Diagram

Data flow diagram is a graphical representation of data flow in an information system. It is

capable of depicting incoming data flow, outgoing data flow and stored data. The DFD does not

mention anything about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart depicts flow of

control in program modules. DFDs depict flow of data in the system at various levels. DFD does

not contain any control or branch elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system process and flow of data in

the system. For example in a Banking software system, how data is moved between

different entities.

 Physical DFD - This type of DFD shows how the data flow is actually implemented in

the system. It is more specific and close to the implementation.

Preview from Notesale.co.uk

Page 43 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Data Dictionary

A data dictionary lists all data items appearing in the DFD model of a system. The data items

listed include all data flows and the contents of all data stores appearing on the DFDs in the DFD

model of a system. A data dictionary lists the purpose of all data items and the definition of all

composite data items in terms of their component data items. For example, a data dictionary

entry may represent that the data grossPay consists of the components regularPay and

overtimePay.

grossPay = regularPay + overtimePay

For the smallest units of data items, the data dictionary lists their name and their type. Composite

data items can be defined in terms of primitive data items using the following data definition

operators:

+: denotes composition of two data items, e.g. a+b represents data a and b.

[,,]: represents selection, i.e. any one of the data items listed in the brackets can occur.

For example, [a,b] represents either a occurs or b occurs.

(): the contents inside the bracket represent optional data which may or may not appear.

e.g. a+(b) represents either a occurs or a+b occurs.

{}: represents iterative data definition, e.g. {name}5 represents five name data. {name}*

represents zero or more instances of name data.

=: represents equivalence, e.g. a=b+c means that a represents b and c.

/* */: Anything appearing within /* and */ is considered as a comment.

Example 1: Tic-Tac-Toe Computer Game

Tic-tac-toe is a computer game in which a human player and the computer make

alternative moves on a 3×3 square. A move consists of marking previously

unmarked square. The player who first places three consecutive marks along a

straight line on the square (i.e. along a row, column, or diagonal) wins the game.

As soon as either the human player or the computer wins, a message

congratulating the winner should be displayed. If neither player manages to get

three consecutive marks along a straight line, but all the squares on the board are

filled up, then the game is drawn. The computer always tries to win a game.

Preview from Notesale.co.uk

Page 45 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

superfluous. For example, if a bubble is decomposed to just one bubble or two bubbles, then this

decomposition becomes redundant. Also, too many bubbles, i.e. more than 7 bubbles at any level

of a DFD makes the DFD model hard to understand. Decomposition of a bubble should be

carried on until a level is reached at which the function of the bubble can be described using a

simple algorithm.

Numbering of Bubbles:-

It is necessary to number the different bubbles occurring in the DFD. These numbers help in

uniquely identifying any bubble in the DFD by its bubble number. The bubble at the context

level is usually assigned the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1 are

numbered, 0.1, 0.2, 0.3, etc, etc. When a bubble numbered x is decomposed, its children bubble

are numbered x.1, x.2, x.3, etc. In this numbering scheme, by looking at the number of a bubble

we can unambiguously determine its level, its ancestors, and its successors.

Example:-

A supermarket needs to develop the following software to encourage regular customers.

For this, the customer needs to supply his/her residence address, telephone number, and

the driving license number. Each customer who registers for this scheme is assigned a

unique customer number (CN) by the computer. A customer can present his CN to the

check out staff when he makes any purchase. In this case, the value of his purchase is

credited against his CN. At the end of each year, the supermarket intends to award

surprise gifts to 10 customers who make the highest total purchase over the year. Also, it

intends to award a 22 caret gold coin to every customer whose purchase exceeded

Rs.10,000. The entries against the CN are the reset on the day of every year after the prize

winners’ lists are generated.

The context diagram for this problem is shown in fig. 10.5, the level 1 DFD in fig. 10.6, and the

level 2 DFD in fig. 10.7.

Preview from Notesale.co.uk

Page 51 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

 The data flow diagramming technique does not provide any specific guidance as to how

exactly to decompose a given function into its sub-functions and we have to use

subjective judgment to carry out decomposition.

Preview from Notesale.co.uk

Page 61 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

• It is usually difficult to identify the different modules of the software from its flow chart

representation.

• Data interchange among different modules is not represented in a flow chart.

• Sequential ordering of tasks inherent in a flow chart is suppressed in a structure chart.

Transform Analysis

Transform analysis identifies the primary functional components (modules) and the high level

inputs and outputs for these components. The first step in transform analysis is to divide the DFD

into 3 types of parts:

• Input

• Logical processing

• Output

The input portion of the DFD includes processes that transform input data from physical (e.g.

character from terminal) to logical forms (e.g. internal tables, lists, etc.). Each input portion is

called an afferent branch.

The output portion of a DFD transforms output data from logical to physical form. Each output

portion is called an efferent branch. The remaining portion of a DFD is called the central

transform.

In the next step of transform analysis, the structure chart is derived by drawing one functional

component for the central transform, and the afferent and efferent branches.

These are drawn below a root module, which would invoke these modules. Identifying the

highest level input and output transforms requires experience and skill. One possible approach is

to trace the inputs until a bubble is found whose output cannot be deduced from its inputs alone.

Processes which validate input or add information to them are not central transforms. Processes

which sort input or filter data from it are. The first level structure chart is produced by

representing each input and output unit as boxes and each central transform as a single box. In

the third step of transform analysis, the structure chart is refined by adding sub-functions

required by each of the high-level functional components. Many levels of functional components

may be added. This process of breaking functional components into subcomponents is called

factoring. Factoring includes adding read and write modules, error-handling modules,

initialization and termination process, identifying customer modules, etc. The factoring process

is continued until all bubbles in the DFD are represented in the structure chart.

Preview from Notesale.co.uk

Page 63 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 11.2: Structure Chart

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. Transaction analysis

is useful while designing transaction processing programs. In a transaction-driven system, one

of several possible paths through the DFD is traversed depending upon the input data item.

This is in contrast to a transform centered system which is characterized by similar processing

steps for each data item. Each different way in which input data is handled is a transaction. A

simple way to identify a transaction is to check the input data. The number of bubbles on

which the input data to the DFD are incident defines the number of transactions. However,

some transaction may not require any input data. These transactions can be identified from the

experience of solving a large number of examples.

For each identified transaction, trace the input data to the output. All the traversed bubbles

belong to the transaction. These bubbles should be mapped to the same module on the

structure chart. In the structure chart, draw a root module and below this module draw each

identified transaction a module. Every transaction carries a tag, which identifies its type.

Preview from Notesale.co.uk

Page 65 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 13

USE CASE DIAGRAM

Use Case Model

The use case model for any system consists of a set of “use cases”. Intuitively, use cases

represent the different ways in which a system can be used by the users. A simple way to find all

the use cases of a system is to ask the question: “What the users can do using the system?” Thus

for the Library Information System (LIS), the use cases could be:

• issue-book

• query-book

• return-book

• create-member

• add-book, etc

Use cases correspond to the high-level functional requirements. The use cases partition the

system behavior into transactions, such that each transaction performs some useful action from

the user’s point of view. To complete each transaction may involve either a single message or

multiple message exchanges between the user and the system to complete.

Purpose of use cases

The purpose of a use case is to define a piece of coherent behavior without revealing the internal

structure of the system. The use cases do not mention any specific algorithm to be used or the

internal data representation, internal structure of the software, etc. A use case typically

represents a sequence of interactions between the user and the system. These interactions consist

of one mainline sequence. The mainline sequence represents the normal interaction between a

user and the system. The mainline sequence is the most occurring sequence of interaction. For

example, the mainline sequence of the withdraw cash use case supported by a bank ATM drawn,

complete the transaction, and get the amount. Several variations to the main line sequence may

also exist. Typically, a variation from the mainline sequence occurs when some specific

conditions hold. For the bank ATM example, variations or alternate scenarios may occur, if the

password is invalid or the amount to be withdrawn exceeds the amount balance. The variations

are also called alternative paths. A use case can be viewed as a set of related scenarios tied

together by a common goal. The mainline sequence and each of the variations are called

scenarios or instances of the use case. Each scenario is a single path of user events and system

activity through the use case.

Preview from Notesale.co.uk

Page 71 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Representation of Use Cases

Use cases can be represented by drawing a use case diagram and writing an accompanying text

elaborating the drawing. In the use case diagram, each use case is represented by an ellipse with

the name of the use case written inside the ellipse. All the ellipses (i.e. use cases) of a system are

enclosed within a rectangle which represents the system boundary. The name of the system

being modeled (such as Library Information System) appears inside the rectangle.

The different users of the system are represented by using the stick person icon. Each stick

person icon is normally referred to as an actor. An actor is a role played by a user with respect to

the system use. It is possible that the same user may play the role of multiple actors. Each actor

can participate in one or more use cases. The line connecting the actor and the use case is called

the communication relationship. It indicates that the actor makes use of the functionality

provided by the use case. Both the human users and the external systems can be represented by

stick person icons. When a stick person icon represents an external system, it is annotated by the

stereotype <<external system>>.

Example 1:

Tic-Tac-Toe Computer Game

Tic-tac-toe is a computer game in which a human player and the computer make

alternative moves on a 3×3 square. A move consists of marking previously

unmarked square. The player who first places three consecutive marks along a

straight line on the square (i.e. along a row, column, or diagonal) wins the game.

As soon as either the human player or the computer wins, a message

congratulating the winner should be displayed. If neither player manages to get

three consecutive marks along a straight line, but all the squares on the board are

filled up, then the game is drawn. The computer always tries to win a game.

The use case model for the Tic-tac-toe problem is shown in fig. 13.1. This

software has only one use case “play move”. Note that the use case “get-user-

move” is not used here. The name “get-user-move” would be inappropriate

because the use cases should be named from the user’s perspective.

Fig. 13.1: Use case model for tic-tac-toe game

Preview from Notesale.co.uk

Page 72 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 13.7: Hierarchical organization of use cases

Preview from Notesale.co.uk

Page 79 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

whereas in simple aggregation, a part may be shared by several objects. For example,

a Wall may be a part of one or more Room objects.

 In addition, in composition, the whole has the responsibility for the disposition of all

its parts, i.e. for their creation and destruction.

 in general, the lifetime of parts and composite coincides

 parts with non-fixed multiplicity may be created after composite itself

 parts might be explicitly removed before the death of the composite

For example, when a Frame is created, it has to be attached to an enclosing Window.

Similarly, when the Window is destroyed, it must in turn destroy its Frame parts.

Inheritance vs. Aggregation/Composition

 Inheritance describes ‘is a’ / ‘is a kind of’ relationship between classes (base class - derived

class) whereas aggregation describes ‘has a’ relationship between classes. Inheritance means

that the object of the derived class inherits the properties of the base class; aggregation means

that the object of the whole has objects of the part. For example, the relation “cash payment

is a kind of payment” is modeled using inheritance; “purchase order has a few items” is

modeled using aggregation.

 Inheritance is used to model a “generic-specific” relationship between classes whereas

aggregation/composition is used to model a “whole-part” relationship between classes.

 Inheritance means that the objects of the subclass can be used anywhere the super class may

appear, but not the reverse; i.e. wherever we could use instances of ‘payment’ in the system,

we could substitute it with instances of ‘cash payment’, but the reverse cannot be done.

 Inheritance is defined statically. It cannot be changed at run-time. Aggregation is defined

dynamically and can be changed at run-time. Aggregation is used when the type of the object

can change over time.

For example, consider this situation in a business system. A BusinessPartner might be a

Customer or a Supplier or both. Initially we might be tempted to model it as in Fig 14.4(a).

But in fact, during its lifetime, a business partner might become a customer as well as a

supplier, or it might change from one to the other. In such cases, we prefer aggregation

instead (see Fig 14.4(b). Here, a business partner is a Customer if it has an aggregated

Customer object, a Supplier if it has an aggregated Supplier object and a

"Customer_Supplier" if it has both. Here, we have only two types. Hence, we are able to

model it as inheritance. But what if there were several different types and combinations

thereof? The inheritance tree would be absolutely incomprehensible.

Also, the aggregation model allows the possibility for a business partner to be neither - i.e.

has neither a customer nor a supplier object aggregated with it.

Preview from Notesale.co.uk

Page 83 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

MODULE 3

LECTURE NOTE 17

CODING

Coding- The objective of the coding phase is to transform the design of a system into code in a

high level language and then to unit test this code. The programmers adhere to standard and well

defined style of coding which they call their coding standard. The main advantages of adhering

to a standard style of coding are as follows:

 A coding standard gives uniform appearances to the code written by different

engineers

 It facilitates code of understanding.

 Promotes good programming practices.

For implementing our design into a code, we require a good high level language. A programming

language should have the following features:

Characteristics of a Programming Language

 Readability: A good high-level language will allow programs to be written in some ways

that resemble a quite-English description of the underlying algorithms. If care is taken,

the coding may be done in a way that is essentially self-documenting.

 Portability: High-level languages, being essentially machine independent, should be able

to develop portable software.

 Generality: Most high-level languages allow the writing of a wide variety of programs,

thus relieving the programmer of the need to become expert in many diverse languages.

 Brevity: Language should have the ability to implement the algorithm with less amount

of code. Programs expressed in high-level languages are often considerably shorter than

their low-level equivalents.

 Error checking: Being human, a programmer is likely to make many mistakes in the

development of a computer program. Many high-level languages enforce a great deal of

error checking both at compile-time and at run-time.

 Cost: The ultimate cost of a programming language is a function of many of its

characteristics.

Preview from Notesale.co.uk

Page 93 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Fig. 19.1: Unit testing with the help of driver and stub modules

Black Box Testing

In the black-box testing, test cases are designed from an examination of the input/output values

only and no knowledge of design or code is required. The following are the two main approaches

to designing black box test cases.

• Equivalence class portioning

• Boundary value analysis

Equivalence Class Partitioning

In this approach, the domain of input values to a program is partitioned into a set of equivalence

classes. This partitioning is done such that the behavior of the program is similar for every input

data belonging to the same equivalence class. The main idea behind defining the equivalence

classes is that testing the code with any one value belonging to an equivalence class is as good as

testing the software with any other value belonging to that equivalence class. Equivalence classes

for a software can be designed by examining the input data and output data. The following are

some general guidelines for designing the equivalence classes:

1. If the input data values to a system can be specified by a range of values, then one

valid and two invalid equivalence classes should be defined.

2. If the input data assumes values from a set of discrete members of some domain,

then one equivalence class for valid input values and another equivalence class for

invalid input values should be defined.

Preview from Notesale.co.uk

Page 103 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 22

DEBUGGING, INTEGRATION AND SYSTEM TESTING

Need for Debugging

Once errors are identified in a program code, it is necessary to first identify the precise program

statements responsible for the errors and then to fix them. Identifying errors in a program code

and then fix them up are known as debugging.

Debugging Approaches

The following are some of the approaches popularly adopted by programmers for debugging.

Brute Force Method:

This is the most common method of debugging but is the least efficient method. In this

approach, the program is loaded with print statements to print the intermediate values

with the hope that some of the printed values will help to identify the statement in error.

This approach becomes more systematic with the use of a symbolic debugger (also called

a source code debugger), because values of different variables can be easily checked and

break points and watch points can be easily set to test the values of variables effortlessly.

Backtracking:

This is also a fairly common approach. In this approach, beginning from the statement at

which an error symptom has been observed, the source code is traced backwards until the

error is discovered. Unfortunately, as the number of source lines to be traced back

increases, the number of potential backward paths increases and may become

unmanageably large thus limiting the use of this approach.

Cause Elimination Method:

In this approach, a list of causes which could possibly have contributed to the error

symptom is developed and tests are conducted to eliminate each. A related technique of

identification of the error from the error symptom is the software fault tree analysis.

Program Slicing:

This technique is similar to back tracking. Here the search space is reduced by defining

slices. A slice of a program for a particular variable at a particular statement is the set of

source lines preceding this statement that can influence the value of that variable.

Preview from Notesale.co.uk

Page 113 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Debugging Guidelines

Debugging is often carried out by programmers based on their ingenuity. The following are some

general guidelines for effective debugging:

 Many times debugging requires a thorough understanding of the program design. Trying

to debug based on a partial understanding of the system design and implementation may

require an inordinate amount of effort to be put into debugging even simple problems.

 Debugging may sometimes even require full redesign of the system. In such cases, a

common mistake that novice programmers often make is attempting not to fix the error

but its symptoms.

 One must be beware of the possibility that an error correction may introduce new errors.

Therefore after every round of error-fixing, regression testing must be carried out.

Program Analysis Tools

A program analysis tool means an automated tool that takes the source code or the executable

code of a program as input and produces reports regarding several important characteristics of

the program, such as its size, complexity, adequacy of commenting, adherence to programming

standards, etc. We can classify these into two broad categories of program analysis tools:

 Static Analysis tools

 Dynamic Analysis tools

 Static program analysis tools

Static Analysis Tool is also a program analysis tool. It assesses and computes various

characteristics of a software product without executing it. Typically, static analysis tools analyze

some structural representation of a program to arrive at certain analytical conclusions, e.g. that

some structural properties hold. The structural properties that are usually analyzed are:

 Whether the coding standards have been adhered to?

 Certain programming errors such as uninitialized variables and mismatch

between actual and formal parameters, variables that are declared but never

used are also checked.

Code walk throughs and code inspections might be considered as static analysis methods. But,

the term static program analysis is used to denote automated analysis tools. So, a compiler can be

considered to be a static program analysis tool.

Dynamic program analysis tools - Dynamic program analysis techniques require the program to

be executed and its actual behavior recorded. A dynamic analyzer usually instruments the code

(i.e. adds additional statements in the source code to collect program execution traces). The

instrumented code when executed allows us to record the behavior of the software for different

test cases. After the software has been tested with its full test suite and its behavior recorded, the

Preview from Notesale.co.uk

Page 114 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Top-Down Integration Testing

Top-down integration testing starts with the main routine and one or two subordinate routines in

the system. After the top-level ‘skeleton’ has been tested, the immediately subroutines of the

‘skeleton’ are combined with it and tested. Top-down integration testing approach requires the

use of program stubs to simulate the effect of lower-level routines that are called by the routines

under test. A pure top-down integration does not require any driver routines. A disadvantage of

the top-down integration testing approach is that in the absence of lower-level routines, many

times it may become difficult to exercise the top-level routines in the desired manner since the

lower-level routines perform several low-level functions such as I/O.

Mixed Integration Testing

A mixed (also called sandwiched) integration testing follows a combination of top-down and

bottom-up testing approaches. In top-down approach, testing can start only after the top-level

modules have been coded and unit tested. Similarly, bottom-up testing can start only after the

bottom level modules are ready. The mixed approach overcomes this shortcoming of the top-

down and bottom-up approaches. In the mixed testing approaches, testing can start as and when

modules become available. Therefore, this is one of the most commonly used integration testing

approaches.

Phased Vs. Incremental Testing

The different integration testing strategies are either phased or incremental. A comparison of

these two strategies is as follows:

o In incremental integration testing, only one new module is added to the partial

system each time.

o In phased integration, a group of related modules are added to the partial system

each time.

Phased integration requires less number of integration steps compared to the incremental

integration approach. However, when failures are detected, it is easier to debug the system in the

incremental testing approach since it is known that the error is caused by addition of a single

module. In fact, big bang testing is a degenerate case of the phased integration testing approach.

System testing

System tests are designed to validate a fully developed system to assure that it meets its

requirements. There are essentially three main kinds of system testing:

 Alpha Testing. Alpha testing refers to the system testing carried out by the test team

within the developing organization.

 Beta testing. Beta testing is the system testing performed by a select group of friendly

customers.

 Acceptance Testing. Acceptance testing is the system testing performed by the customer

to determine whether he should accept the delivery of the system.

Preview from Notesale.co.uk

Page 117 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Reasons for software reliability being difficult to measure

The reasons why software reliability is difficult to measure can be summarized as

follows:

 The reliability improvement due to fixing a single bug depends on where the bug is

located in the code.

 The perceived reliability of a software product is highly observer-dependent.

 The reliability of a product keeps changing as errors are detected and fixed.

 Hardware reliability vs. software reliability differs.

Reliability behavior for hardware and software are very different. For example, hardware failures

are inherently different from software failures. Most hardware failures are due to component

wear and tear. A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To fix

hardware faults, one has to either replace or repair the failed part. On the other hand, a software

product would continue to fail until the error is tracked down and either the design or the code is

changed. For this reason, when a hardware is repaired its reliability is maintained at the level that

existed before the failure occurred; whereas when a software failure is repaired, the reliability

may either increase or decrease (reliability may decrease if a bug introduces new errors). To put

this fact in a different perspective, hardware reliability study is concerned with stability (for

example, inter-failure times remain constant). On the other hand, software reliability study aims

at reliability growth (i.e. inter-failure times increase). The change of failure rate over the product

lifetime for a typical hardware and a software product are sketched in fig. 26.1. For hardware

products, it can be observed that failure rate is high initially but decreases as the faulty

components are identified and removed. The system then enters its useful life. After some time

(called product life time) the components wear out, and the failure rate increases. This gives the

plot of hardware reliability over time its characteristics “bath tub” shape. On the other hand, for

software the failure rate is at it’s highest during integration and test. As the system is tested,

more and more errors are identified and removed resulting in reduced failure rate. This error

removal continues at a slower pace during the useful life of the product. As the software

becomes obsolete no error corrections occurs and the failure rate remains unchanged.

Preview from Notesale.co.uk

Page 129 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

A quality system consists of the following:

Managerial Structure and Individual Responsibilities- A quality system is actually the

responsibility of the organization as a whole. However, every organization has a separate quality

department to perform several quality system activities. The quality system of an organization

should have support of the top management. Without support for the quality system at a high

level in a company, few members of staff will take the quality system seriously.

Quality System Activities- The quality system activities encompass the following:

- auditing of projects

- review of the quality system

- development of standards, procedures, and guidelines, etc.

- production of reports for the top management summarizing the effectiveness of the

quality system in the organization.

Evolution of Quality Management System

Quality systems have rapidly evolved over the last five decades. Prior to World War II, the usual

method to produce quality products was to inspect the finished products to eliminate defective

products. Since that time, quality systems of organizations have undergone through four stages

of evolution as shown in the fig. 28.1. The initial product inspection method gave way to quality

control (QC). Quality control focuses not only on detecting the defective products and

eliminating them but also on determining the causes behind the defects. Thus, quality control

aims at correcting the causes of errors and not just rejecting the products. The next breakthrough

in quality systems was the development of quality assurance principles.

The basic premise of modern quality assurance is that if an organization’s processes are good

and are followed rigorously, then the products are bound to be of good quality. The modern

quality paradigm includes guidance for recognizing, defining, analyzing, and improving the

production process. Total quality management (TQM) advocates that the process followed by an

organization must be continuously improved through process measurements. TQM goes a step

further than quality assurance and aims at continuous process improvement. TQM goes beyond

documenting processes to optimizing them through redesign. A term related to TQM is Business

Process Reengineering (BPR). BPR aims at reengineering the way business is carried out in an

organization. From the above discussion it can be stated that over the years the quality paradigm

has shifted from product assurance to process assurance (as shown in fig. 28.1).

Preview from Notesale.co.uk

Page 137 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Level 4: Managed - At this level, the focus is on software metrics. Two types of metrics are

collected. Product metrics measure the characteristics of the product being developed, such as its

size, reliability, time complexity, understandability, etc. Process metrics reflect the effectiveness

of the process being used, such as average defect correction time, productivity, average number

of defects found per hour inspection, average number of failures detected during testing per

LOC, etc. Quantitative quality goals are set for the products. The software process and product

quality are measured and quantitative quality requirements for the product are met. Various tools

like Pareto charts, fishbone diagrams, etc. are used to measure the product and process quality.

The process metrics are used to check if a project performed satisfactorily. Thus, the results of

process measurements are used to evaluate project performance rather than improve the process.

Level 5: Optimizing - At this stage, process and product metrics are collected. Process and

product measurement data are analyzed for continuous process improvement. For example, if

from an analysis of the process measurement results, it was found that the code reviews were not

very effective and a large number of errors were detected only during the unit testing, then the

process may be fine-tuned to make the review more effective. Also, the lessons learned from

specific projects are incorporated in to the process. Continuous process improvement is achieved

both by carefully analyzing the quantitative feedback from the process measurements and also

from application of innovative ideas and technologies. Such an organization identifies the best

software engineering practices and innovations which may be tools, methods, or processes.

These best practices are transferred throughout the organization.

Key process areas (KPA) of a software organization

Except for SEI CMM level 1, each maturity level is characterized by several Key Process Areas

(KPAs) that includes the areas an organization should focus to improve its software process to

the next level. The focus of each level and the corresponding key process areas are shown in the

fig. 29.1.

Preview from Notesale.co.uk

Page 144 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

PSP2 introduces defect management via the use of checklists for code and design reviews. The

checklists are developed from gathering and analyzing defect data earlier projects.

Six Sigma

The purpose of Six Sigma is to improve processes to do things better, faster, and at lower cost. It

can be used to improve every facet of business, from production, to human resources, to order

entry, to technical support. Six Sigma can be used for any activity that is concerned with cost,

timeliness, and quality of results. Therefore, it is applicable to virtually every industry.

Six Sigma at many organizations simply means striving for near perfection. Six Sigma is a

disciplined, data-driven approach to eliminate defects in any process – from manufacturing to

transactional and product to service.

The statistical representation of Six Sigma describes quantitatively how a process is performing.

To achieve Six Sigma, a process must not produce more than 3.4 defects per million

opportunities. A Six Sigma defect is defined as any system behavior that is not as per customer

specifications. Total number of Six Sigma opportunities is then the total number of chances for a

defect. Process sigma can easily be calculated using a Six Sigma calculator.

The fundamental objective of the Six Sigma methodology is the implementation of a

measurement-based strategy that focuses on process improvement and variation reduction

through the application of Six Sigma improvement projects. This is accomplished through the

use of two Six Sigma sub-methodologies: DMAIC and DMADV. The Six Sigma DMAIC

process (define, measure, analyze, improve, control) is an improvement system for existing

processes failing below specification and looking for incremental improvement. The Six Sigma

DMADV process (define, measure, analyze, design, verify) is an improvement system used to

develop new processes or products at Six Sigma quality levels. It can also be employed if a

current process requires more than just incremental improvement. Both Six Sigma processes are

executed by Six Sigma Green Belts and Six Sigma Black Belts, and are overseen by Six Sigma

Master Black Belts.

Many frameworks exist for implementing the Six Sigma methodology. Six Sigma Consultants

all over the world have also developed proprietary methodologies for implementing Six Sigma

quality, based on the similar change management philosophies and applications of tools.

Preview from Notesale.co.uk

Page 148 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

 Duration: How long is it going to take to complete development?

 Effort: How much effort would be required?

The effectiveness of the subsequent planning activities is based on the accuracy of these

estimations.

 Scheduling manpower and other resources.

 Staff organization and staffing plans.

 Risk identification, analysis, and abatement planning

 Miscellaneous plans such as quality assurance plan, configuration management plan, etc.

Precedence ordering among project planning activities

Different project related estimates done by a project manager have already been discussed. Fig.

30.1 shows the order in which important project planning activities may be undertaken. From

fig. 30.1 it can be easily observed that size estimation is the first activity. It is also the most

fundamental parameter based on which all other planning activities are carried out. Other

estimations such as estimation of effort, cost, resource, and project duration are also very

important components of project planning.

Fig. 30.1: Precedence ordering among planning activities

Sliding Window Planning

Project planning requires utmost care and attention since commitment to unrealistic time and

resource estimates result in schedule slippage. Schedule delays can cause customer

dissatisfaction and adversely affect team morale. It can even cause project failure. However,

Preview from Notesale.co.uk

Page 150 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

experts may still exhibit bias on issues where the entire group of experts may be biased

due to reasons such as political considerations. Also, the decision made by the group may

be dominated by overly assertive members.

Delphi Cost Estimation

Delphi cost estimation approach tries to overcome some of the shortcomings of the expert

judgment approach. Delphi estimation is carried out by a team comprising of a group of

experts and a coordinator. In this approach, the coordinator provides each estimator with

a copy of the software requirements specification (SRS) document and a form for

recording his cost estimate. Estimators complete their individual estimates anonymously

and submit to the coordinator. In their estimates, the estimators mention any unusual

characteristic of the product which has influenced his estimation. The coordinator

prepares and distributes the summary of the responses of all the estimators, and includes

any unusual rationale noted by any of the estimators. Based on this summary, the

estimators re-estimate. This process is iterated for several rounds. However, no

discussion among the estimators is allowed during the entire estimation process. The idea

behind this is that if any discussion is allowed among the estimators, then many

estimators may easily get influenced by the rationale of an estimator who may be more

experienced or senior. After the completion of several iterations of estimations, the

coordinator takes the responsibility of compiling the results and preparing the final

estimate.

Preview from Notesale.co.uk

Page 158 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 32

HEURISTIC TECHNIQUES

Heuristic techniques assume that the relationships among the different project parameters can be

modeled using suitable mathematical expressions. Once the basic (independent) parameters are

known, the other (dependent) parameters can be easily determined by substituting the value of

the basic parameters in the mathematical expression. Different heuristic estimation models can

be divided into the following two classes: single variable model and the multi variable model.

Single variable estimation models provide a means to estimate the desired characteristics of a

problem, using some previously estimated basic (independent) characteristic of the software

product such as its size. A single variable estimation model takes the following form:

Estimated Parameter = c
1

* e
d

1

In the above expression, e is the characteristic of the software which has already been estimated

(independent variable). Estimated Parameter is the dependent parameter to be estimated. The

dependent parameter to be estimated could be effort, project duration, staff size, etc. c
1

and d
1

are

constants. The values of the constants c
1

and d
1

are usually determined using data collected from

past projects (historical data). The basic COCOMO model is an example of single variable cost

estimation model.

A multivariable cost estimation model takes the following form:

Estimated Resource = c
1
*e

1

d

1
+ c

2
*e

2

d

2
+ ...

Where e
1
, e

2
, … are the basic (independent) characteristics of the software already estimated, and

c
1
, c

2
, d

1
, d

2
, … are constants. Multivariable estimation models are expected to give more

accurate estimates compared to the single variable models, since a project parameter is typically

influenced by several independent parameters. The independent parameters influence the

dependent parameter to different extents. This is modeled by the constants c
1
, c

2
, d

1
, d

2
, … .

Values of these constants are usually determined from historical data. The intermediate

COCOMO model can be considered to be an example of a multivariable estimation model.

Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with basic assumptions

regarding the project. Thus, unlike empirical and heuristic techniques, analytical techniques do

have scientific basis. Halstead’s software science is an example of an analytical technique.

Halstead’s software science can be used to derive some interesting results starting with a few

Preview from Notesale.co.uk

Page 159 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

the program. Halstead’s software science provides gross estimation of properties of a large

collection of software, but extends to individual cases rather inaccurately.

Example:

Let us consider the following C program:

main()

{

int a, b, c, avg;

scanf(“%d %d %d”, &a, &b, &c);

avg = (a+b+c)/3;

printf(“avg = %d”, avg);

}

The unique operators are:

main,(),{},int,scanf,&,“,”,“;”,=,+,/, printf

The unique operands are:

a, b, c, &a, &b, &c, a+b+c, avg, 3,

“%d %d %d”, “avg = %d”

Therefore,

η
1

= 12, η
2

= 11

Estimated Length = (12*log12 + 11*log11)

= (12*3.58 + 11*3.45)

= (43+38) = 81

Volume = Length*log(23)

 = 81*4.52

 = 366

Preview from Notesale.co.uk

Page 163 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

or, K1/K2 = td2
4
/ td1

4

or, K ∝ 1/t
d

4

or, cost ∝ 1/t
d

(as project development effort is equally proportional to project development cost)

From the above expression, it can be easily observed that when the schedule of a project is

compressed, the required development effort as well as project development cost increases in

proportion to the fourth power of the degree of compression. It means that a relatively small

compression in delivery schedule can result in substantial penalty of human effort as well as

development cost. For example, if the estimated development time is 1 year, then in order to

develop the product in 6 months, the total effort required to develop the product (and hence the

project cost) increases 16 times.

Preview from Notesale.co.uk

Page 175 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

Gantt chart representation of a project schedule is helpful in planning the utilization of resources,

while PERT chart is useful for monitoring the timely progress of activities. Also, it is easier to

identify parallel activities in a project using a PERT chart. Project managers need to identify the

parallel activities in a project for assignment to different engineers.

Fig. 36.4: PERT chart representation of the MIS problem

Preview from Notesale.co.uk

Page 181 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 39

COMPUTER AIDED SOFTWARE ENGINEERING

CASE tool and its scope

A CASE (Computer Aided Software Engineering) tool is a generic term used to denote any form

of automated support for software engineering. In a more restrictive sense, a CASE tool means

any tool used to automate some activity associated with software development. Many CASE

tools are available. Some of these CASE tools assist in phase related tasks such as specification,

structured analysis, design, coding, testing, etc.; and others to non-phase activities such as project

management and configuration management.

Reasons for using CASE tools

The primary reasons for using a CASE tool are:

• To increase productivity

• To help produce better quality software at lower cost

CASE environment

Although individual CASE tools are useful, the true power of a tool set can be realized only

when these set of tools are integrated into a common framework or environment. CASE tools are

characterized by the stage or stages of software development life cycle on which they focus.

Since different tools covering different stages share common information, it is required that they

integrate through some central repository to have a consistent view of information associated

with the software development artifacts. This central repository is usually a data dictionary

containing the definition of all composite and elementary

data items. Through the central repository all the CASE tools in a CASE environment share

common information among themselves. Thus a CASE environment facilities the automation of

the step-by-step methodologies for software development. A schematic representation of a CASE

environment is shown in fig. 39.1.

Preview from Notesale.co.uk

Page 197 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

 CASE tools help produce high quality and consistent documents. Since the important

data relating to a software product are maintained in a central repository, redundancy in

the stored data is reduced and therefore chances of inconsistent documentation is reduced

to a great extent.

 CASE tools take out most of the drudgery in a software engineer’s work. For example,

they need not check meticulously the balancing of the DFDs but can do it effortlessly

through the press of a button.

 CASE tools have led to revolutionary cost saving in software maintenance efforts. This

arises not only due to the tremendous value of a CASE environment in traceability and

consistency checks, but also due to the systematic information capture during the various

phases of software development as a result of adhering to a CASE environment.

 Introduction of a CASE environment has an impact on the style of working of a

company, and makes it oriented towards the structured and orderly approach.

Requirements of a prototyping CASE tool

Prototyping is useful to understand the requirements of complex software products, to

demonstrate a concept, to market new ideas, and so on. The important features of a prototyping

CASE tool are as follows:

• Define user interaction

• Define the system control flow

• Store and retrieve data required by the system

• Incorporate some processing logic

Features of a good prototyping CASE tool

There are several stand-alone prototyping tools. But a tool that integrates with the data dictionary

can make use of the entries in the data dictionary, help in populating the data dictionary and

ensure the consistency between the design data and the prototype. A good prototyping tool

should support the following features:

 Since one of the main uses of a prototyping CASE tool is graphical user interface (GUI)

development, prototyping CASE tool should support the user to create a GUI using a

graphics editor. The user should be allowed to define all data entry forms, menus and

controls.

 It should integrate with the data dictionary of a CASE environment.

 If possible, it should be able to integrate with external user defined modules written in C

or some popular high level programming languages.

 The user should be able to define the sequence of states through which a created

prototype can run. The user should also be allowed to control the running of the

prototype.

Preview from Notesale.co.uk

Page 199 of 213

 DEPT OF CSE & IT

 VSSUT, Burla

LECTURE NOTE 41

REUSE APPROACH

Components Classification

Components need to be properly classified in order to develop an effective indexing and storage

scheme. Hardware reuse has been very successful. Hardware components are classified using a

multilevel hierarchy. At the lowest level, the components are described in several forms: natural

language description, logic schema, timing information, etc. The higher the level at which a

component is described, the more is the ambiguity. This has motivated the Prieto-Diaz’s

classification scheme.

Prieto-Diaz’s classification scheme: Each component is best described using a number of

different characteristics or facets. For example, objects can be classified using the following:

Searching- The domain repository may contain thousands of reuse items. A popular search

technique that has proved to be very effective is one that provides a web interface to the

repository. Using such a web interface, one would search an item using an approximate

automated search using key words, and then from these results do a browsing using the links

provided to look up related items. The approximate automated search locates products that

appear to fulfill some of the specified requirements. The items located through the approximate

search serve as a starting point for browsing the repository. These serve as the starting point for

browsing the repository. The developer may follow links to other products until a sufficiently

good match is found. Browsing is done using the keyword-to-keyword, keyword-to-product, and

product-to-product links. These links help to locate additional products and compare their

detailed attributes. Finding a satisfactorily item from the repository may require several locations

of approximate search followed by browsing. With each iteration, the developer would get a

better understanding of the available products and their differences. However, we must

remember that the items to be searched may be components, designs, models, requirements, and

even knowledge.

Repository maintenance - Repository maintenance involves entering new items, retiring those

items which are no more necessary, and modifying the search attributes of items to improve the

effectiveness of search. The software industry is always trying to implement something that has

not been quite done before. As patterns requirements emerge, new reusable components are

identified, which may ultimately become more or less the standards. However, as technology

advances, some components which are still reusable, do not fully address the current

requirements. On the other hand, restricting reuse to highly mature components, sacrifices one of

that creates potential reuse opportunity. Making a product available before it has been thoroughly

Preview from Notesale.co.uk

Page 209 of 213

