The minor (M_{ij}) of a_{ij} is the determinant of the matrix (n-1) (n-1) and is found by canceling row i and column j from a_{ii} .

Cofactor
$$A_{ij}$$
 of a_{ij} is $A_{ij} = (-1)^{i+j} M_{ij}$

Examples of Minors and Cofactors

1. Find
$$M_{12}$$
 and A_{12} for the Matrix [15 20] [7 -5]

To find M_{12} and A_{12} delete row 1 and column 2

[15 20]
[7 -5]

$$M_{12}=7, A_{12}=(-1)^{1+2} M_{12}=(-1)^3 (7)=-7$$

 $A_{12}=-7$
2. Find M_{23} and A_{23} for the Matrix [8 10 4 3]
[16 4 6] 4 [36] 80 [2]
To find M_{23} delete row 2 and column 3

$$\begin{bmatrix}
 8 & 2 & 3 \\
 \hline{16 & 4 & 6 \\
 \hline{36 & 8 & 12}
 \end{bmatrix}$$

$$\begin{bmatrix}
 36 & 8 & 12 \\
 \hline{12} \\
 \hline{136 & 2} \\
 \hline{136 & 2} \\
 A_{23} = (-1)^{2+3} M_{23} = (-1)^5 (8(8) - 36(2) = 72 - 64) = 8$$

Determinant of a 3 x 3 Matrix

 $A_{23} = 8$

The determinant of a 3 x 3 matrix is found by multiplying each value in row 1 by its cofactor then adding the sums. This is referred to as "expanding by the first row".