We just finished doing a substitution of the summation index. It is equivalent to replacing i
by | =i + 2. This relation also implies that i =1 = =3 andi=k = [ =k+ 2. Thisis
actually how you can determine the starting and the ending values of the new index.

Now we can solve this sum using Rule 4 and the known formula.

S:

k k+2 k+2 2
1=

(i+2)* Zz?’ sz” Zﬁ [ k:+2)(k:+3)]2—12—23:B(kz+2)(kz+3)] —9.

1 —

2.6 Applications of sigma sum

The area under a curve

We know that the area of a rectangle with length [ and width w is At = w - L.

Starting from this formula we can calculate the area of a trlangle an t@ id. This is
because a triangle and a trapezoid can be transformed into a \@n € Figure). Thus, for
a triangle of height h and base length b

ores?
OW‘AN ‘“’{ A9

Similarly, for a @)\l\lrlth base le b gth t, and height h
preVte oage
trap —

h(t +b).

Following a very similar idea, the sum of a trapezoid-shaped pile of logs with ¢ logs on top
layer, b logs on the bottom layer, and a height of h = b — ¢t + 1 layers (see figure) is

°. 1 1
Zz:t+(t+1)+---+(b—l)+b:§h(t+b):§(b—t+1)(t+b). (8)

i=t

Now returning to the problem of calculating the area. Another important formula is for the
area of a circle of radius 7.
Acirc = 7T’l"2.

Now, once we learned sigma and/or integration, we can calculate the area under the curve of
any function that is integrable.
Example 10: Calculate the area under the curve y = 22 between 0 and 2 (see figure).

Solution 10: Remember always try to reduce a problem that you do not know how to solve
into a problem that you know how to solve.



respectively, the lower (or the starting) limit and the upper (or the ending) limit of the integral.

Thus,
b
/ f(z)dz

means integrate the function f(x) starting from x = a and ending at © = b.

Example 2: Calculate the definite integral of f(z) = x® on [0.2]. (This is Example 10 of
Lecture 1 reformulated in the form of a definite integral).

Solution 2:

2
"L 2i\7 (2 " 4 D(2n+1
= [ra=im 35 (%) (2) =t () o = g 3P -
0 =

fl=y) Az

Important remarks on the relation between an area a‘é \'\tegral
e An area, defined as the physical mﬂr@x,@%e éa 2D domain, is always non-

negative.

e The value g g\Ntixegral som ’X§ aQ“referred to as an “area”, can be both
ative

Es is because: a deﬁ ite 1ntegral the limit of Riemann sums. But Riemann sums
are defined as

R, = Z(area of i'" rectangle) = Z f(x AZL’Z :

i=1 i=1 hezght ’U}Zdth

e Note that both the hieght f(z}) and the width Az; can be negative implying that R,
can have either signs.

3.3 The fundamental theorem of calculus

3.4 Areas between two curves

11



e’ B de® du . B .
/1+e2rdx_/1+(ew)2_/1+u2_t“” (u) + C = tan™(e") + C.

1 du

[m== | i e 2 e

1 de

e

Edwards/Penney 5" — ed 9.2 Problems (difficult ones!). a\e -CO )

165

Ty ——y @Wﬁ A ) [, =
sinf) e e\N -‘( 2 ‘? !

(27) Pl L) Pt&ge 29) %dw, (u=-e")

3. Special Trigonometric Substitutions

Example:
(i)
sin® ud sin u

3
T
/V1—372 V1 —sin?u

= [ sin®udu = — /(1 — cos?u)d cosu

3 1 — 22)3/2
zcogu—cosu—l—C:%—\/l—x?jLC.

Edwards/Penney 5" — ed 9.6 Problems (difficult ones!).

X

1 , Var—1 3 5
(1)/\/ﬁd:€’ (x =4sinu) (9)/ dz, (x = coshu)  (11) /x V9 + 4a2dzx, (2x

3sinhu)

24

= —cos ' (y)+C = =cos e ™) +C = =cos (e ™ )+C.



VI— 122 2
13)/7$daz, (2x = sinu) (19)/%(&:, (x = sinhu) (27)/\/9—1— 162%dx, (4x
T T

3sinhu)

11 Integration by Parts

Integration by Parts is the integral version of the Product Rule in differentiation. The Product
Rule in terms of differentials reads,

d(uv) = vdu + udv.

Integrating both sides, we obtain

/ uv) / vdu + udv \e C
Note that [ d(uv) = uv + C, the aboy; qNQa ﬁ@ed in the following form,

'G\N ﬁ(o @QUEL?

Generally speaking, we need to use Integration by Parts to solve many integrals that involve
the product between two functions. In many cases, Integration by Parts is most efficient in
solving integrals of the product between a polynomial and an exponential, a logarithmic, or a
trigonometric function. It also applies to the product between exponential and trigonometric
functions.

o V¥

Example: [ ze“dr

Solution: In order to eliminate the power function z, we note that (z)’ = 1. Thus,

/:L'exdzz = /xdex = ze’ — /exd:z =ze” — e+ C.

Example: [ 2?coszdx.

Solution: In order to eliminate the power function %, we note that (2?)” = 2. Thus, we need
to use Integration by Patrs twice.

25



2 2

1
~[2*(Inz)? — 2% Inz + %] +C = %[(lnz)z —Inz+ =

2[ 2]+C.

More Exercises on Integration by Parts:

Example:
(i)
/tsintdt = —/tdcost = —[tcost — /costdt] = [sint — tcost] + C.

Edwards/Penney &' -‘]Xoblems ’(
ie‘@\b 52
?%dz / ? 3z)dx (7) / ¥ Inxdzr, (x> 0)

(11)/\/§lnydy (13) /(1nt)2dt (19)/csc30d9
(21) / 2*tan'wdx (27) / wesciadx (19) / csc0dh

12 Integration by Partial Fractions

Rational functions are defined as the quotient between two polynomials:

P(x)
Qn(7)

where P,(z) and @,,(z) are polynomials of degree n and m respectively. The method of partial
fractions is an algebraic technique that decomposes R(x) into a sum of terms:

R(z) =

27



Example: [ = [ cos(v/x)dx.

Solution: Note that cos(y/z) is a composite fucntion. The substitution to change it into a
simple, elementary function is v = \/x, du = u'dx = 5 fda: or dr = 2v/xdu = 2udu. However,
note that r = (1/z)?,

I= / cos(vz)dz = / cos(vz)d(vz)? = / cos(u)du? = 2 / ucos(u)du

= /udsin(u) = 2[usin(u) + cos(u)] + C = 2[\/zsin(y/x) + cos(v/z)] + C.

Example: [ = [ sec(z)dx = [(1/cos(x))dx.

Solution: This is a difficult integral. Note that 1/cos(z) is a composite fucntlgawpe substitu-
tion to change it into a simple, elementary function is u = co éﬂq cos ! (u) and
dr = 2'du = \/;d—“ 1/+/1 — u? is still a composite func cult to deal with. Here
is how we can deal with it. It involves trlg @St 10n followed by partial fractions.

ohse e of s e

u+1 u+1 sin(x) + 1
=1In +C =1In +C=In|—————|+C =Inltan(x) + sec(z)| + C,
St N e tan(z) + sec()
where u = sin(z) and V1 — u? = cos(x) were used!

More Exercises on Integration by Multiple techniques:

1. Substitution followed by Integration by Parts

1 1 —1
/x3 sin(z?)dr = §/x2 sin(2?)dz?® = §/usinudu = 7/udcosu

— §[sjnu — U COS u] +C = %[Sin(zz) — 2 COS(:EQ)] + C.

Example:

(i)
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The formula is no longer valid if the density is NOT a constant but is nonuniformly distributed
in the solid. However, if you cut the mass up into infinitely many pieces of inifinitely small
volume dV', then the density in this little volume can be considered a constant so that we can
apply the above formula. Thus, the infinitely small mass contained in the little volume is

dm = density x (infinitely small volume) = pdV.

The total mass is obtained by adding up the masses of all such small pieces.

m(V (b)) V(b)
m = / dm = pdV,
0 V(a)

where V(z) = V(x

x)) = fom Y dm is the mass contained in the volume V(z

Example: Calculate the total amount of pollutan ‘?gfast pipe ﬁlled with polluted
liquid which connects a factory to a river m long with a diameter of 1 m.
The density of the pollutant 111 the 1sﬁ‘G —2/10 K@ ,  is the distance in meters
from the factory. m

Solution: Si N’l w only va@I %&wn of the distance x, we can “cut” the pipe
r

into t? al disks al% s of the pipe. Thus, dV = d(m’ r) = mridx. Using the
integral form of the formula,*we obtain

m(100) V(100)
m = / dm = p(x)dV
m(0) v (0)

dV is the volume of the portion of the sohd between a\zd x; while

100 100
1
= / p(x)mride = %/ e /M0y = %[1 — e W) =~ 7.85 (kg).
0 0

Example: The air density h meters above the earth’s surface is p(h) = 1.28¢0-000124% (kg /m3).
Find the mass of a cylindrical column of air 4 meters in diameter and 25 kilometers high. (3
points)

Solution: Similar to the previous problem, the density only varies as a function of the altitutde
h. Thus, we “cut” this air column into horizontal slices of thin disks with volume dV = 7r2dh.
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The Advantage of Trigonometric Functions

Relations between different trigonometric functions are very important since when we dif-
ferentiate or integrate one trig function we obtain another trig function. When we use trig
substitution, it is often a necessity for us to know the definition of other trig functions that is
related to the one we use in the substitution.

Example: Calculate the derivative of y = sin™! z.

Solution: y = sin~! 2 means siny = . Differentiate both sides of siny = z, we obtain

cosyy =1 = ¢ = oy

In order to express 3 in terms of , we need to express cosy in terms of x. Given that siny = =z,
we can obtain cosy = \/ cos?y = \/ 1 —sin?y = V1 — 22 by using trig identitiqs., However, it
is easier to construct a right triangle with an angle y. The opposite Sld@mﬂ while the
hypotenuse must be 1, thus the adjacent side is /1 — x2. Th\@re

adjacent s Oxeg
cosy = Wﬁf&:

A\!
qieW
Exarlg (Lelculate the mP %gﬁdx

Solution: This integral requires standard trig substitution © = tanwu or z = sinh u. Let’s use
z = sinhu. Recall that 1 + sinh® u = cosh®u and that dz = dsinhu = cosh udu,

/ V1+ 23dr = / V1 + sinh? ud sinhu = /cosh2 udu

1 1 1 1
=3 /[1 + cosh(2u)|du = §[u + 5 sinh(2u)] + C' = i[u + sinh w cosh u] + C.

where hyperbolic identities cosh®u = [1 + cosh(2u)]/2 and sinh(2u) = 2sinhwucoshu were
used. However, we need to express the solution in terms of x. Since x = sinhu was the
substitution, we know right away v = sinh ™' 2 = In |z + /1 + 22| and sinhu = z, but how to
express cosh v in terms of 27 We can solve it using hyperbolic identities. coshu = Vcosh? u =

V1 + sinh? u = v/1 + 2. Thus,

1 1
§[u+sinhucoshu] = §[ln|x+ V1422 +a2v1+ 2?].
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