
We just finished doing a substitution of the summation index. It is equivalent to replacing i
by l = i + 2. This relation also implies that i = 1 ⇒ l = 3 and i = k ⇒ l = k + 2. This is
actually how you can determine the starting and the ending values of the new index.

Now we can solve this sum using Rule 4 and the known formula.

S =
k∑

i=1

(i+2)3 =
k+2∑

l=3

l3 =
k+2∑

l=1

l3−
2∑

l=1

l3 =

[
1

2
(k + 2)(k + 3)

]2

−12−23 =

[
1

2
(k + 2)(k + 3)

]2

−9.

2.6 Applications of sigma sum

The area under a curve

We know that the area of a rectangle with length l and width w is Arect = w · l.
Starting from this formula we can calculate the area of a triangle and a trapezoid. This is
because a triangle and a trapezoid can be transformed into a rectangle (see Figure). Thus, for
a triangle of height h and base length b

Atrig =
1

2
hb.

Similarly, for a trapezoid with base length b, top length t, and height h

Atrap =
1

2
h(t + b).

Following a very similar idea, the sum of a trapezoid-shaped pile of logs with t logs on top
layer, b logs on the bottom layer, and a height of h = b − t + 1 layers (see figure) is

b∑

i=t

i = t + (t + 1) + · · · + (b − 1) + b =
1

2
h(t + b) =

1

2
(b − t + 1)(t + b). (8)

Now returning to the problem of calculating the area. Another important formula is for the
area of a circle of radius r.

Acirc = πr2.

Now, once we learned sigma and/or integration, we can calculate the area under the curve of
any function that is integrable.

Example 10: Calculate the area under the curve y = x2 between 0 and 2 (see figure).

Solution 10: Remember always try to reduce a problem that you do not know how to solve
into a problem that you know how to solve.
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respectively, the lower (or the starting) limit and the upper (or the ending) limit of the integral.
Thus,

b∫

a

f(x)dx

means integrate the function f(x) starting from x = a and ending at x = b.

Example 2: Calculate the definite integral of f(x) = x2 on [0.2]. (This is Example 10 of
Lecture 1 reformulated in the form of a definite integral).

Solution 2:

I =

2∫

0

x2dx = lim
n→∞

n∑

i=1

(
2i

n

)2

︸ ︷︷ ︸

f(x∗

i
)

(
2

n

)

︸ ︷︷ ︸

∆xi

= lim
n→∞

(
8

n3

) n∑

i=1

i2 = lim
n→∞

4

3

(n + 1)(2n + 1)

n2
=

8

3
.

Important remarks on the relation between an area and a definite integral:

• An area, defined as the physical measure of the size of a 2D domain, is always non-
negative.

• The value of a definite integral, sometimes also referred to as an “area”, can be both
positive and negative.

• This is because: a definite integral = the limit of Riemann sums. But Riemann sums
are defined as

Rn =

n∑

i=1

(area of ith rectangle) =

n∑

i=1

f(x∗
i )

︸ ︷︷ ︸

height

∆xi
︸︷︷︸

width

.

• Note that both the hieght f(x∗
i ) and the width ∆xi can be negative implying that Rn

can have either signs.

3.3 The fundamental theorem of calculus

3.4 Areas between two curves
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Example:
(i)

∫
ex

1 + e2x
dx =

∫
dex

1 + (ex)2
=

∫
du

1 + u2
= tan−1(u) + C = tan−1(ex) + C.

(ii)

∫
x√

e2x2 − 1
dx =

1

2

∫
dx2

√

e2x2(1 − e−2x2)
=

1

2

∫
du

√

e2u(1 − e−2u)
=

1

2

∫
du

eu
√

1 − (e−u)2

= −1

2

∫
de−u

√

1 − (e−u)2
= −1

2

∫
dy

√

1 − y2
=

1

2
cos−1(y)+C =

1

2
cos−1(e−u)+C =

1

2
cos−1(e−x2

)+C.

Edwards/Penney 5th − ed 9.2 Problems (difficult ones!).

(17)

∫
e2x

1 + e4x
dy, (u = e2x) (19)

∫
3x√

1 − x4
dx, (u = x2) (23)

∫
cosθ

1 + sin2θ
dθ, (u =

sinθ)

(27)

∫
1

(1 + t2)tan−1t
dt, (u = tan−1t) (29)

∫
1√

e2x − 1
dx, (u = e−x)

3. Special Trigonometric Substitutions

Example:
(i)

∫
x3

√
1 − x2

dx =

∫
sin3 ud sinu
√

1 − sin2 u
=

∫

sin3 udu = −
∫

(1 − cos2 u)d cosu

=
cos3u

3
− cos u + C =

(1 − x2)3/2

3
−
√

1 − x2 + C.

Edwards/Penney 5th − ed 9.6 Problems (difficult ones!).

(1)

∫
1√

16 − x2
dx, (x = 4 sin u) (9)

∫ √
x2 − 1

x
dx, (x = cosh u) (11)

∫

x3
√

9 + 4x2dx, (2x =

3 sinh u)
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(13)

∫ √
1 − 4x2

x
dx, (2x = sin u) (19)

∫
x2

√
1 + x2

dx, (x = sinh u) (27)

∫ √
9 + 16x2dx, (4x =

3 sinh u)

11 Integration by Parts

Integration by Parts is the integral version of the Product Rule in differentiation. The Product
Rule in terms of differentials reads,

d(uv) = vdu + udv.

Integrating both sides, we obtain

∫

d(uv) =

∫

vdu +

∫

udv.

Note that
∫

d(uv) = uv + C, the above equation can be expressed in the following form,

∫

udv = uv −
∫

vdu.

Generally speaking, we need to use Integration by Parts to solve many integrals that involve
the product between two functions. In many cases, Integration by Parts is most efficient in
solving integrals of the product between a polynomial and an exponential, a logarithmic, or a
trigonometric function. It also applies to the product between exponential and trigonometric
functions.

Example:
∫

xexdx.

Solution: In order to eliminate the power function x, we note that (x)′ = 1. Thus,

∫

xexdx =

∫

xdex = xex −
∫

exdx = xex − ex + C.

Example:
∫

x2cosxdx.

Solution: In order to eliminate the power function x2, we note that (x2)′′ = 2. Thus, we need
to use Integration by Patrs twice.
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=
1

2
[x2(ln x)2 − x2 lnx +

x2

2
] + C =

x2

2
[(ln x)2 − lnx +

1

2
] + C.

More Exercises on Integration by Parts:

Example:
(i) ∫

t sin tdt = −
∫

td cos t = −[t cos t −
∫

cos tdt] = [sin t − t cos t] + C.

(ii)
∫

tan−1xdx = xtan−1x −
∫

xdtan−1x = xtan−1x −
∫

x

1 + x2
dx

= xtan−1x − 1

2

∫
d(1 + x2)

1 + x2
= xtan−1x − ln

√
1 + x2 + C.

Edwards/Penney 5th − ed 9.3 Problems.

(1)

∫

xe2xdx (5)

∫

x cos(3x)dx (7)

∫

x3 ln xdx, (x > 0)

(11)

∫ √
y ln ydy (13)

∫

(ln t)2dt (19)

∫

csc3θdθ

(21)

∫

x2tan−1xdx (27)

∫

xcsc2xdx (19)

∫

csc3θdθ

12 Integration by Partial Fractions

Rational functions are defined as the quotient between two polynomials:

R(x) =
Pn(x)

Qm(x)

where Pn(x) and Qm(x) are polynomials of degree n and m respectively. The method of partial
fractions is an algebraic technique that decomposes R(x) into a sum of terms:
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Example: I =
∫

cos(
√

x)dx.

Solution: Note that cos(
√

x) is a composite fucntion. The substitution to change it into a
simple, elementary function is u =

√
x, du = u′dx = 1

2
√

x
dx or dx = 2

√
xdu = 2udu. However,

note that x = (
√

x)2,

I =

∫

cos(
√

x)dx =

∫

cos(
√

x)d(
√

x)2 =

∫

cos(u)du2 = 2

∫

ucos(u)du

= 2

∫

udsin(u) = 2[usin(u) + cos(u)] + C = 2[
√

xsin(
√

x) + cos(
√

x)] + C.

Example: I =
∫

sec(x)dx =
∫

(1/cos(x))dx.

Solution: This is a difficult integral. Note that 1/cos(x) is a composite fucntion. One substitu-
tion to change it into a simple, elementary function is u = cos(x). However, x = cos−1(u) and
dx = x′du = −du√

1−u2
. 1/

√
1 − u2 is still a composite function that is difficult to deal with. Here

is how we can deal with it. It involves trigonometric substitution followed by partial fractions.

I =

∫
dx

cos(x)
=

∫
cos(x)dx

cos2(x)
=

∫
dsin(x)

1 − sin2(x)
=

∫
du

1 − u2
= −

∫

[
1

u − 1
− 1

u + 1
]
du

2

= ln

√

|u + 1

u − 1
| + C = ln | u + 1√

1 − u2
| + C = ln |sin(x) + 1

cos(x)
| + C = ln |tan(x) + sec(x)| + C,

where u = sin(x) and
√

1 − u2 = cos(x) were used!

More Exercises on Integration by Multiple techniques:

1. Substitution followed by Integration by Parts

Example:
(i) ∫

x3 sin(x2)dx =
1

2

∫

x2 sin(x2)dx2 =
1

2

∫

u sin udu =
−1

2

∫

ud cosu

=
1

2
[sin u − u cosu] + C =

1

2
[sin(x2) − x2 cos(x2)] + C.

31

Preview from Notesale.co.uk

Page 31 of 49



The formula is no longer valid if the density is NOT a constant but is nonuniformly distributed
in the solid. However, if you cut the mass up into infinitely many pieces of inifinitely small
volume dV , then the density in this little volume can be considered a constant so that we can
apply the above formula. Thus, the infinitely small mass contained in the little volume is

dm = density × (infinitely small volume) = ρdV.

The total mass is obtained by adding up the masses of all such small pieces.

m =

∫ m(V (b))

0

dm =

∫ V (b)

V (a)

ρdV,

where V (x) =
∫ V (x)

0
dV is the volume of the portion of the solid between a and x; while

m(V (x)) =
∫ m(V (x))

0
dm is the mass contained in the volume V (x).

Example: Calculate the total amount of pollutant in an exhaust pipe filled with polluted
liquid which connects a factory to a river. The pipe is 100 m long with a diameter of 1 m.
The density of the pollutant in the pipe is ρ(x) = e−x/10 (kg/m3), x is the distance in meters
from the factory.

Solution: Since the density only varies as a function of the distance x, we can “cut” the pipe
into thin cylindrical disks along the axis of the pipe. Thus, dV = d(πr2x) = πr2dx. Using the
integral form of the formula, we obtain

m =

∫ m(100)

m(0)

dm =

∫ V (100)

V (0)

ρ(x)dV

=

∫ 100

0

ρ(x)πr2dx =
π

4

∫ 100

0

e−x/10dx =
10π

4
[1 − e−10] ≈ 7.85 (kg).

Example: The air density h meters above the earth’s surface is ρ(h) = 1.28e−0.000124h (kg/m3).
Find the mass of a cylindrical column of air 4 meters in diameter and 25 kilometers high. (3
points)

Solution: Similar to the previous problem, the density only varies as a function of the altitutde
h. Thus, we “cut” this air column into horizontal slices of thin disks with volume dV = πr2dh.
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The Advantage of Trigonometric Functions

Relations between different trigonometric functions are very important since when we dif-
ferentiate or integrate one trig function we obtain another trig function. When we use trig
substitution, it is often a necessity for us to know the definition of other trig functions that is
related to the one we use in the substitution.

Example: Calculate the derivative of y = sin−1 x.

Solution: y = sin−1 x means sin y = x. Differentiate both sides of sin y = x, we obtain

cos yy′ = 1 ⇒ y′ =
1

cos y
.

In order to express y′ in terms of x, we need to express cos y in terms of x. Given that sin y = x,
we can obtain cos y =

√

cos2 y =
√

1 − sin2 y =
√

1 − x2 by using trig identities. However, it
is easier to construct a right triangle with an angle y. The opposite side must be x while the
hypotenuse must be 1, thus the adjacent side is

√
1 − x2. Therefore,

cos y =
adjacent side

hypotenuse
=

√
1 − x2

1
=

√
1 − x2.

Example: Calculate the integral
∫ √

1 + x2dx.

Solution: This integral requires standard trig substitution x = tanu or x = sinh u. Let’s use
x = sinh u. Recall that 1 + sinh2 u = cosh2 u and that dx = d sinh u = cosh udu,

∫ √
1 + x2dx =

∫ √

1 + sinh2 ud sinh u =

∫

cosh2 udu

=
1

2

∫

[1 + cosh(2u)]du =
1

2
[u +

1

2
sinh(2u)] + C =

1

2
[u + sinh u cosh u] + C.

where hyperbolic identities cosh2 u = [1 + cosh(2u)]/2 and sinh(2u) = 2 sinh u coshu were
used. However, we need to express the solution in terms of x. Since x = sinh u was the
substitution, we know right away u = sinh−1 x = ln |x +

√
1 + x2| and sinh u = x, but how to

express cosh u in terms of x? We can solve it using hyperbolic identities. cosh u =
√

cosh2 u =
√

1 + sinh2 u =
√

1 + x2. Thus,

1

2
[u + sinh u coshu] =

1

2
[ln |x +

√
1 + x2| + x

√
1 + x2].
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