C1 3.3 ALUMENIUM & TITANIUM

	Highligh Page	Titanium
Property	 Shiny Light Low density Conducts electricity and energy Malleable - easily shaped Ductile - drawn into cables and wires 	 Strong Resistant to corrosion High melting point - so can be used at high temperatures Less dense than most metals
Use	 Drinks cans Cooking foil Saucepans High-voltage electricity cables Bicycles Aeroplanes and space vehicles 	 High-performance aircraft Racing bikes Jet engines Parts of nuclear reactors Replacement hip joints
Extraction	Electrolysis • Aluminium ore is mined and extracted. • Alumminium oxide (the ore) is melted • Electric current passed through at high temperature → Expensive process - need lots of heat and electricity	Displacement & Electrolysis Use sodium or potassium to displace titanium from its ore Get sodium and magnesium from electrolysis → Expensive - lots of steps involved, & needs lots of heat and electricity

C1 3.6 METALLIC ISSUES

EXPLOITING PRESVIEW PAGE

Mining has many environmental consequences:

- Scar the landscape
- Noisy & Dusty
- Destroy animal habitats
- Large heaps of waste rock
- Make groundwater acidic
- · Release gases that cause acid rain

RECYCLING METALS

- Recycling aluminium saves 95% of the energy normally used to extract it!
- This saves money!
- Iron and steel are easily recycled. As they are magnetic they are easily separated
- Copper can be recycled too but it's trickier as it's often alloyed with other elements

BUILDING WITH METALS

Benefits

- Steel is strong for girders
- · Aluminium is corrosion resistant
- · Many are malleable
- Copper is a good conductor and not reactive

Drawbacks

- Iron & steel can rust
- · Extraction causes pollution
- Metals are more expensive than other materials like concrete

C1 5.1 CRACKING HYDROGARBONS

CRACKING -> Breaking town large hydrocalto chains into smaller, more useful ones

CRACKING PROCESS

- 1. Heat hydrocarbons to a high temp; then either:
- 2. Mix them with steam; OR
- 3. Pass the over a hot catalyst

EXAMPLE OF CRACKING

Cracking is a thermal decomposition reaction:

 $C_5H_{12} + C_3H_6 + C_2H_4$

Propene

Ethene

ALKENES

Decane

· These are unsaturated hydrocarbons

Pentane

- · They contain a double bond
- · Have the general formula $\rightarrow c_n H_{2n}$

SATURATED OR UNSATURATED?

We can react products with bromine water to test for saturation:

Positive Test:

Unsaturated + Bromine \rightarrow COLOURLESS hydrocarbon Water

= ALKENES

Negative Test:

Saturated + Bromine → NO RECTION Hydrocarbon Water (orange)

= ALKANES

C1 6.1 EXTRACTING VEGETAGLE OIL

There are 2 ways to extract vegetable oil 1000 plants:

1) PRESSING

- 1. Farmers collect seeds from plants
- 2. Seeds are crushed and pressed
- 3. This extracts oil from them
- 4. Impurities are removed
- 5. Oil is processed to make it into a useful product

2) DISTILLATION

- Plants are put into water and boiled
- 2. Oil and water evaporate together
- 3. Oil is collected by condensing (cooling the gas vapours)

Lavender oil is one oil extracted this way

FOOD AND FUEL

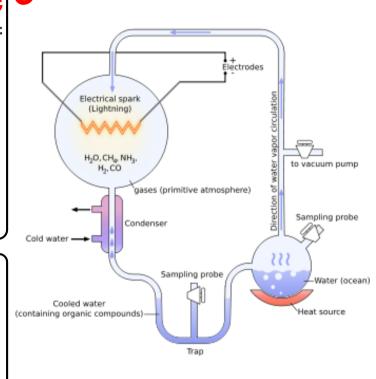
Vegetable oils are important foods:

- Provide important nutrients (e.g. vitamin E)
- Contain lots of energy → so can also be used as fuels
- Unsaturated oils contain double bonds (C=C)
 → they decolourise Bromine water

Food	Energy (kJ)
Veg Oil	3900
Sugar	1700
Meat	1100

Table for info only - don't memorise it!

C1 7.4 LITE ON EARTING


No one can be some awhite on Earth fast estarted. There are many different theories:

MILLER-UREY EXPERIMENT

- Compounds for life on Earth came from reactions involving hydrocarbons (e.g. methane) and ammonia
- The energy for this could have been provided by lightning

OTHER THEORIES

- 1. Molecules for life (amino acids) came on meteorites from out of space
- 2. Actual living organisms themselves arrived on meteorites
- 3. Biological molecules were released from deep ocean vents

The experiment completed by Miller and Urey