
Preview from Notesale.co.uk

Page 1 of 715

Preview from Notesale.co.uk

Page 2 of 715

Preview from Notesale.co.uk

Page 4 of 715

Build Your Own ASP.NET 2.0
Web Site Using C# & VB

by Cristian Darie

and Zak Ruvalcaba

Preview from Notesale.co.uk

Page 5 of 715

Preview from Notesale.co.uk

Page 10 of 715

Button ... 614
Calendar ... 615
CheckBox ... 617
CheckBoxList .. 617
DropDownList ... 619
FileUpload .. 619
HiddenField .. 620
HyperLink ... 620
Image ... 621
ImageButton .. 621
ImageMap ... 622
Label ... 622
LinkButton .. 623
ListBox ... 623
Literal ... 624
MultiView ... 624
Panel ... 625
PlaceHolder .. 625
RadioButton .. 625
RadioButtonList ... 626
TextBox ... 627
Xml .. 628

Validation Controls .. 628
CompareValidator ... 628
CustomValidator ... 629
RangeValidator .. 630
RegularExpressionValidator ... 631
RequiredFieldValidator .. 632
ValidationSummary ... 633

Navigation Web Controls ... 634
SiteMapPath .. 634
Menu .. 635
TreeView ... 640

HTML Server Controls .. 643
HtmlAnchor Control ... 644
HtmlButton Control ... 644
HtmlForm Control .. 645
HtmlGeneric Control ... 646
HtmlImage Control ... 647
HtmlInputButton Control .. 647
HtmlInputCheckBox Control .. 648
HtmlInputFile Control ... 649

ix

Preview from Notesale.co.uk

Page 17 of 715

The SitePoint Forums
If you’d like to communicate with us or anyone else on the SitePoint publishing
team about this book, you should join SitePoint’s online community.2 The .NET
forum, in particular, can offer an abundance of information above and beyond
the solutions in this book.3

In fact, you should join that community even if you don’t want to talk to us,
because a lot of fun and experienced web designers and developers hang out there.
It’s a good way to learn new stuff, get questions answered in a hurry, and just
have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters in-
cluding The SitePoint Tribune and The SitePoint Tech Times. In them, you’ll read
about the latest news, product releases, trends, tips, and techniques for all aspects
of web development. If nothing else, you’ll get useful ASP.NET articles and tips,
but if you’re interested in learning other technologies, you’ll find them especially
valuable. Sign up to one or more SitePoint newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or if you wish to contact us
for any other reason, the best place to write is books@sitepoint.com. We have
a well-manned email support system set up to track your inquiries, and if our
support staff members are unable to answer your question, they will send it
straight to us. Suggestions for improvements, as well as notices of any mistakes
you may find, are especially welcome.

Acknowledgements
First and foremost, I’d like to thank the SitePoint team for doing such a great
job in making this book possible, for being understanding as deadlines inevitably
slipped past, and for the team’s personal touch, which made it a pleasure to work
on this project.

2 http://www.sitepoint.com/forums/
3 http://www.sitepoint.com/forums/forumdisplay.php?f=141

xvi

Preface

Preview from Notesale.co.uk

Page 24 of 715

won’t be the case with the ASP.NET scripts you’ll see through the rest of this
book.

Once your new virtual directory has been created, you can see and configure it
through the Internet Information Services management console shown in Fig-
ure 1.8. You can see the folder’s contents in the right-hand panel.

As index.htm is one of the default document names, you can access that page
just by entering http://localhost/Learning/ into your browser’s address bar.
To see and edit the default document names for a virtual directory (or any direct-
ory, for that matter), you can right-click the directory’s name in the IIS manage-
ment console, click Properties, and select the Documents tab. You’ll see the dialog
displayed in Figure 1.10.

Figure 1.10. Default document types for the Learning virtual
directory

By default, when we request a directory without specifying a filename, IIS looks
for a page with the name of one of the default documents, such as index.htm or
default.htm. If there is no index page, IIS assumes we want to see the contents
of the requested location. This operation is allowed only if the Directory Browsing

18

Chapter 1: Introducing ASP.NET and the .NET Platform

Preview from Notesale.co.uk

Page 44 of 715

Custom Errors This option allows you to define your own custom error
pages. Rather than presenting the standard error mes-
sages that appear within Internet Explorer, you can
customize error messages with your company’s logo
and messages of your choice.

ASP.NET This tab allows you to configure the options for the
ASP.NET applications stored in that folder.

One thing to note at this point is that we can set properties for the Default Web
Site node, and choose to have them “propagate” down to all the virtual directories
we’ve created.

Using Cassini

If you’re stuck using a version of Windows that doesn’t support IIS, you’ll need
to make use of Cassini to get your simple ASP.NET web applications up and
running. Cassini doesn’t support virtual directories, security settings, or any of
IIS’s other fancy features; it’s just a very simple web server that gives you the
basics you need to get up and running.

To get started using Cassini:

1. Create a directory called C:\WebDocs\Learning, just like the one we created
in the section called “Virtual Directories”.

2. Copy index.htm into this folder. We first saw index.htm in the section
called “Using localhost”.

3. Start Cassini by opening C:\Cassini (or, if you chose to install Cassini
somewhere else, open that folder), then double-click on the file CassiniWeb-
Server.exe.

4. Cassini has just three configuration options:

Application Directory
It’s here that your application’s files are stored. Enter C:\WebDocs\Learn-
ing into this field.

Server Port
Web servers almost always operate on port 80, so we won’t touch this
setting.

20

Chapter 1: Introducing ASP.NET and the .NET Platform

Preview from Notesale.co.uk

Page 46 of 715

Server Management Studio Express is a free tool provided by Microsoft to allow
you to manage your installation of SQL Server 2005.

To install SQL Server Management Studio Express, follow these steps:

1. Navigate again to http://msdn.microsoft.com/vstudio/express/sql/, and click
the Download Now link.

2. This time, download the SQL Server Management Studio Express edition that
corresponds to the SQL Server 2005 version that you installed previously.

3. After the download completes, execute the file and follow the steps to install
the product.

Once it’s installed, SQL Server Manager Express can be accessed from Start > All
Programs > Microsoft SQL Server 2005 > SQL Server Management Studio Express.
When executed, it will first ask for your credentials, as Figure 1.12 illustrates.

Figure 1.12. Connecting to SQL Server

By default, when installed, SQL Server 2005 Express Edition will only accept
connections that use Windows Authentication, which means that you’ll use your
Windows user account to log in to the SQL Server. Because you’re the user that
installed SQL Server 2005, you’ll already have full privileges to the SQL Server.
Click Connect to connect to your SQL Server 2005 instance.

23

Installing SQL Server Management Studio Express

Preview from Notesale.co.uk

Page 49 of 715

Figure 1.14. Changing server settings with SQL Server Management
Studio

database server, you must specify both the name of the computer and the
name of the SQL Server instance in the form ComputerName/Instance-
Name. You can see this specification back in Figure 1.12 and Figure 1.13,
where we’re connecting to an instance called SQLEXPRESS on a computer
called VM2.

Installing Visual Web Developer 2005
Visual Web Developer automates many of the tasks that you’d need to complete
yourself in other environments, and includes many powerful features. For the
first exercises in this book, we’ll recommend you use a simple text editor such as

25

Installing Visual Web Developer 2005

Preview from Notesale.co.uk

Page 51 of 715

The runat="server" attribute identifies the tag as something that needs to be
handled on the server. In other words, the web browser will never see the
<asp:Label/> tag; when the page is requested by the client, ASP.NET sees it
and converts it to regular HTML tags before the page is sent to the browser. It’s
up to us to write the code that will tell ASP.NET to replace this particular tag
with the current time.

To do this, we must add some script to our page. ASP.NET gives you the choice
of a number of different languages to use in your scripts. The two most common
languages are VB and C#. Let’s take a look at examples using both. Here’s a
version of the page in VB:

Visual Basic File: FirstPage.aspx (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>My First ASP.NET Page</title>

<script runat="server" language="VB">
 Sub Page_Load(sender As Object, e As EventArgs)
 timeLabel.Text = DateTime.Now.ToString()
 End Sub
 </script>
 </head>
 <body>
 <p>Hello there!</p>
 <p>The time is now:
 <asp:Label runat="server" id="timeLabel" /></p>
 </body>
</html>

Here’s the same page written in C#:

C# File: FirstPage.aspx (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>My First ASP.NET Page</title>

<script runat="server" language="C#">
 protected void Page_Load(object sender, EventArgs e)
 {
 timeLabel.Text = DateTime.Now.ToString();
 }
 </script>

28

Chapter 1: Introducing ASP.NET and the .NET Platform

Preview from Notesale.co.uk

Page 54 of 715

ASP.NET Basics2
So far, you’ve learned what ASP.NET is, and what it can do. You’ve installed the
software you need to get going, and, having been introduced to some very simple
form processing techniques, you even know how to create a simple ASP.NET
page. Don’t worry if it all seems a little bewildering right now, because, as this
book progresses, you’ll learn how to use ASP.NET at more advanced levels.

As the next few chapters unfold, we’ll explore some more advanced topics, includ-
ing the use of controls, and various programming techniques. But before you can
begin to develop applications with ASP.NET, you’ll need to understand the inner
workings of a typical ASP.NET page—with this knowledge, you’ll be able to
identify the parts of the ASP.NET page referenced in the examples we’ll discuss
throughout this book. So, in this chapter, we’ll talk about some key mechanisms
of an ASP.NET page, specifically:

❑ page structure

❑ view state

❑ namespaces

❑ directives

Preview from Notesale.co.uk

Page 59 of 715

Figure 2.1. The life cycle of the ASP.NET page

Figure 2.2. The parts of an ASP.NET page

35

ASP.NET Page Structure

Preview from Notesale.co.uk

Page 61 of 715

In VB code, a single quote or apostrophe (') indicates that the remainder of the
line is to be ignored as a comment.

In C# code, two slashes (//) achieve the same end. C# code also lets us span a
comment over multiple lines if we begin it with /* and end it with */, as in this
example:

C#

<script runat="server">
 void mySub()
 {
 /* Multi-line
 comment */
 }
</script>

Before .NET emerged, ASP also supported such script tags using a runat="serv-
er" attribute. However, they could only ever contain VBScript and, for a variety
of reasons, they failed to find favor among developers.

Code declaration blocks are generally placed inside the head of your ASP.NET
page. The sample ASP.NET page shown in Figure 2.2, for instance, contains the
following code declaration block:

Visual Basic File: Hello.aspx (excerpt)

<script runat="server">
 Sub Page_Load()
 messageLabel.Text = "Hello World"
 End Sub
</script>

Perhaps you can work out what the equivalent C# code would be:

C# File: Hello.aspx (excerpt)

<script runat="server">
 void Page_Load()
 {
 messageLabel.Text = "Hello World";
 }
</script>

The <script runat="server"> tag also accepts two other attributes. We can
set the language that’s used in this code declaration block via the language at-
tribute:

38

Chapter 2: ASP.NET Basics

Preview from Notesale.co.uk

Page 64 of 715

These code blocks simply declare a String variable called Title, and assign it the
value This is generated by a code render block.

Inline expression render blocks can be compared to Response.Write in classic
ASP. They start with <%= and end with %>, and are used to display the values of
variables and methods on a page. In our example, an inline expression appears
immediately after our inline code block:

File: Hello.aspx (excerpt)

<%= Title %>

If you’re familiar with classic ASP, you’ll know what this code does: it simply
outputs the value of the variable Title that we declared in the previous inline
code block.

ASP.NET Server Controls
At the heart of any ASP.NET page lie server controls, which represent dynamic
elements with which your users can interact. There are three basic types of server
control: ASP.NET controls, HTML controls, and web user controls.

Usually, an ASP.NET control must reside within a <form runat="server"> tag
in order to function correctly. Controls offer the following advantages to ASP.NET
developers:

❑ They give us the ability to access HTML elements easily from within our code:
we can change these elements’ characteristics, check their values, or even up-
date them dynamically from our server-side programming language of choice.

❑ ASP.NET controls retain their properties thanks to a mechanism called view
state. We’ll be covering view state later in this chapter. For now, you need
to know that view state prevents users from losing the data they’ve entered
into a form once that form has been sent to the server for processing. When
the response comes back to the client, text box entries, drop-down list selec-
tions, and so on, are all retained through view state.

❑ With ASP.NET controls, developers are able to separate a page’s presentational
elements (everything the user sees) from its application logic (the dynamic
portions of the ASP.NET page), so that each can be considered separately.

❑ Many ASP.NET controls can be “bound” to the data sources from which they
will extract data for display with minimal (if any) coding effort.

40

Chapter 2: ASP.NET Basics

Preview from Notesale.co.uk

Page 66 of 715

VB and C# Programming Basics3
As you learned at the end of the last chapter, one of the great things about using
ASP.NET is that we can pick and choose which of the various .NET languages
we like. In this chapter, we’ll look at the key programming principles that will
underpin our use of Visual Basic and C#. We’ll start by discussing some basic
concepts of programming ASP.NET web applications using these two languages.
We’ll explore programming fundamentals such as variables, arrays, functions,
operators, conditionals, loops, and events, and work through a quick introduction
to object oriented programming (OOP). Next, we’ll dive into namespaces and
address the topic of classes—seeing how they’re exposed through namespaces,
and which ones you’ll use most often.

The final sections of the chapter cover some of the ideas underlying modern, ef-
fective ASP.NET design, including code-behind and the value it provides by
helping us separate code from presentation. We finish with an examination of
how object oriented programming techniques impact the ASP.NET developer.

Programming Basics
One of the building blocks of an ASP.NET page is the application logic: the ac-
tual programming code that allows the page to function. To get anywhere with
ASP.NET, you need to grasp the concept of events. All ASP.NET pages will
contain controls such as text boxes, checkboxes, and lists. Each of these controls

Preview from Notesale.co.uk

Page 77 of 715

Visual Basic

Dim carType As String = "BMW"

C#

string carType = "BMW";

We can also declare and/or initialize a group of variables of the same type simul-
taneously. This practice isn’t recommended, though, as it makes the code more
difficult to read.

Visual Basic

Dim carType As String, carColor As String = "blue"

C#

string carType, carColor = "blue";

Table 3.1 lists the most useful data types available in VB and C#.

Table 3.1. A list of commonly used data types

DescriptionC#VB

whole numbers in the range -2,147,483,648 to
2,147,483,647

intInteger

numbers up to 28 decimal places; this command
is used most often when dealing with costs of
items

decimalDecimal

any text valuestringString

a single character (letter, number, or symbol)charChar

true or falseboolBoolean

a generic type that can be used to refer to ob-
jects of any type

objectObject

You’ll encounter many other data types as you progress, but this list provides an
overview of the ones you’ll use most often.

Many Aliases are Available

These data types are the VB- and C#-specific aliases for types of the .NET
Framework. For example, instead of Integer or int, you could use
System.Int32 in any .NET language; likewise, instead of Boolean or bool,
you could use System.Boolean, and so on.

60

Chapter 3: VB and C# Programming Basics

Preview from Notesale.co.uk

Page 86 of 715

 string getName()
 {
 return "Zak Ruvalcaba";
 }
 // And now we'll use it in the Page_Load handler
 void Page_Load()
 {
 messageLabel.Text = getName();
 }
 </script>
 </head>
 <body>
 <form runat="server">
 <asp:Label id="messageLabel" runat="server" />
 </form>
 </body>
</html>

When the page above is loaded in the browser, the Load event will be raised
which will cause the Page_Load event handler to be called, which in turn will call
the getName function. Figure 3.4 shows the result in the browser.

Figure 3.4. Executing an ASP.NET function

Here’s what’s happening: the line in our Page_Load subroutine calls our function,
which returns a simple string that we can assign to our label. In this simple exam-
ple, we’re merely returning a fixed string, but the function could just as easily
retrieve the name from a database (or somewhere else). The point is that, regard-
less of how the function gets its data, we call it in just the same way.

When we’re declaring our function, we must remember to specify the correct re-
turn type. Take a look at the following code:

Visual Basic

' Here's our function
Function addUp(x As Integer, y As Integer) As Integer
 Return x + y

66

Chapter 3: VB and C# Programming Basics

Preview from Notesale.co.uk

Page 92 of 715

call which will return an integer during execution. Converting numbers to strings
is a very common task in ASP.NET, so it’s good to get a handle on it early.

Converting Numbers to Strings

There are more ways to convert numbers to strings in .NET, as the following
lines of VB code illustrate:

messageLabel.Text = addUp(5, 2).ToString()
messageLabel.Text = Convert.ToString(addUp(5, 2))

If you prefer C#, these lines of code perform the same operations as the VB
code above:

messageLabel.Text = addUp(5, 2).ToString();
messageLabel.Text = Convert.ToString(addUp(5, 2));

Don’t be concerned if you’re a little confused by how these conversions work,
though—the syntax will become clear once we discuss object oriented concepts
later in this chapter.

Operators
Throwing around values with variables and functions isn’t of much use unless
you can use them in some meaningful way, and to do so, we need operators. An
operator is a symbol that has a certain meaning when it’s applied to a value.
Don’t worry—operators are nowhere near as scary as they sound! In fact, in the
last example, where our function added two numbers, we were using an operator:
the addition operator, or + symbol. Most of the other operators are just as well
known, although there are one or two that will probably be new to you. Table 3.2
outlines the operators that you’ll use most often in your ASP.NET development.

Operators Abound!

The list of operators in Table 3.2 is far from complete. You can find detailed
(though poorly written) lists of the differences between VB and C# operators
on the Code Project web site.3

3 http://www.codeproject.com/dotnet/vbnet_c__difference.asp

68

Chapter 3: VB and C# Programming Basics

Preview from Notesale.co.uk

Page 94 of 715

This demonstrates that the loop repeats until the condition is no longer met. Try
changing the code so that the counter variable is initialized to 20 instead of 0.
When you open the page now, you won’t see anything on the screen, because
the loop condition was never met.

The other form of the While loop, called a Do While loop, checks whether or not
the condition has been met at the end of the code block, rather than at the be-
ginning:

Visual Basic File: Loops.aspx (excerpt)

Sub Page_Load(s As Object, e As EventArgs)
 ' Initialize counter
 Dim counter As Integer = 0
 ' Loop
 Do
 ' Update the label
 messageLabel.Text = counter.ToString()
 ' We use the += operator to increase our variable by 1
 counter += 1
 Loop While counter <= 10
End Sub

C# File: Loops.aspx (excerpt)

void Page_Load()
{
 // initialize counter
 int counter = 0;
 // loop
 do
 {
 // Update the label
 messageLabel.Text = counter.ToString();
 // C# has the operator ++ to increase a variable by 1
 counter++;
 }
 while (counter <= 10);
}

If you run this code, you’ll see it provides the exact same output we saw when
we tested the condition before the code block. However, we can see the crucial
difference if we change the code so that the counter variable is initialized to 20.
In this case, we will, in fact, see 20 displayed, because the loop code is executed
once before the condition is even checked! There are some instances when this

74

Chapter 3: VB and C# Programming Basics

Preview from Notesale.co.uk

Page 100 of 715

is just what we want, so being able to place the condition at the end of the loop
can be very handy.

A For loop is similar to a While loop, but we typically use it when we know be-
forehand how many times we need it to execute. The following example displays
the count of items within a DropDownList control called productList:

Visual Basic

Dim i As Integer
For i = 1 To productList.Items.Count
 messageLabel.Text = i.ToString()
Next

C#

int i;
for (i = 1; i <= productList.Items.Count; i++)
{
 messageLabel.Text = i.ToString();
}

In VB, the loop syntax specifies the starting and ending values for our counter
variable within the For statement itself.

In C#, we assign a starting value (i = 1) along with a condition that will be
tested each time we move through the loop (i <= productList.Items.Count),
and identify how the counter variable should be incremented after each loop
(i++). While this allows for some powerful variations on the theme in our C#
code, it can be confusing at first. In VB, the syntax is considerably simpler, but
it can be a bit limiting in exceptional cases.

The other type of For loop is For Each, which loops through every item within
a collection. The following example loops through an array called arrayName:

Visual Basic

For Each item In arrayName
 messageLabel.Text = item
Next

C#

foreach (string item in arrayName)
{
 messageLabel.Text = item;
}

75

Loops

Preview from Notesale.co.uk

Page 101 of 715

This is just a simple example to help you visualize what OOP is all about. In the
next few sections, we’ll cover properties and methods in greater detail, and talk
about classes and class instances, scope, events, and inheritance.

Properties
As we’ve seen, properties are characteristics shared by all objects of a particular
class. In the case of our example, the following properties might be used to describe
any given dog:

❑ color

❑ height

❑ length

In the same way, the more useful ASP.NET Button class exposes properties in-
cluding:

❑ Width

❑ Height

❑ ID

❑ Text

❑ ForeColor

❑ BackColor

Unfortunately for me, if I get sick of Rayne’s color, I can’t change it in real life.
However, if Rayne was a .NET object, we could change any of his properties in
the same way that we set variables (although a property can be read-only or write-
only). For instance, we could make him brown very easily:

Visual Basic

rayne.Color = "Brown"

C#

rayne.Color = "Brown";

80

Chapter 3: VB and C# Programming Basics

Preview from Notesale.co.uk

Page 106 of 715

Figure 3.7. The Page class’s documentation

You’ll remember from the last section that we said our hypothetical
AustralianShepherd class would inherit from the more general Dog class, which,
in turn, would inherit from the even more general Animal class. This is exactly
the kind of relationship that’s being shown in Figure 3.7—Page inherits methods
and properties from the TemplateControl class, which in turn inherits from a
more general class called Control. In the same way that we say that an Australian
Shepherd is an Animal, we say that a Page is a Control. Control, like all .NET
classes, inherits from Object.

Since Object is so important that every other class derives from it, either directly
or indirectly, it deserves a closer look. Object contains the basic functionality
that the designers of .NET felt should be available in any object. The Object
class contains these public members:

❑ Equals

❑ ReferenceEquals

❑ GetHashCode

❑ GetType

85

Objects In .NET

Preview from Notesale.co.uk

Page 111 of 715

File: Calendar.aspx (excerpt)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Calendar Test</title>
 </head>
 <body>
 <form runat="server">
 <asp:Calendar id="myCalendar" runat="server" />
 </form>
 </body>
</html>

If you save this page in the Learning folder and load it, you’d get the output
shown in Figure 4.4.

Figure 4.4. Displaying the default calendar

The Calendar control contains a wide range of properties, methods, and events,
including those listed in Table 4.3.

113

Advanced Controls

Preview from Notesale.co.uk

Page 139 of 715

Table 4.3. Some of the Calendar control’s properties

DescriptionProperty

This property sets the format of the day names. Its possible
values are FirstLetter, FirstTwoLetters, Full, and

DayNameFormat

Short. The default is Short, which displays the three-letter
abbreviation.

This property sets the day of the week that begins each
week in the calendar. By default, the value of this property

FirstDayOfWeek

is determined by your server’s region settings, but you can
set this to Sunday or Monday if you want to control it.

Set to CustomText by default, this property can be set to
ShortMonth or FullMonth to control the format of the next
and previous month links.

NextPrevFormat

This property contains a DateTime value that specifies the
highlighted day. You’ll use this property a lot to determine
which day the user has selected.

SelectedDate

This property determines whether days, weeks, or months
can be selected; its possible values are Day, DayWeek, Day-

SelectionMode

WeekMonth, and None, and the default is Day. When Day
is selected, a user can only select a day; when DayWeek is
selected, a user can select a day or an entire week; and so
on.

This property controls the text of the link that’s displayed
to allow users to select an entire month from the calendar.

SelectMonthText

This property controls the text of the link that’s displayed
to allow users to select an entire week from the calendar.

SelectWeekText

If True, this property displays the names of the days of the
week. The default is True.

ShowDayHeader

If True, this property renders the calendar with grid lines.
The default is True.

ShowGridLines

If True, this property displays next/previous month links.
The default is True.

ShowNextPrevMonth

If True, this property displays the calendar’s title. The de-
fault is False.

ShowTitle

114

Chapter 4: Constructing ASP.NET Web Pages

Preview from Notesale.co.uk

Page 140 of 715

As you’ve probably noticed by now, the .xml file enables you to specify properties
for each banner advertisement by inserting appropriate elements inside each of
the Ad elements. These elements include:

ImageURL
the URL of the image to display for the banner ad

NavigateURL
the web page to which your users will navigate when they click the banner
ad

AlternateText
the alternative text to display for browsers that do not support images

Keyword
the keyword to use to categorize your banner ad

If you use the KeywordFilter property of the AdRotator control, you can
specify the categories of banner ads to display.

Impressions
the relative frequency that a particular banner ad should be shown in relation
to other banner advertisements

The higher this number, the more frequently that specific banner will display
in the browser. The number provided for this element can be as low as one,
but cannot exceed 2,048,000,000; if it does, the page throws an exception.

Except for ImageURL, all these elements are optional. Also, if you specify an Ad
without a NavigateURL, the banner ad will display without a hyperlink.

To make use of this Ads.xml file, create a new ASP.NET page, called AdRotat-
or.aspx, with the following code:

File: AdRotator.aspx (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>AdRotator Control</title>
 </head>
 <body>
 <form runat="server">
 <asp:AdRotator ID="adRotator" runat="server"

119

Advanced Controls

Preview from Notesale.co.uk

Page 145 of 715

Figure 4.8. A breadcrumb created using the SiteMapPath control

File: TreeViewDemo.aspx (excerpt)

<asp:SiteMapPath id="mySiteMapPath" runat="server"
 PathSeparator=" > ">
</asp:SiteMapPath>

If you run the example now, you’ll see the breadcrumb appear exactly as it’s
shown in Figure 4.8.

Note that the SiteMapPath control shows only the nodes that correspond to ex-
isting pages of your site, so if you don’t have a file named Default.aspx, the
root node link won’t show up. Similarly, if the page you’re loading isn’t named
TreeViewDemo.aspx, the SiteMapPath control won’t generate any output.

Menu

The Menu control is similar to TreeView in that it displays hierarchical data from
a data source; the ways in which we work with both controls are also very similar.
The most important differences between the two lie in their appearances, and
the fact that Menu supports templates for better customization and displays only
two levels of items (menu and submenu items).

MultiView

The MultiView control is similar to Panel in that it doesn’t generate interface
elements itself, but contains other controls. A MultiView can store more pages
of data (called views), and lets you show one page at a time. You can change the
active view (the one being presented to the visitor) by setting the value of the

123

Advanced Controls

Preview from Notesale.co.uk

Page 149 of 715

Figure 4.10. A simple form

includes a Label of the specified width, and a TextBox that accepts 20 characters;
you’ll then be able to reuse the web user control wherever it’s needed in your
project.

In your Learning folder, create a new file named SmartBox.ascx. Then, add the
control’s constituent controls—a Label control and a TextBox control—as shown
below:

File: SmartBox.ascx (excerpt)

<p>
 <asp:Label ID="myLabel" runat="server" Text="" Width="100" />
 <asp:TextBox ID="myTextBox" runat="server" Text="" Width="200"
 MaxLength="20" />
</p>

Label Widths in Firefox

Unfortunately, setting the Width property of the Label control doesn’t
guarantee that the label will appear at that width in all browsers. The current
version of Firefox, for example, will not display the above label in the way
it appears in Internet Explorer.

To get around this, you should use a CSS style sheet and the CssClass
property, which we’ll take a look at later in this chapter.

In Chapter 3 we discussed properties briefly, but we didn’t explain how you could
create your own properties within your own classes. So far, you’ve worked with

127

Creating a Web User Control

Preview from Notesale.co.uk

Page 153 of 715

 return myTextBox.Text;
 }
 }
</script>

Just like web forms, web user controls can work with code-behind files, but, in
an effort to keep our examples simple, we aren’t using them here. You’ll meet
more complex web user controls in the chapters that follow.

When you use the SmartBox control in a form, you can set its label and have the
text entered by the user, like this:

Visual Basic

mySmartBox.LabelText = "Address:"
userAddress = mySmartBox.Text

C#

mySmartBox.LabelText = "Address:";
userAddress = mySmartBox.Text;

Let’s see how we implemented this functionality. In .NET, properties can be
read-only, write-only, or read-write. In many cases, you’ll want to have properties
that can be both read and write, but in this case, we want to be able to set the
text of the inner Label, and to read the text from the TextBox.

To define a write-only property in VB, you need to use the WriteOnly modifier.
Write-only properties need only define a special block of code that starts with
the keyword Set. This block of code, called an accessor, is just like a subroutine
that takes as a parameter the value that needs to be set. The block of code uses
this value to perform the desired action—in the case of the LabelText property,
that action sets the Text property of our Label control, as shown below:

Visual Basic File: SmartBox.ascx (excerpt)

Public WriteOnly Property LabelText() As String
 Set(ByVal value As String)
 myLabel.Text = value
 End Set
End Property

Assuming that a form uses a SmartBox object called mySmartBox, we could set
the Text property of the Label like this:

Visual Basic

mySmartBox.LabelText = "Address:"

129

Creating a Web User Control

Preview from Notesale.co.uk

Page 155 of 715

 </body>
</html>

Loading this page will produce the output we saw in Figure 4.10.

Now, this is a very simple example indeed, but we can easily extend it for other
purposes. You can see in the code snippet that we set the LabelText property
directly in the control’s tag; we could have accessed the properties from our code
instead. Here's an example:

Visual Basic File: ControlTest.aspx (excerpt)

<script runat="server" language="VB">
 Protected Sub Page_Load()
 nameSb.LabelText = "Name:"
 addressSb.LabelText = "Address:"
 countrySb.LabelText = "Country:"
 phoneSb.LabelText = "Phone:"
 End Sub
</script>

C# File: ControlTest.aspx (excerpt)

<script runat="server" language="C#">
 protected void Page_Load()
 {
 nameSb.LabelText = "Name:";
 addressSb.LabelText = "Address:";
 countrySb.LabelText = "Country:";
 phoneSb.LabelText = "Phone:";
 }
</script>

Master Pages
Master pages are a new feature of ASP.NET 2.0 that can make an important
difference in the way we compose web forms. Master pages are similar to web
user controls in that they are also composed of HTML and other controls; they
can be extended with the addition of events, methods, or properties; and they
can’t be loaded directly by users—instead, they’re used as building blocks to
design the structure of your web forms.

A master page is a page template that can be applied to give many web forms a
consistent appearance. For example, a master page can set out a standard structure

132

Chapter 4: Constructing ASP.NET Web Pages

Preview from Notesale.co.uk

Page 158 of 715

If all the pages in the site have the same header, footer, and navigation menu, it
makes sense to include these components in a master page, and to build several
web forms that customize only the content areas on each page. We’ll begin to
create such a site in Chapter 5, but let’s work through a quick example here.

To keep this example simple, we won’t include a menu here: we'll include just
the header, the footer, and the content placeholder. In your Learning folder,
create a new file named FrontPages.master, and write the following code into
it:

File: FrontPages.master (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>Front Page</title>
 </head>
 <body>
 <form id="myForm" runat="server">
 <h1>Welcome to SuperSite Inc!</h1>
 <asp:ContentPlaceHolder id="FrontPageContent"
 runat="server" />
 <p>Copyright 2006</p>
 </form>
 </body>
</html>

The master page looks almost like a web form, except for one important detail:
it has an empty ContentPlaceHolder control. If you want to build a web form
based on this master page, you just need to reference the master page using the
Page directive in the web form, and add a Content control that includes the
content you want to insert.

Let's try it. Create a web form called FrontPage.aspx, and add this code to it:

File: FrontPage.aspx (excerpt)

<%@ Page MasterPageFile="FrontPages.master" %>
<asp:Content id="myContent" runat="server"
 ContentPlaceHolderID="FrontPageContent">
 <p>
 Welcome to our web site! We hope you'll enjoy your visit.
 </p>
</asp:Content>

134

Chapter 4: Constructing ASP.NET Web Pages

Preview from Notesale.co.uk

Page 160 of 715

142

Preview from Notesale.co.uk

Page 168 of 715

Figure 5.12. The Toolbox

server controls we discussed in Chapter 4. In the other tabs, you’ll find other
controls, including the validation controls we’ll discuss in Chapter 6, which can
be found in the Validation tab. Figure 5.13 shows the toolbox with all its tabs in
the collapsed state.

Figure 5.13. The collapsed Toolbox tabs

The Properties Window

When you select a control in the web forms designer, its properties are displayed
automatically in the Properties window. For example, if you select the TextBox
control we added to the form earlier, the properties of that TextBox will display
in the Properties window. If it’s not visible, you can make it appear by selecting
View > Properties Window.

The Properties window doesn’t just allow you to see the properties—it also lets
you set them. Many properties—such as the colors that can be chosen from a
palette—can be set visually, but in other cases, complex dialogs are available to

155

Meeting the Features

Preview from Notesale.co.uk

Page 181 of 715

Figure 5.22. Adding a default name for the document

While you’re here, it’s a good idea to check that Default.aspx is included as a
default file. If it is, then requesting http://localhost/Dorknozzle will load
http://localhost/Dorknozzle/Default.aspx by default. To check this, click
the Documents tab. If Default.aspx isn’t in the list, add it by clicking the Add…
button and entering the filename, as shown in Figure 5.22.

Finally, click OK to close the Dorknozzle Properties window.

If no default document exists in the Dorknozzle folder, the web server will attempt
to return a list of the files and folders inside the Dorknozzle folder—an operation
that will only succeed if the Directory Browsing option shown in Figure 5.21 is
enabled. If this option is left in its default, disabled state, this operation will result
in an error.

Now, if you load http://localhost/Dorknozzle/ using any web browser, you
should see a little magic (as Figure 5.23 reveals)!

164

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 190 of 715

The project will open. This time, the root entry in Solution Explorer will be ht-
tp://localhost/Dorknozzle/ instead of c:\WebDocs\Dorknozzle\, as Fig-
ure 5.25 indicates.

Figure 5.25. Solution Explorer displaying an HTTP location

Visual Web Developer knows how to investigate your IIS location and display
its contents automatically in the Solution Explorer. If the folder contents are
changed outside of Visual Web Developer, you’ll need to right-click the root
node and select Refresh Folder to refresh Visual Web Developer’s display of the
directory’s contents.

Core Web Application Features
Let’s continue our exploration of the key topics related to developing ASP.NET
web applications. We’ll put them into practice as we move through the book,
but in this quick introduction, we’ll discuss:

❑ Web.config

❑ Global.asax

❑ user sessions

❑ caching

❑ cookies

Web.config

Almost every ASP.NET web application contains a file named Web.config, which
stores various application settings. By default, all ASP.NET web applications are

166

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 192 of 715

configured in the Machine.config file, which contains machine-wide settings,
and lives in the C:\WINDOWS\Microsoft.NET\Framework\version\CONFIG direct-
ory.

For the most part, you won’t want to make any modifications to this file. However,
you can override certain settings of the Machine.config file by adding a
Web.config file to the root directory of your application. You may already have
this file in your project; if you don’t, you can add one by accessing File > New
File…, then selecting Web Configuration File from the dialog that appears.

The Web.config file is an XML file that can hold configuration settings for the
application in which the file resides. One of the most useful settings that
Web.config controls is ASP.NET’s debug mode. If you’re using VB, you can en-
able debug mode by opening Web.config and editing the compilation element,
which looks like this:

File: Web.config (excerpt)

<!--
 Set compilation debug="true" to insert debugging
 symbols into the compiled page. Because this
 affects performance, set this value to true only
 during development.

 Visual Basic options:
 Set strict="true" to disallow all data type conversions
 where data loss can occur.
 Set explicit="true" to force declaration of all variables.
-->
<compilation debug="false" strict="false" explicit="true" />

Enabling debug mode is as simple as changing the value of the debug attribute
to true. The other attributes listed here were added by Visual Web Developer
to offer a helping hand to VB developers migrating from older versions. For ex-
ample, strict="false" makes the compiler forgive some of the mistakes we
might make, such as using the wrong case in variable names.

If you’re using C#, you’ll need to create the Web.config file yourself. Go to File
> New File…, then select Web Configuration File from the dialog that appears,
and click Add. This will create the default Web.config file, which will contain
the following section:

File: Web.config (excerpt)

<!--
 Set compilation debug="true" to insert debugging

167

Web.config

Preview from Notesale.co.uk

Page 193 of 715

 <add namespace="System.Web.UI.WebControls"/>
 <add namespace="System.Web.UI.WebControls.WebParts"/>
 <add namespace="System.Web.UI.HtmlControls"/>
 </namespaces>
</pages>

We can use classes from these namespaces in our code without needing to refer-
ence them in every file in which they’re used. As you can see, Visual Web Deve-
loper tries to offer an extra level of assistance for VB developers, but users of C#
(or any other language) could also add these namespace references to Web.config.

You’ll learn more about working with Web.config as you progress through this
book, so if you wish, you can skip the rest of these details for now, and come
back to them later as you need them.

The Web.config file’s root element is always configuration, which can contain
three different types of elements:

configuration section groups
As ASP.NET and the .NET Framework are so configurable, configuration
files could easily become jumbled if we didn’t have a way to break the files
into groups of related settings. A number of predefined section grouping tags
let you do just that. For example, settings specific to ASP.NET must be placed
inside a system.web section grouping element, while settings that are relevant
to .NET’s networking classes belong inside a system.net element.

General settings, like the appSettings element we saw above, stand on their
own, outside the section grouping tags. In this book, though, our configuration
files will also contain a number of ASP.NET-specific settings, which live inside
the system.web element.

configuration sections
These are the actual setting tags in our configuration file. Since a single ele-
ment can contain a number of settings (e.g. the appSettings element we
saw earlier could contain a number of different strings for use by the applic-
ation), Microsoft calls each of these tags a “configuration section.” ASP.NET
provides a wide range of built-in configuration sections to control the various
aspects of your web applications.

The following list outlines some of the commonly used ASP.NET configura-
tion sections, all of which must appear within the system.web section
grouping element:

169

Web.config

Preview from Notesale.co.uk

Page 195 of 715

authentication
outlines configuration settings for user authentication, and is covered in
detail in Chapter 14

authorization
specifies users and roles, and controls their access to particular files
within an application; discussed more in Chapter 14.

compilation
contains settings that are related to page compilation, and lets you specify
the default language that’s used to compile pages

customErrors
used to customize the way errors display

globalization
used to customize character encoding for requests and responses

pages
handles the configuration options for specific ASP.NET pages; allows
you to disable session state, buffering, and view state, for example

sessionState
contains configuration information for modifying session state (i.e. vari-
ables associated with a particular user’s visit to your site)

trace
contains information related to page and application tracing

configuration section handler declarations
ASP.NET’s configuration file system is so flexible that it allows you to define
your own configuration sections. For most purposes, the built-in configuration
sections will do nicely, but if we wanted to include some custom configuration
sections, we’d need to tell ASP.NET how to handle them. To do so, we’d
declare a configuration section handler for each custom configuration section
we wanted to create. This is pretty advanced stuff, so we won’t worry about
it in this book.

Global.asax

Global.asax is another special file that can be added to the root of an application.
It defines subroutines that are executed in response to application-wide events.

170

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 196 of 715

C#

Application.Remove("SiteName");

If you find you have multiple objects and application variables lingering in applic-
ation state, you can remove them all at once using the RemoveAll method:

Visual Basic

Application.RemoveAll()

C#

Application.RemoveAll();

It’s important to be cautious when using application variables. Objects remain
in application state until you remove them using the Remove or RemoveAll
methods, or shut down the application in IIS. If you continue to save objects
into the application state without removing them, you can place a heavy demand
on server resources and dramatically decrease the performance of your applica-
tions.

Let’s take a look at application state in action. Application state is very commonly
used to maintain hit counters, so our first task in this example will be to build
one! Let’s modify the Default.aspx page that Visual Web Developer created
for us. Double-click Default.aspx in Solution Explorer, and add a Label control
inside the form element. You could drag the control from the Toolbox (in either
Design View or Source View) and modify the generated code, or you could simply
enter the new code by hand. We’ll also add a bit of text to the page, and change
the Label’s ID to myLabel, as shown below:

File: Default.aspx (excerpt)

<form id="form1" runat="server">
 <div>
 The page has been requested
 <asp:Label ID="myLabel" runat="server" />
 times!
 </div>
</form>

In Design View, you should see your label appear inside the text, as shown in
Figure 5.27.

Now, let’s modify the code-behind file to use an application variable that will
keep track of the number of hits our page receives. Double-click in any empty
space on your form; Visual Web Developer will create a Page_Load subroutine
automatically, and display it in the code editor.

174

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 200 of 715

 End If
 ' Display page counter
 myLabel.Text = Application("PageCounter")
End Sub

C# File: Default.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 // Reset counter when it reaches 10
 if (Application["PageCounter"] != null &&
 (int)Application["PageCounter"] >= 10)
 {
 Application.Remove("PageCounter");
 }
 // Initialize or increment page counter each time the page loads
 if (Application["PageCounter"] == null)
 {
 Application["PageCounter"] = 1;
 }
 else
 {
 Application["PageCounter"] =
 (int)Application["PageCounter"] + 1;
 }
 // Display page counter
 myLabel.Text = Convert.ToString(Application["PageCounter"]);
}

Before analyzing the code, press F5 to run the site and ensure that everything
works properly. Every time you refresh the page, the hit counter should increase
by one until it reaches ten, when it starts over. Now, shut down your browser
altogether, and open the page in another browser. We’ve stored the value within
application state, so when you restart the application, the page hit counter will
remember the value it reached in the original browser, as Figure 5.28 shows.

If you play with the page, reloading it over and over again, you’ll see that the
code increments PageCounter every time the page is loaded. First, though, the
code verifies that the counter hasn’t reached or exceeded ten requests. If it has,
the counter variable is removed from the application state:

Visual Basic File: Default.aspx.vb (excerpt)

' Reset counter when it reaches 10
If Application("PageCounter") >= 10 Then
 Application.Remove("PageCounter")
End If

176

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 202 of 715

C# File: Global.asax (excerpt)

void Session_Start(Object sender, EventArgs e)
{
 Session.Timeout = 1560;
}

Using the Cache Object
In traditional ASP, developers used application state to cache data. Although
there’s nothing to prevent you from doing the same thing here, ASP.NET provides
a new object, Cache, specifically for that purpose. Cache is also a collection, and
we access its contents similarly to the way we accessed the contents of
Application. Another similarity is that both have application-wide visibility,
being shared between all users who access a web application.

Let’s assume that there’s a list of employees that you’d normally read from the
database. To spare the database server’s resources, after you read the table from
the database the first time, you might save it into the cache using a command
like this:

Visual Basic

Cache("Employees") = employeesTable

C#

Cache["Employees"] = employeesTable;

By default, objects stay in the cache until we remove them, or server resources
become low, at which point objects begin to be removed from the cache in the
order in which they were added. The Cache object also lets us control expira-
tion—if, for example, we want to add an object to the cache for a period of ten
minutes, we can use the Insert method. Here’s an example:

Visual Basic

Cache.Insert("Employees", employeesTable, Nothing,
 DateTime.MaxValue, TimeSpan.FromMinutes(10))

C#

Cache.Insert("Employees", employeesTable, null,
 DateTime.MaxValue, TimeSpan.FromMinutes(10));

The third parameter, which in this case is Nothing or null, can be used to add
cache dependencies. We could use such dependencies to invalidate cached items

182

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 208 of 715

We’ll keep all the files related to the default appearance of Dorknozzle in this
Blue folder.

Creating a New Style Sheet

We’ll start by adding a new CSS file to the Blue theme. CSS files can be created
independently of themes, but it’s easier in the long term to save them to
themes—this way, your solution becomes more manageable, and you can save
different versions of your CSS files under different themes. Any files with the
.css extension in a theme’s folder will be automatically linked to any web form
that uses that theme.

Right-click the Blue folder, and select Add New Item…. Select the Style Sheet
template to create a new file named Dorknozzle.css, and click Add. By default,
Dorknozzle.css will be almost empty:

File: Dorknozzle.css (excerpt)

body {
}

Let’s make this file more useful by adding more styles to it. We’ll use these styles
soon, when we build the first page of Dorknozzle.

File: Dorknozzle.css (excerpt)

body
{
 font-family: Tahoma, Helvetica, Arial, sans-serif;
 font-size: 12px;
}
h1
{
 font-size: 25px;
}
a:link, a:visited
{
 text-decoration: none;
 color: Blue;
}
a:hover
{
 color: Red;
}
.Header
{

190

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 216 of 715

 </namespaces>
</pages>

If you’re using C#, you’ll need to add the pages element to the system.web ele-
ment yourself:

File: Web.config (excerpt)

<system.web>
 ⋮
 <pages theme="Blue" />
 ⋮
</system.web>

Building the Master Page
This is where the real fun begins! All of the pages in Dorknozzle have a common
structure, with the same header on the top, and the same menu on the left, so it
makes sense to build a master page. With this master page in place, we’ll be able
to create pages for the site by writing only the content that makes them different,
rather than writing the header and the menu afresh for each page.

Figure 5.38. Creating a new master page

Right-click again on the root node in Solution Explorer and select Add New Item….
There, select the Master Page template from the list of available templates, and
name it Dorknozzle.master. Choose the language you want to program the
master page in from the Language drop-down list, and check the Place code in a

195

Building the Master Page

Preview from Notesale.co.uk

Page 221 of 715

Figure 5.43. Editing a web form that uses a master page

Figure 5.44. Welcome to Dorknozzle!

Extending Dorknozzle
We’ll extend the Dorknozzle site by adding an employee help desk request web
form. This form will allow our fictitious employees to report hardware, software,

201

Extending Dorknozzle

Preview from Notesale.co.uk

Page 227 of 715

In more complex scenarios, if you enter the name of an object, the Watch window
will let you explore its members as we just saw.

If you switch to the Locals window (Debug > Windows > Locals) shown in Fig-
ure 5.50, you can see the variables or objects that are visible from the line of code
at which the execution was paused.

Figure 5.50. The Locals window

Another nice feature of Visual Web Developer is that when you hover your
cursor over a variable, the editing window shows you at-a-glance information
about that variable.

Sometimes, you’ll want to debug your application even if it doesn’t generate an
exception. For example, you may find that your code isn’t generating the output
you expected. In such cases, it makes sense to execute pieces of code line by line,
and see in detail what happens at each step.

The most common way to get started with this kind of debugging is to set a
breakpoint in the code. In Visual Web Developer, we do this by clicking on the
gray bar on the left-hand side of the editing window. When we click there, a red
bullet appears, and the line is highlighted with red to indicate that it’s a break-
point, as Figure 5.51 illustrates.

Once the breakpoint is set, we execute the code. When the execution pointer
reaches the line you selected, execution of the page will be paused and Visual
Web Developer will open your page in debug mode. In debug mode, you can
perform a number of tasks:

❑ View the values of your variables or objects.

❑ Step into any line of code by selecting Debug > Step Into. This executes the
currently highlighted line, then pauses. If the selected line executes another
local method, the execution pointer is moved to that method so that you can
execute it line by line, too.

208

Chapter 5: Building Web Applications

Preview from Notesale.co.uk

Page 234 of 715

the OnClick property to the Button control, and give it the value submitBut-
ton_Click. This mimics what Visual Web Developer would do if you double-
clicked the button in Design View.

<!-- Submit Button -->
<p>
 <asp:Button id="submitButton" runat="server" Text="Submit"

OnClick="submitButton_Click" />
</p>

Next, create the submitButton_Click subroutine. You can add this between
<script runat="server"> and </script> tags in the head of the web form, or
place it in a code-behind file. If Visual Web Developer generates these stubs for
you, they may appear a little differently than they’re presented here:

Visual Basic File: Login.aspx (excerpt)

Protected Sub submitButton_Click(s As Object, e As EventArgs)
 submitButton.Text = "Clicked"
End Sub

C# File: Login.aspx (excerpt)

protected void submitButton_Click(object sender, EventArgs e)
{
 submitButton.Text = "Clicked";
}

Now, if you’re trying to submit invalid data using a browser that has JavaScript
enabled, this code will never be executed. However, if you disable your browser’s
JavaScript, you’ll see the label on the Button control change to Clicked! Obviously,
this is not an ideal situation—we’ll need to do a little more work to get validation
working on the server side.

Disabling JavaScript in Firefox

To disable JavaScript in Firefox, go to Tools > Options…, click the Content
tab and uncheck the Enable JavaScript checkbox.

Disabling JavaScript in Opera

To disable JavaScript in Opera, go to Tools > Preferences…, click the Ad-
vanced tab, select Content in the list on the left, and uncheck the Enable
JavaScript checkbox.

224

Chapter 6: Using the Validation Controls

Preview from Notesale.co.uk

Page 250 of 715

Disabling JavaScript in Internet Explorer

To disable JavaScript in Internet Explorer, go to Tools > Internet Options…
and click the Security tab. There, select the zone for which you’re changing
the settings (the zone will be shown on the right-hand side of the browser’s
status bar—it will likely be Local Intranet Zone if you’re developing on the
local machine) and press Custom Level…. Scroll down to the Scripting sec-
tion, and check the Disable radio button for Active Scripting.

ASP.NET makes it easy to verify on the server side if the submitted data complies
to the validator rules without our having to write very much C# or VB code at
all. All we need to do is to check the Page object’s IsValid property, which only
returns True if all the validators on the page are happy with the data in the con-
trols they’re validating. This approach will always work, regardless of which web
browser the user has, or the settings he or she has chosen.

Let’s add this property to our Click event handler:

Visual Basic File: Login.aspx (excerpt)

Protected Sub submitButton_Click(s As Object, e As EventArgs)
 If Page.IsValid Then
 submitButton.Text = "Valid"
 Else
 submitButton.Text = "Invalid!"
 End If
End Sub

C# File: Login.aspx (excerpt)

protected void submitButton_Click(object s, EventArgs e)
{
 if(Page.IsValid)
 {
 submitButton.Text = "Valid";
 }
 else
 {
 submitButton.Text = "Invalid!";
 }
}

Load the page again after disabling JavaScript, and press the Submit button
without entering any data in the text boxes. The text label on the button should
change, as shown in Figure 6.2.

225

Enforcing Validation on the Server

Preview from Notesale.co.uk

Page 251 of 715

As you’ve probably noticed, the CompareValidator control differs very little from
the RequiredFieldValidator control:

File: Login.aspx (excerpt)

<asp:RequiredFieldValidator id="confirmPasswordReq" runat="server"
 ControlToValidate="confirmPasswordTextBox"
 ErrorMessage="Password confirmation is required!"
 SetFocusOnError="True" Display="Dynamic" />
<asp:CompareValidator id="comparePasswords" runat="server"
 ControlToCompare="passwordTextBox"
 ControlToValidate="confirmPasswordTextBox"
 ErrorMessage="Your passwords do not match up!"
 Display="Dynamic" />

The only difference is that in addition to a ControlToValidate property, the
CompareValidator has a ControlToCompare property. We set these two properties
to the IDs of the controls we want to compare. So, in our example, the
ControlToValidate property is set to the confirmPasswordTextBox, and the
ControlToCompare property is set to the passwordTextBox.

The CompareValidator can be used to compare the value of a control to a fixed
value, too. CompareValidator can check whether the entered value is equal to,
less than, or greater than, any given value. As an example, let’s add an age field
to our login form:

File: Login.aspx (excerpt)

<!-- Age -->
<p>
 Age:

 <asp:TextBox id="ageTextBox" runat="server" />
 <asp:RequiredFieldValidator id="ageReq" runat="server"
 ControlToValidate="ageTextBox"
 ErrorMessage="Age is required!"
 SetFocusOnError="True" Display="Dynamic" />
 <asp:CompareValidator id="ageCheck" runat="server"
 Operator="GreaterThan" Type="Integer"
 ControlToValidate="ageTextBox" ValueToCompare="15"
 ErrorMessage="You must be 16 years or older to log in" />
</p>

In this case, the CompareValidator control is used to check that the user is old
enough to log in to our fictitious web application. Here, we set the Operator
property of the CompareValidator to GreaterThan. This property can take on
any of the values Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan,

232

Chapter 6: Using the Validation Controls

Preview from Notesale.co.uk

Page 258 of 715

Regular Expressions in JavaScript4

another great article, this time on the use of regular expressions with JavaScript

Table 6.2. Common regular expression components and their
descriptions

DescriptionSpecial
Character

any character.

beginning of string^

end of string$

numeric digit\d

whitespace character\s

non-whitespace character\S

the string abc as a group of characters(abc)

preceding character or group is optional?

one or more of the preceding character or group+

zero or more of the preceding character or group*

exactly n of the preceding character or group{n}

n to m of the preceding character or group{n,m}

either a or b(a|b)

a dollar sign (as opposed to the end of a string); we can ‘escape’
any of the special characters listed above by preceding it with
a backslash. For example, \. matches a period character, \?
matches a question mark, and so on

\$

You’ll find a complete guide and reference to regular expressions and their com-
ponents in the .NET Framework SDK Documentation.

CustomValidator

The validation controls included with ASP.NET allow you to handle many kinds
of validation, yet certain types of validation cannot be performed with these
built-in controls. For instance, imagine that you needed to ensure that a new

4 http://www.sitepoint.com/article/expressions-javascript

239

CustomValidator

Preview from Notesale.co.uk

Page 265 of 715

user’s login details were unique by checking them against a list of existing user-
names on the server. The CustomValidator control can be helpful in this situation,
and others like it. Let’s see how:

Visual Basic File: CustomValidator.aspx (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <title>CustomValidator Control Sample</title>
 <script runat="server" language="VB">
 Sub CheckUniqueUserName(s As Object, _
 e As ServerValidateEventArgs)
 Dim username As String = e.Value.ToLower
 If (username = "zak" Or username = "cristian") Then
 e.IsValid = False
 End If
 End Sub

 Sub submitButton_Click(s As Object, e As EventArgs)
 If Page.IsValid Then
 submitButton.Text = "Valid"
 Else
 submitButton.Text = "Invalid!"
 End If
 End Sub
 </script>
 </head>
 <body>
 <form runat="server">
 <p>
 New Username:

 <asp:TextBox ID="usernameTextBox" runat="server" />
 <asp:CustomValidator ID="usernameUnique" runat="server"
 ControlToValidate="usernameTextBox"
 OnServerValidate="CheckUniqueUserName"
 ErrorMessage="This username already taken!" />
 </p>
 <p>
 <asp:Button ID="submitButton" runat="server"
 OnClick="submitButton_Click" Text="Submit" />
 </p>
 </form>
 </body>
</html>

240

Chapter 6: Using the Validation Controls

Preview from Notesale.co.uk

Page 266 of 715

IDENTITY
Identity columns are numbered automatically. If you set a column as an
IDENTITY column, SQL Server will generate numbers automatically for that
column as you add new rows to it. The first number in the column is called
the identity seed. To generate subsequent numbers, the identity column
adds a given value to the seed; the value that’s added is called the identity
increment. By default, both the seed and increment have a value of 1, in
which case the generated values are 1, 2, 3, and so on. If the identity seed
were 5 and the identity increment were 10, the generated numbers would be
5, 15, 25, and so on.

IDENTITY is useful for ID columns, such as Department ID, for which you
don’t care what the values are, as long as they’re unique. When you use
IDENTITY, the generated values will always be unique. By default, you can’t
specify values for an IDENTITY column. Note also that the column can never
contain NULL.

Understanding NULL

Be sure not to see NULL as equivalent to 0 (in numerical columns), or an
empty string (in the case of string columns). Both 0 and an empty string are
values; NULL defines the lack of a value.

NULL and Default Values

I’ve often heard people say that when we set a default value for a column,
it doesn’t matter whether or not we set it to accept NULLs. Many people
seem to believe that columns with default values won’t store NULL.

That’s incorrect. You can modify a record after it was created, and change
any field that will allow it to NULL. Your columns’ ability to store NULL is
important for the integrity of your data, and it should reflect the purpose of
that data. A default value does make things easier when we create new rows,
but it’s not as vital as is correctly allowing (or disallowing) NULL in columns.

Primary Keys
Primary keys are the last fundamental concept that you need to understand before
you can create your first data table. In the world of relational databases, each
row in a table must be identified uniquely by a column called a key, on which all
database operations are based.

265

Primary Keys

Preview from Notesale.co.uk

Page 291 of 715

The tables in your databases could contain hundreds or even thousands of rows
of similar data—you could have several hundred employees in your Employees
table alone. Imagine that your program needs to update or delete the record for
John Smith, and there are several people with that name in your organization.
You couldn’t rely on the database to find the record for the particular John Smith
that you were trying to work with—it might end up updating or deleting the
wrong record.

We can avoid these kinds of problems only by using a system that uniquely
identifies each row in the table. The first step toward achieving this goal is to
add to the table an ID column that provides a unique for each employee, as did
the Employee ID column that we saw in Figure 7.1.

Remember that when we discussed this Employees table, we noted that you may
be tempted to use each employee’s username to uniquely identify each employee.
After all, that’s what the network administrator uses them for, so why shouldn’t
you? It’s true that this column uniquely identifies each row in the table, and we
call such a column a candidate key. However, it wouldn’t be a good idea to use
this column in our database operations for a number of reasons. Firstly, network
usernames have been known to change, and such a change would wreak havoc
on any database of more than a couple of tables. As we’ll see later, keys are fun-
damental to establishing relationships between tables, and these relationships
rely on the fact that keys will never change. Secondly, non-numeric keys require
much more processing power than simple numeric ones. Using an nvarchar field
to uniquely identify rows in your table will bring your SQL Server to a grinding
halt much, much quicker than if you chose a simple, numeric key.

The column that we choose to uniquely identify a row in a table in practice is
called the primary key. In the case of our Employee table, the Employee ID will
always be unique, so it would be a suitable primary key.

Multi-column Keys

To make the concept of keys easier to understand, we kept the definition
simple, although it’s not 100% technically correct. A key isn’t necessarily
formed by a single column—it can be formed by two or more columns. If
the key is made up of multiple columns, the set of values in those columns
must be unique for any given record. We’ll see an example of such a key in
a moment.

Although we usually refer to primary keys as if they were columns, technically they
are constraints that we apply to the existing columns of a table. Constraints
impose restrictions on the data we can enter into our tables, and the primary key

266

Chapter 7: Database Design and Development

Preview from Notesale.co.uk

Page 292 of 715

Figure 7.10. Specifying column properties

Figure 7.11. The Employees table

269

Creating the Employees Table

Preview from Notesale.co.uk

Page 295 of 715

The SQL scripts included in the code archive contains all the commands required
for this entire chapter—it even creates the sample data and table references that
are covered later.

Populating the Data Tables
If tables represent drawers in a filing cabinet, rows represent individual paper
records in those drawers. Suppose that our intranet web application was a real
application. As people begin to register and interact with the application, rows
are created within the various tables, and are filled up with the information about
those people.

Once the data structures are in place, adding rows of data is as easy as typing
information into the cells in the Datasheet View of a table, which looks a bit
like a spreadsheet. To access it, right-click on the table and select Show Table
Data in Visual Web Developer, or Open Table in SQL Server Management Studio.
You can use the window that opens to start adding data. Let’s add some sample
data to the tables you’ve just created, so that we can test the Dorknozzle database
as we develop the application. Table 7.7 to Table 7.11 represent the tables and
data you should add.

Inserting Data and Identity Columns

If you correctly set the ID column as an identity column, you won’t be al-
lowed to specify the values manually—the ID values will be generated for
you automatically. You need to be careful, because an ID value will never
be generated twice on the same table. So even if you delete all the rows in a
table, the database will not generate an ID with the value of 1; instead, it
will continue creating new values from the last value that was generated for
you.

Keep in mind that a new row is saved to the database at the moment that you
move on to the next row. It’s very important that you remember this when you
reach the last row, as you’ll need to move to an empty row even if you aren’t
adding any more records.

273

Populating the Data Tables

Preview from Notesale.co.uk

Page 299 of 715

The Employees table contains a few more columns than those outlined here, but,
due to the size constraints of this page, I’ve left them out. Feel free to add your
own data to the rest of the cells, or you could leave the remaining cells empty,
as they’re marked to accept NULL.

Table 7.9. The HelpDeskCategories table

CategoryCategoryID (Primary Key)

Hardware1

Software2

Workstation3

Other/Don't Know4

Table 7.10. The HelpDeskStatus table

StatusStatusID (Primary Key)

Open1

Closed2

Table 7.11. The HelpDeskSubjects table

SubjectSubjectID (Primary Key)

Computer won't start1

Monitor won't turn on2

Chair is broken3

Office won't work4

Windows won't work5

Computer crashes6

Other7

What IDENTITY Columns are not For

In our examples, as in many real-world scenarios, the ID values are sequences
that start with 1 and increment by 1. This makes many beginners assume
that they can use the ID column as a record-counter of sorts, but this is a
mistake. The ID is really an arbitrary number that we know to be unique;
no other information should be discerned from it.

275

Populating the Data Tables

Preview from Notesale.co.uk

Page 301 of 715

isting departments in the Department table. However, as with primary keys, just
having the correct fields in place doesn’t mean that our data is guaranteed to be
correct.

For example, try setting the DepartmentID field for one of the employees to 123.
SQL Server won’t mind making the change for you, so if you tried this in practice,
you’d end up storing invalid data. However, after we set the foreign keys correctly,
SQL Server will be able to ensure the integrity of our data—specifically, it will
forbid us to assign employees to nonexistent departments, or to delete departments
with which employees are associated.

The easiest way to create foreign keys using Visual Web Developer or SQL
Server Management Studio is through database diagrams, so let’s learn about
them.

Using Database Diagrams
To keep the data consistent, the Dorknozzle database really should contain quite
a few foreign keys. The good news is that you have access to a great feature called
database diagrams, which makes it a cinch to create foreign keys. You can define
the table relationships visually using the database diagrams tool in Visual Web
Developer or SQL Server Management Studio, and have the foreign keys generated
for you.

Database diagrams weren’t created specifically for the purpose of adding foreign
keys. The primary use of diagrams is to offer a visual representation of the tables
in your database and the relationships that exist between them, to help you to
design the structure of your database. However, the diagrams editor included in
Visual Web Developer and SQL Server Management Studio is very powerful, so
you can use the diagrams to create new tables, modify the structure of existing
tables, or add foreign keys.

Let’s start by creating a diagram for the Dorknozzle database. To create a database
diagram in Visual Web Developer, right-click the Database Diagrams node, and
select Add New Diagram, as shown in Figure 7.15.

The process is similar in SQL Server Management Studio, which, as Figure 7.16
illustrates, has a similar menu.

The first time you try to create a diagram, you’ll be asked to confirm the creation
of the database structures that support diagrams. Select Yes from the dialog,
which should look like the one shown in Figure 7.17.

280

Chapter 7: Database Design and Development

Preview from Notesale.co.uk

Page 306 of 715

There are three types of relationships that can occur between the tables in your
database:

❑ one-to-one relationships

❑ one-to-many relationships

❑ many-to-many relationships

One-to-one Relationships

A one-to-one relationship means that for each record in one table, only one other
related record can exist in another table.

One-to-one relationships are rarely used, since it’s usually more efficient just to
combine the two records and store them together as columns in a single table.
For example, every employee in our database will have a phone number stored
in the HomePhone column of the Employees table. In theory, we could store the
phone numbers in a separate table and link to them via a foreign key in the Em-
ployees table, but this would be of no benefit to our application, since we assume
that one phone number can belong to only one employee. As such, we can leave
this one-to-one relationship (along with any others) out of our database design.

One-to-many Relationships

The one-to-many relationship is by far the most common relationship type.
Within a one-to-many relationship, each record in a table can be associated with
multiple records from a second table. These records are usually related on the
basis of the primary key from the first table. In the employees/departments ex-
ample, a one-to-many relationship exists between the Employees and Departments
tables, as one department can be associated with many employees.

When a foreign key is used to link two tables, the table that contains the foreign
key is on the “many” side of the relationship, and the table that contains the
primary key is on the “one” side of the relationship. In database diagrams, one-
to-many relationships are signified by a line between the two tables; a golden key
symbol appears next to the table on the “one” side of the relationship, and an
infinity sign (∞) is displayed next to the table that could have many items related
to each of its records. In Figure 7.27, those icons appear next to the Employees
and Departments tables.

288

Chapter 7: Database Design and Development

Preview from Notesale.co.uk

Page 314 of 715

Figure 7.27. Database diagram showing a one-to-many
relationship

As you can see, one-to-many relationships are easy to spot if you have a diagram
at hand—just look for the icons next to the tables. Note that the symbols don’t
show the exact columns that form the relationship; they simply identify the tables
involved.

Select the line that appears between two related tables to view the properties of
the foreign key that defines that relationship. The properties display in the
Properties window (you can open this by selecting View > Properties Window).
As Figure 7.28 illustrates, they’re the same options we saw earlier in Figure 7.24.

Figure 7.28. The properties of a foreign key

289

Diagrams and Table Relationships

Preview from Notesale.co.uk

Page 315 of 715

Figure 8.2. A new query window

In the query window, type your first command:

SELECT Name
FROM Employees

Click the Execute button, or press F5. If everything works as planned, the result
will appear similar to Figure 8.3.

Figure 8.3. Executing a simple query

Nice work! Now that we’ve taken our first look at SQL, let’s talk more about
SQL queries.

296

Chapter 8: Speaking SQL

Preview from Notesale.co.uk

Page 322 of 715

Viewing Results in Text Format

By default, the query editor of SQL Server Management Studio displays the
results in a grid like the one shown in Figure 8.3. As you work with SQL
Server, you may start to find this view a little impractical; in particular, it
makes viewing longer strings of text painful because each time you run the
query, you need to resize the columns in the grid. Personally, I prefer the
plain text view, which is shown in Figure 8.4. You can enable this mode by
selecting Query > Results To > Results To Text.

Let’s move on and take a look at some variations of the SELECT query. Then we’ll
see how easy it is to insert, modify, and delete items from the database using
other keywords.

Selecting Certain Fields
If you didn’t want to select all the fields from the database table, you’d include
the names of the specific fields that you wanted in place of the * in your query.
For example, if you’re interested only in the department names—not their
IDs—you could execute the following:

SELECT Department
FROM Departments

This statement would retrieve data from the Department field only. Rather than
specifying the *, which would return all the fields within the database table, we
specify only the fields that we need.

Selecting All Columns Using *

To improve performance in real-world development scenarios, it’s better to
ask only for the columns that are of interest, rather than using *. Moreover,
even when you need all the columns in a table, it’s better to specify them by
name, to safeguard against the possibility that future changes, which cause
more columns to be added to the table, affecting the queries you’re writing
now.

It’s important to note that the order of the fields in a table determines the order
in which the data will be retrieved. Take this query, for example:

SELECT DepartmentID, Department
FROM Departments

You could reverse the order in which the columns are returned with this query:

299

Selecting Certain Fields

Preview from Notesale.co.uk

Page 325 of 715

SELECT DepartmentID, Department
FROM Departments
WHERE DepartmentID NOT BETWEEN 2 AND 5

In this example, all rows whose DepartmentIDs are less than 2 or greater than 5
are returned.

Matching Patterns with LIKE
As we’ve just seen, the WHERE clause allows us to filter results based on criteria
that we specify. The example we discussed earlier filtered rows by comparing two
numbers, but SQL also knows how to handle strings. For example, if we wanted
to search the company’s Employees table for all employees named Zak Ruvalcaba,
we'd use the following SQL statement:

SELECT EmployeeID, Username
FROM Employees
WHERE Name = 'Zak Ruvalcaba'

However, we won’t see many such queries in reality. In real-world scenarios, most
record matching is done by matching the primary key of the table to some specific
value. When an arbitrary string such as a name is used (as in the example above),
it’s likely that we’re searching for data based on partially complete information.

A more realistic example is one in which we want to find all employees with the
surname Ruvalcaba. The LIKE keyword allows us to perform pattern matching
with the help of wildcard characters. The wildcard characters supported by SQL
Server are the percentage symbol (%), which matches any sequence of zero or
more characters, and the underscore symbol (_), which matches exactly one
character.

If we wanted to find all names within our Employees table with the surname of
Ruvalcaba, we could modify the SQL query using a wildcard, as follows:

SELECT EmployeeID, Name
FROM Employees
WHERE Name LIKE '%Ruvalcaba'

With this query, all records in which the Name column ends with Ruvalcaba are
returned, as shown below.

EmployeeID Name
----------- --
1 Zak Ruvalcaba

304

Chapter 8: Speaking SQL

Preview from Notesale.co.uk

Page 330 of 715

Note that we’re using the IN operator instead of the equality operator (=). We
do so because our subquery could return a list of values. For example, if we added
another department with the name “Product Engineering,” or accidentally added
another Engineering record to the Departments table, our subquery would return
two IDs. So, whenever we’re dealing with subqueries like this, we should use the
IN operator unless we’re absolutely certain that the subquery will return only one
record.

Querying Multiple Tables

When using queries that involve multiple tables, it’s useful to take a look at
the database diagram you created in Chapter 7 to see what columns exist in
each table, and to get an idea of the relationships between the tables.

Table Joins
An inner join allows you to read and combine data from two tables between
which a relationship is established. In Chapter 7, we created such a relationship
between the Employees table and the Departments table using a foreign key.

Let’s make use of this relationship now, to obtain a list of all employees in the
engineering department:

SELECT Employees.Name
FROM Departments
INNER JOIN Employees ON Departments.DepartmentID =
 Employees.DepartmentID
WHERE Departments.Department LIKE '%Engineering'

The first thing to notice here is that we qualify our column names by preceding
them with the name of the table to which they belong, and a period character
(.). We use Employees.Name rather than Name, and Departments.DepartmentID
instead of DepartmentID. We need to specify the name of the table whenever
the column name exists in more than one table (as is the case with DepartmentID);
in other cases (such as with Employees.Name), adding the name of the table is
optional.

As an analogy, imagine that you have two colleagues at work named John. John
Smith works in the same department as you, and his desk is just across the aisle.
John Thomas, on the other hand, works in a different department on a different
floor. When addressing a large group of colleagues, you would use John Smith’s
full name, otherwise people could become confused. However, it would quickly
become tiresome if you always used John Smith’s full name when dealing with

309

Table Joins

Preview from Notesale.co.uk

Page 335 of 715

MOD
MOD returns the remainder of one value divided by another. The following
query would return the value 2:

SELECT MOD(8, 3)

SIGN
This function returns -1, 0, or 1, to indicate the sign of the argument.

POWER
This function returns the result of one value raised to the power of another.
The following query returns the result of 23:

SELECT POWER(2, 3)

SQRT
SQRT returns the non-negative square root of a value.

Many, many more mathematical functions are available—check SQL Server
Books Online for a full list.

String Functions
String functions work with literal text values rather than numeric values.

UPPER, LOWER
This function returns the value passed in as all uppercase or all lowercase,
respectively. Take the following query as an example:

SELECT LOWER(Username), UPPER(State)
FROM Employees

The query above will return a list of usernames in lowercase, and a list of
states in uppercase.

LTRIM, RTRIM
This function trims whitespace characters, such as spaces, from the left- or
right-hand side of the string, respectively.

REPLACE
Use the REPLACE function to change a portion of a string to a new sequence
of characters that you specify.

SELECT REPLACE('I like chocolate', 'like', 'love')

315

String Functions

Preview from Notesale.co.uk

Page 341 of 715

DATEADD
adds an interval to an existing date (a number of days, weeks, etc.) in order
to obtain a new date

DATEDIFF
calculates the difference between two specified dates

DATEPART
returns a part of a date (such as the day, month, or year)

DAY
returns the day number from a date

MONTH
returns the month number from a date

YEAR
returns the year from a date

We won’t be working with these functions in our example application, but it’s
good to keep them in mind. Here’s a quick example that displays the current
year:

SELECT YEAR(GETDATE())

The result (assuming it’s still 2006, of course) is shown below:

CurrentYear

2006

(1 row(s) affected)

Working with Groups of Values
Transact-SQL includes two very useful clauses that handle the grouping of records,
and the filtering of these groups: GROUP BY and HAVING. These clauses can help
you find answers to questions like, “Which are the departments in my company
that have at least three employees?” and “What is the average salary in each de-
partment?”2

2 Assuming, of course, that your Employees table has a Salary column, or some other way of
keeping track of salaries.

318

Chapter 8: Speaking SQL

Preview from Notesale.co.uk

Page 344 of 715

Try the above SQL statement. Then, to read the new list of records, execute the
following:

SELECT DepartmentID, Department
FROM Departments

All records in the Departments table will be displayed, along with our Cool New
Department and its automatically-generated DepartmentID.

Identity Values

To obtain programatically the identity value that we just generated, we can
use the scope_identity function like this:

SELECT scope_identity()

The UPDATE Statement
We use the UPDATE statement to make changes to existing records within our
database tables. The UPDATE statement requires certain keywords, and usually a
WHERE clause, in order to modify particular records. Consider this code:

UPDATE Employees
SET Name = 'Zak Christian Ruvalcaba'
WHERE EmployeeID = 1

This statement would change the name of the employee whose EmployeeID is 1.
Let’s break down the UPDATE statement's syntax:

UPDATE
This clause identifies the statement as one that modifies the named table in
the database.

table name
We give the name of the table we’re updating.

SET
The SET clause specifies the columns we want to modify, and gives their new
values.

column names and values
We provide a list of column names and values, separated by commas.

324

Chapter 8: Speaking SQL

Preview from Notesale.co.uk

Page 350 of 715

The command above would execute successfully because there aren’t any employ-
ees linked to the new department.

Deleting Records

Like the UPDATE command, the WHERE clause is best used together with
DELETE; otherwise, you can end up deleting all the records in the table inad-
vertently!

Stored Procedures
Stored procedures are database objects that group one or more T-SQL statements.
Much like VB or C# functions, stored procedures can take parameters and return
values.

Stored procedures are used to group SQL commands that form a single, logical
action. For example, let’s say that you want to add to your web site functionality
that allows departments to be deleted. Now, as you know, you must delete all of
the department’s employees before you can delete the department itself.

To help with such management issues, you could have a stored procedure that
copies the employees of that department to another table (called Employees-
Backup), deletes those employees from the main Employees table, then removes
the department from the Department table. As you can imagine, having all this
logic saved as a stored procedure can make working with databases much easier.

We’ll see a more realistic example of a stored procedure in the next chapter, when
we start to add more features to the Dorknozzle project, but until then, let’s learn
how to create a stored procedure in SQL Server, and how to execute it.

The basic form of a stored procedure is as follows:

CREATE PROCEDURE ProcedureName
(
 @Parameter1 DataType,
 @Parameter2 DataType,
 ⋮
)
AS
-- SQL Commands here

326

Chapter 8: Speaking SQL

Preview from Notesale.co.uk

Page 352 of 715

If you get sick of typing quotes, ampersands, and underscores, you can combine
the three bold strings in the above code into a single string. However, I’ll continue
to present connection strings as above throughout this book—not only are they
more readable that way, but they fit on the page, too!

If you’re using C#, your code should look like this:

C# File: AccessingData.aspx (excerpt)

protected void Page_Load(object sender, EventArgs e)
{

// Define database connection
 SqlConnection conn = new SqlConnection(
 "Server=localhost\\SqlExpress;Database=Dorknozzle;" +
 "Integrated Security=True");
}

Be aware that, in C#, the backslash (\) character has a special meaning when it
appears inside a string, so, when we wish to use one, we have to use the double
backslash (\\) shown above.

Preparing the Command
Now we’re at step three, in which we create a SqlCommand object and pass in our
SQL statement. The SqlCommand object accepts two parameters: the first is the
SQL statement, and the second is the connection object that we created in the
previous step.

Visual Basic File: AccessingData.aspx (excerpt)

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ' Define database connection
 Dim conn As New SqlConnection("Server=localhost\SqlExpress;" & _
 "Database=Dorknozzle;Integrated Security=True")

' Create command
 Dim comm As New SqlCommand(_
 "SELECT EmployeeID, Name FROM Employees", conn)
End Sub

C# File: AccessingData.aspx (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 // Define database connection
 SqlConnection conn = new SqlConnection(
 "Server=localhost\\SqlExpress;Database=Dorknozzle;" +

336

Chapter 9: ADO.NET

Preview from Notesale.co.uk

Page 362 of 715

 "Integrated Security=True");
// Create command

 SqlCommand comm = new SqlCommand(
 "SELECT EmployeeID, Name FROM Employees", conn);
}

Executing the Command
When we’re ready to run the query, we open the connection and execute the
command. The SqlCommand class has three methods that we can use to execute
a command; we simply choose between them depending on the specifics of our
query. The three methods are as follows:

ExecuteReader
ExecuteReader is used for queries or stored procedures that return one or
more rows of data. ExecuteReader returns an SqlDataReader object that
can be used to read the results of the query one by one, in a forward-only,
read-only manner. Using the SqlDataReader object is the fastest way to re-
trieve records from the database, but it can’t be used to update the data or
to access the results in random order.

The SqlDataReader keeps the database connection open until all the records
have been read. This can be a problem, as the database server will usually
have a limited number of connections—people who are using your application
simultaneously may start to see errors if you leave these connections open.
To alleviate this problem, we can read all the results from the SqlDataReader
object into an object such as a DataTable, which stores the data locally
without needing a database connection. You’ll learn more about the
DataTable object in Chapter 12.

ExecuteScalar
ExecuteScalar is used to execute SQL queries or stored procedures that re-
turn a single value, such as a query that counts the number of employees in
a company. This method returns an Object, which you can convert to specific
data types depending on the kinds of data you expect to receive.

ExecuteNonQuery
ExecuteNonQuery is an oddly-named method that’s used to execute stored
procedures and SQL queries that insert, modify, or update data. The return
value will be the number of affected rows.

337

Executing the Command

Preview from Notesale.co.uk

Page 363 of 715

We already know that the SqlDataReader class reads the data row by row, in a
forward-only fashion. Only one row can be read at any moment. When we call
reader.Read, our SqlDataReader reads the next row of data from the database.
If there’s data to be read, it returns True; otherwise—if we’ve already read the
last record returned by the query—the Read method returns False. If we view
this page in the browser, we’ll see something like Figure 9.4.

Using Parameters with Queries
What if the user doesn’t want to view information for all employees, but instead,
wants to see details for one specific employee?

To get this information from our Employees table, we’d run the following query,
replacing EmployeeID with the ID of the employee in which the user was interested.

SELECT EmployeeID, Name, Username, Password
FROM Employees
WHERE EmployeeID = EmployeeID

Let’s build a page like the one shown in Figure 9.5 to display this information.

Figure 9.5. Retrieving details of a specific employee

Create a new web form called QueryParameters.aspx and alter it to reflect the
code shown here:

File: QueryParameters.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

344

Chapter 9: ADO.NET

Preview from Notesale.co.uk

Page 370 of 715

Let’s go ahead and add the necessary code to Page_Load in HelpDesk.aspx to
populate the DropDownList controls from the database. After the changes are
made, the lists will be populated with the data you added to your database in
Chapter 7, as illustrated in Figure 9.10.

Figure 9.10. A drop-down list created with data binding

Open HelpDesk.aspx in Design View and double-click an empty space on the
form to have the signature of the Page_Load method generated for you. Then,
add the following code:

Visual Basic File: HelpDesk.aspx.vb (excerpt)

Imports System.Data.SqlClient
Imports System.Configuration
⋮
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 ' Define data objects
 Dim conn As SqlConnection
 Dim categoryComm As SqlCommand
 Dim subjectComm As SqlCommand
 Dim reader As SqlDataReader
 ' Read the connection string from Web.config

366

Chapter 9: ADO.NET

Preview from Notesale.co.uk

Page 392 of 715

Figure 9.11. Displaying an error message in the catch block

 If Page.IsValid Then
 ' Code that uses the data entered by the user
 End If
End Sub

C# File: HelpDesk.aspx.cs (excerpt)

protected void submitButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 // Code that uses the data entered by the user
 }
}

373

Inserting Records

Preview from Notesale.co.uk

Page 399 of 715

 comm.Parameters.Add("@Description",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@Description"].Value =
 descriptionTextBox.Text;
 comm.Parameters.Add("@StatusID", System.Data.SqlDbType.Int);
 comm.Parameters["@StatusID"].Value = 1;
 // Enclose database code in Try-Catch-Finally
 try
 {
 // Open the connection
 conn.Open();
 // Execute the command
 comm.ExecuteNonQuery();
 // Reload page if the query executed successfully
 Response.Redirect("HelpDesk.aspx");
 }
 catch
 {
 // Display error message
 dbErrorMessage.Text =
 "Error submitting the help desk request! Please " +
 "try again later, and/or change the entered data!";
 }
 finally
 {
 // Close the connection
 conn.Close();
 }
 }
}

Make Sure you’ve Set the Identity Property!

Note that when we’re inserting a new record into the HelpDesk table, we
rely on the ID column, RequestID, to be generated automatically for us by
the database. If we forget to set RequestID as an identity column, we’ll re-
ceive an exception every time we try to add a new help desk request!

Did you notice the use of the ExecuteNonQuery method? As you know, we use
this method when we’re executing any SQL query that doesn’t return a set of
results, such as INSERT, UPDATE, and DELETE queries.

You’ll remember that, in order to make the example simpler, we hard-coded the
EmployeeID (to the value of 5), and the Status (to the value of 1). To make the
application complete, you could add another drop-down list from which employees

376

Chapter 9: ADO.NET

Preview from Notesale.co.uk

Page 402 of 715

 "WHERE UniqueField=@UniqueFieldParameter", conn)
comm.Parameters.Add("@Parameter1", System.Data.SqlDbType.Type1)
comm.Parameters("@Parameter1").Value = value1
comm.Parameters.Add("@Parameter2", System.Data.SqlDbType.Type2)
comm.Parameters("@Parameter2").Value = value2

C#

comm = new SqlCommand ("UPDATE Table " +
 "SET Field1=@Parameter1, Field2=@Parameter2, … " +
 "WHERE UniqueField=@UniqueFieldParameter", conn);
comm.Parameters.Add("@Parameter1", System.Data.SqlDbType.Type1);
comm.Parameters["@Parameter1"].Value = value1;
comm.Parameters.Add("@Parameter2", System.Data.SqlDbType.Type2);
comm.Parameters["@Parameter2"].Value = value2;

Once the SqlCommand object has been created using this UPDATE statement, we
simply pass in the necessary parameters, as we did with the INSERT statement.
The important thing to remember when updating records is that you must take
care to perform the UPDATE on the correct record. To do this, you must include
a WHERE clause that specifies the correct record using a value from a suitable
unique column (usually the primary key), as shown above.

Handle Updates with Care!

When updating a table with some new data, if you don’t specify a WHERE
clause, every record in the table will be updated with the new data, and
(usually) there’s no way to undo the action!

Let’s put all this theory into practice as we build the Admin Tools page. The
database doesn’t contain a table that’s dedicated to this page; however, we’ll use
the Admin Tools page as a centralized location for a number of tables associated
with other pages, including the Employees and Departments tables. For instance,
in this section, we’ll allow an administrator to change the details of a specific
employee.

Create a new web form named AdminTools.aspx in the same way you created
the other web forms we’ve built so far. Use the Dorknozzle.master master page
and a code-behind file. Then, add the following code to the content placeholder,
and modify the page title as shown below.

File: AdminTools.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="true" CodeFile="AdminTools.aspx.vb"
 Inherits="AdminTools" title="Dorknozzle Admin Tools" %>

379

Updating Records

Preview from Notesale.co.uk

Page 405 of 715

Deleting Records
Just as we can insert and update records within the database, we can also delete
them. Again, most of the code for deleting records resembles that which we’ve
already seen. The only major part that changes is the SQL statement within the
command:

Visual Basic

comm = New SqlCommand("DELETE FROM Table " & _
 "WHERE UniqueField=@UniqueFieldParameter", conn)

C#

comm = new SqlCommand("DELETE FROM Table " +
 "WHERE UniqueField=@UniqueFieldParameter", conn)

Once we’ve created the DELETE query’s SqlCommand object, we can simply pass
in the necessary parameter:

Visual Basic

comm.Parameters.Add("@UniqueFieldParameter", _
 System.Data.SqlDbType.Type)
comm.Parameters("@UniqueFieldParameter").Value = UniqueValue

C#

comm.Parameters.Add("@UniqueFieldParameter",
 System.Data.SqlDbType.Type);
comm.Parameters["@UniqueFieldParameter"].Value = UniqueValue;

To demonstrate the process of deleting an item from a database table, we’ll expand
on the Admin Tools page. Since we’re allowing administrators to update inform-
ation within the Employees table, let’s also give them the ability to delete an
employee’s record from the database. To do this, we’ll place a new Button control
for deleting the selected record next to our Update Employee button.

Start by adding the new control at the end of AdminTools.aspx:

File: AdminTools.aspx (excerpt)

<p>
 <asp:Button ID="updateButton" Text="Update Employee"
 Enabled="False" runat="server" />

<asp:Button ID="deleteButton" Text="Delete Employee"
 Enabled="False" runat="server" />
</p>

394

Chapter 9: ADO.NET

Preview from Notesale.co.uk

Page 420 of 715

Handling DataList Events
One problem you may encounter when working with container controls such as
the DataList or the Repeater is that you can’t access the controls inside their
templates directly from your code. For example, consider the following
ItemTemplate, which contains a Button control:

<asp:DataList ID="employeesList" runat="server">
 <ItemTemplate>
 Employee ID: <%#Eval("EmployeeID")%>

<asp:Button runat="server" ID="myButton" Text="Select" />
 </ItemTemplate>
</asp:DataList>

Although it may not be obvious at the first glance, you can’t access the Button
easily through your code. The following code would generate an error:

Visual Basic

' Don't try this at home
myButton.Enabled = False

Things get even more complicated if you want to handle the Button’s Click
event, because—you guessed it—you can’t do so without jumping through some
pretty complicated hoops.

So, if we can’t handle events raised by the buttons and links inside a template,
how can we interact with the data in each template? We’ll improve our employee
directory by making a simpler, basic view of the items, and add a “View More”
link that users can click in order to access more details about the employee. To
keep things simple, for now, we’ll hide only the employee ID from the standard
view; we’ll show it when the visitor clicks the View More link.

After we implement this feature, our list will appear as shown in Figure 10.2.
You’ll be able to view more details about any employee by clicking on the appro-
priate link.

Open EmployeeDirectory.aspx, and modify the ItemTemplate of the DataList
as shown below:

Visual Basic File: EmployeeDirectory.aspx (excerpt)

<asp:DataList id="employeesList" runat="server">
 <ItemTemplate>

<asp:Literal ID="extraDetailsLiteral" runat="server"

406

Chapter 10: Displaying Content Using Data Lists

Preview from Notesale.co.uk

Page 432 of 715

erty, and the employee’s new name and username from the TextBox control. The
techniques used in this code are the ones we used earlier, but be sure to read the
code carefully to ensure that you understand how it works.

Visual Basic File: EmployeeDirectory.aspx.vb (excerpt)

 ElseIf e.CommandName = "CancelEditing" Then
 ' Cancel edit mode
 employeesList.EditItemIndex = -1
 ' Refresh the DataList
 BindList()

ElseIf e.CommandName = "UpdateItem" Then
 ' Get the employee ID
 Dim employeeId As Integer = e.CommandArgument
 ' Get the new username
 Dim nameTextBox As TextBox = _
 e.Item.FindControl("nameTextBox")
 Dim newName As String = nameTextBox.Text
 ' Get the new name
 Dim usernameTextBox As TextBox = _
 e.Item.FindControl("usernameTextBox")
 Dim newUsername As String = usernameTextBox.Text
 ' Update the item
 UpdateItem(employeeId, newName, newUsername)
 ' Cancel edit mode
 employeesList.EditItemIndex = -1
 ' Refresh the DataList
 BindList()
 End If
End Sub

C# File: EmployeeDirectory.aspx.cs (excerpt)

 else if (e.CommandName == "CancelEditing")
 {
 // Cancel edit mode
 employeesList.EditItemIndex = -1;
 // Refresh the DataList
 BindList();
 }

else if (e.CommandName == "UpdateItem")
 {
 // Get the employee ID
 int employeeId = Convert.ToInt32(e.CommandArgument);
 // Get the new username
 TextBox nameTextBox =
 (TextBox)e.Item.FindControl("nameTextBox");
 string newName = nameTextBox.Text;

418

Chapter 10: Displaying Content Using Data Lists

Preview from Notesale.co.uk

Page 444 of 715

 Finally
 ' Close the connection
 conn.Close()
 End Try
End Sub

C# File: EmployeeDirectory.aspx.cs (excerpt)

protected void UpdateItem(int employeeId, string newName,
 string newUsername)
{
 // Declare data objects
 SqlConnection conn;
 SqlCommand comm;
 // Read the connection string from Web.config
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 // Initialize connection
 conn = new SqlConnection(connectionString);
 // Create command
 comm = new SqlCommand("UpdateEmployee", conn);
 // Specify we're calling a stored procedure
 comm.CommandType = System.Data.CommandType.StoredProcedure;
 // Add command parameters
 comm.Parameters.Add("@EmployeeID", SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value = employeeId;
 comm.Parameters.Add("@NewName", SqlDbType.NVarChar, 50);
 comm.Parameters["@NewName"].Value = newName;
 comm.Parameters.Add("@NewUsername", SqlDbType.NVarChar, 50);
 comm.Parameters["@NewUsername"].Value = newUsername;
 // Enclose database code in Try-Catch-Finally
 try
 {
 // Open the connection
 conn.Open();
 // Execute the command
 comm.ExecuteNonQuery();
 }
 finally
 {
 // Close the connection
 conn.Close();
 }
}

420

Chapter 10: Displaying Content Using Data Lists

Preview from Notesale.co.uk

Page 446 of 715

Figure 10.11. The styled Employee Directory list

 <SelectedItemStyle BackColor="#C5BBAF" Font-Bold="True"
 ForeColor="#333333" />
 <AlternatingItemStyle BackColor="White" />
 <ItemStyle BackColor="#E3EAEB" />
 <HeaderStyle BackColor="#1C5E55" Font-Bold="True"
 ForeColor="White" />
</asp:DataList>

The significance of these new elements is as follows:

HeaderStyle
customizes the appearance of the DataList’s heading

ItemStyle
customizes the appearance of each item displayed within the DataList

AlternatingItemStyle
customizes the appearance of every other item displayed within the DataList

425

Styling the DataList

Preview from Notesale.co.uk

Page 451 of 715

C# File: AddressBook.aspx.cs (excerpt)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class AddressBook : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

if (!IsPostBack)
 {
 BindGrid();
 }
 }

private void BindGrid()
 {
 // Define data objects
 SqlConnection conn;
 SqlCommand comm;
 SqlDataReader reader;
 // Read the connection string from Web.config
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 // Initialize connection
 conn = new SqlConnection(connectionString);
 // Create command
 comm = new SqlCommand(
 "SELECT EmployeeID, Name, City, State, MobilePhone " +
 "FROM Employees", conn);
 // Enclose database code in Try-Catch-Finally
 try
 {
 // Open the connection
 conn.Open();
 // Execute the command
 reader = comm.ExecuteReader();
 // Fill the grid with data

432

Chapter 11: Managing Content Using Grid View and Details View

Preview from Notesale.co.uk

Page 458 of 715

 grid.DataSource = reader;
 grid.DataBind();
 // Close the reader
 reader.Close();
 }
 finally
 {
 // Close the connection
 conn.Close();
 }
 }
}

What’s going on here? If you disregard the fact that you’re binding the
SqlDataReader to a GridView instead of a Repeater or DataList, the code is
almost identical to that which we saw in the previous chapter.

Now save your work and open the page in the browser. Figure 11.2 shows how
the GridView presents all of the data within the Employees table in a cleanly
formatted structure.

Figure 11.2. Displaying the address book in GridView

433

Using the GridView Control

Preview from Notesale.co.uk

Page 459 of 715

that you want displayed. To do so, list the columns inside the <asp:GridView>
and </asp:GridView> tags, as shown below:

File: AddressBook.aspx (excerpt)

<asp:GridView ID="grid" runat="server"
AutoGenerateColumns="False">

<Columns>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="City" HeaderText="City" />
 <asp:BoundField DataField="MobilePhone"
 HeaderText="Mobile Phone" />
 </Columns>
</asp:GridView>

Notice that each column that we want to display is created using a BoundField
control inside a set of <Columns> and </Columns> tags. Each BoundField control
has a DataField property, which specifies the name of the column, and a
HeaderText property, which sets the name of the column as you want it displayed
to the user.

Now, save your work and view it in the browser. This time, only the columns
that you specified to be bound are displayed in the GridView. The results should
appear as shown in Figure 11.3.

Note that if you don’t include the HeaderText property for any of the bound
columns, those columns will not have a header.

We’ve now succeeded in displaying only the information we want to display, but
the GridView still looks plain. In the next section, we’ll use styles to customize
the look of our GridView.

Styling the GridView with Templates, Skins, and
CSS

The GridView control offers a number of design-time features that are tightly
integrated with the Visual Web Developer designer. As with the DataList class,
when you click the grid’s smart tag, you get quick access to a number of very
useful features, as Figure 11.4 illustrates.

436

Chapter 11: Managing Content Using Grid View and Details View

Preview from Notesale.co.uk

Page 462 of 715

Figure 11.3. Displaying selected columns

Figure 11.4. The smart tag options of GridView

If you click the Auto Format… link from the smart tag menu and choose one
of the predefined styles, Visual Web Developer generates a number of template
styles for you, like this:

437

Styling the GridView with Templates, Skins, and CSS

Preview from Notesale.co.uk

Page 463 of 715

Figure 11.6. Adding a new GridView column

If you’re using Visual Web Developer, you can quickly and easily add a new
column to your table in Design View. Click the GridView’s smart tag, and click
the Add New Column... item, as shown in Figure 11.6.

In the dialog that appears, change the field type to ButtonField, the command
name to Select, and set the Text field to Select, so the dialog appears as it does
in Figure 11.7.

Figure 11.7. Adding a new field

After clicking OK, your brand new column shows up in Design View. If you switch
to Source View, you can see it there, too:

File: AddressBook.aspx (excerpt)

<asp:GridView ID="grid" runat="server"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="City" HeaderText="City" />

442

Chapter 11: Managing Content Using Grid View and Details View

Preview from Notesale.co.uk

Page 468 of 715

contains many fields—so many, in fact, that the main grid can’t display all of
them.

A common use of the DetailsView control is to create a page that shows a list
of items, and allows you to drill down to view the details of each item. For in-
stance, an ecommerce site might initially present users with only a little inform-
ation about all available products, to reduce download time and make the inform-
ation more readable. Users could then select a product to see a more detailed
view of that product.

Let’s see how this works by using a GridView and a DetailsView in our Address
Book web form.

Replace detailsLabel with a DetailsView control, as shown in the following
code snippet:

File: AddressBook.aspx (excerpt)

 </asp:GridView>

<asp:DetailsView id="employeeDetails" runat="server" />
</asp:Content>

Next, we’ll modify the BindGrid method to specify the grid’s data key. The data
key feature of the GridView control basically allows us to store a piece of data
about each row without actually displaying that data. We’ll use it to store the
EmployeeID of each record. Later, when we need to retrieve additional data about
the selected employee, we’ll be able to read the employee’s ID from the data key,
and use it in our SELECT query.

Add this row to your code-behind file:

Visual Basic File: AddressBook.aspx.vb (excerpt)

' Open the connection
conn.Open()
' Execute the command
reader = comm.ExecuteReader()
' Fill the grid with data
grid.DataSource = reader
grid.DataKeyNames = New String() {"EmployeeID"}
grid.DataBind()
' Close the reader
reader.Close()

446

Chapter 11: Managing Content Using Grid View and Details View

Preview from Notesale.co.uk

Page 472 of 715

 employeeDetails.FindControl("editAddressTextBox")
 Dim newCityTextBox As TextBox = _
 employeeDetails.FindControl("editCityTextBox")
 ' Extract the updated data from the TextBoxes
 Dim newAddress As String = newAddressTextBox.Text
 Dim newCity As String = newCityTextBox.Text
 ' Declare data objects
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 ' Read the connection string from Web.config
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 ' Initialize connection
 conn = New SqlConnection(connectionString)
 ' Create command
 comm = New SqlCommand("UpdateEmployeeDetails", conn)
 comm.CommandType = Data.CommandType.StoredProcedure
 ' Add command parameters
 comm.Parameters.Add("@EmployeeID", Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = employeeId
 comm.Parameters.Add("@NewAddress", Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@NewAddress").Value = newAddress
 comm.Parameters.Add("@NewCity", Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@NewCity").Value = newCity
 ' Enclose database code in Try-Catch-Finally
 Try
 ' Open the connection
 conn.Open()
 ' Execute the command
 comm.ExecuteNonQuery()
 Finally
 ' Close the connection
 conn.Close()
 End Try
 ' Exit edit mode
 employeeDetails.ChangeMode(DetailsViewMode.ReadOnly)
 ' Reload the employees grid
 BindGrid()
 ' Reload the details view
 BindDetails()
End Sub

C# File: AddressBook.aspx.cs (excerpt)

protected void employeeDetails_ItemUpdating(object sender,
 DetailsViewUpdateEventArgs e)

464

Chapter 11: Managing Content Using Grid View and Details View

Preview from Notesale.co.uk

Page 490 of 715

Figure 11.18. Updating an employee’s address and city

Next, we call a stored procedure to take care of the database update. To create
this stored procedure, run the following script in SQL Server Management Studio:

CREATE PROCEDURE UpdateEmployeeDetails
(
 @EmployeeID Int,
 @NewAddress nvarchar(50),
 @NewCity nvarchar(50)
)
AS
UPDATE Employees
SET Address = @NewAddress, City = @NewCity
WHERE EmployeeID = @EmployeeID

467

Updating DetailsView Records

Preview from Notesale.co.uk

Page 493 of 715

Binding the DetailsView to a SqlDataSource
Here, our aim is to replicate the functionality the DetailsView gave us in
Chapter 11, and to add functionality that will allow users to add and delete
employees’ records.

Let’s start by adding another SqlDataSource control, either next to or below the
existing one, in AddressBook.aspx. Give the new SqlDataSource the name em-
ployeeDataSource. Click its smart tag, and select Configure Data Source. The
Configure Data Source wizard will appear again.

In the first screen, choose the Dorknozzle connection string. Click Next, and you’ll
be taken to the second screen, where there’s a bit more work to do. Start by
specifying the Employees table and checking all of its columns, as shown in Fig-
ure 12.9.

Figure 12.9. Choosing fields

479

Binding the DetailsView to a SqlDataSource

Preview from Notesale.co.uk

Page 505 of 715

Figure 12.10. Creating a new condition

Next, click the WHERE… button. In the dialog that opens, select the EmployeeID
column, specify the = operator, and select Control in the Source field. For the
Control ID select grid, and leave the default value empty, as Figure 12.10 shows.

Finally, click Add, and the expression will be added to the WHERE clause list. The
SQL expression that’s generated will filter the results on the basis of the value
selected in the GridView control. Click OK to close the dialog, then click the Ad-
vanced… button. Check the Generate INSERT, UPDATE, and DELETE statements
checkbox, as shown in Figure 12.11.

Click OK to exit the Advanced SQL Generation Options dialog, then click Next.
In the next screen, feel free to click on Test Query to ensure everything’s working
as expected. If you click Test Query, you’ll be asked for the Employee ID’s type
and value. Enter 1 for the value, leave the type as Int32, then click OK. The row
should display as shown in Figure 12.12.

Click Finish.

Congratulations! Your new SqlDataSource is ready to fill your DetailsView.
Next, we need to tie this SqlDataSource to the DetailsView and specify how
we want the DetailsView to behave. Open AddressBooks.aspx, locate the
DetailsView control and set the properties as outlined in Table 12.2.

480

Chapter 12: Advanced Data Access

Preview from Notesale.co.uk

Page 506 of 715

Figure 12.11. Generating INSERT, UPDATE, and DELETE statements

Figure 12.12. Testing the query generated for our data source

481

Binding the DetailsView to a SqlDataSource

Preview from Notesale.co.uk

Page 507 of 715

Table 12.2. Properties to set for the DetailsView control

ValueProperty

TrueAutoGenerateDeleteButton

TrueAutoGenerateEditButton

TrueAutoGenerateInsertButton

FalseAllowPaging

employeeDataSourceDataSourceID

EmployeeIDDataKeyNames

Recreating the Columns

If you’re using Design View, make sure you choose Yes when you’re asked
about recreating the DetailsView rows and data keys. If you’re not using
Design View, set the columns as shown here:

File: AddressBook.aspx (excerpt)

<Fields>
 <asp:BoundField DataField="EmployeeID"
 HeaderText="EmployeeID" InsertVisible="False"
 ReadOnly="True" SortExpression="EmployeeID" />
 <asp:BoundField DataField="DepartmentID"
 HeaderText="DepartmentID"
 SortExpression="DepartmentID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="Username"
 HeaderText="Username"
 SortExpression="Username" />
 <asp:BoundField DataField="Password"
 HeaderText="Password"
 SortExpression="Password" />
 ⋮
 <asp:BoundField DataField="MobilePhone"
 HeaderText="MobilePhone"
 SortExpression="MobilePhone" />
</Fields>

You’re ready! Execute the project, and enjoy the new functionality that you
implemented without writing a single line of code! Take it for a quick spin to
ensure that the features for editing and deleting users are perfectly functional!

482

Chapter 12: Advanced Data Access

Preview from Notesale.co.uk

Page 508 of 715

the name of a department than a department ID when they’re updating or inser-
ting the details of an employee. Figure 12.16 shows how the page will look once
we’ve created this functionality.

Figure 12.16. Viewing the Department drop-down list in DetailsView

Start by adding a new SqlDataSource control beside the two existing data source
controls in AddressBook.aspx. Name the control departmentsDataSource, click
its smart tag, and select Configure Data Source. In the first screen, select the
Dorknozzle connection, then click Next. Specify the Departments table and select
both of its columns, as shown in Figure 12.17.

Click Next, then Finish to save the data source configuration. The definition of
your new data source control will look like this:

File: AddressBook.aspx (excerpt)

<asp:SqlDataSource id="departmentsDataSource" runat="server"
 ConnectionString="<%$ ConnectionStrings:Dorknozzle %>"

490

Chapter 12: Advanced Data Access

Preview from Notesale.co.uk

Page 516 of 715

 Text='<%# Bind("DepartmentID") %>'></asp:Label>
 </ItemTemplate>
</asp:TemplateField>

Modify this generated template as highlighted below:

File: AddressBook.aspx (excerpt)

<asp:TemplateField HeaderText="Department"
 SortExpression="DepartmentID">
 <EditItemTemplate>

<asp:DropDownList id="didDdl" runat="server"
 DataSourceID="departmentsDataSource"
 DataTextField="Department" DataValueField="DepartmentID"
 SelectedValue='<%# Bind("DepartmentID") %>' />
 </EditItemTemplate>
 <InsertItemTemplate>

<asp:DropDownList ID="didDdl" runat="server"
 DataSourceID="departmentsDataSource"
 DataTextField="Department"
 DataValueField="DepartmentID"
 SelectedValue='<%# Bind("DepartmentID") %>' />
 </InsertItemTemplate>
 <ItemTemplate>

<asp:DropDownList ID="didDdl" runat="server"
 DataSourceID="departmentsDataSource"
 DataTextField="Department"
 DataValueField="DepartmentID"
 SelectedValue='<%# Bind("DepartmentID") %>'
 Enabled="False" />
 </ItemTemplate>
</asp:TemplateField>

When you reload your address book now, you’ll see that the departments are
displayed in a drop-down list. You can use that list when you’re inserting and
editing employee data—a feature that the intranet’s users are sure to find very
helpful!

More on SqlDataSource
The SqlDataSource object can make programming easier when it’s used correctly
and responsibly. However, the simplicity of the SqlDataSource control comes
at the cost of flexibility and maintainability, and introduces the potential for
performance problems.

492

Chapter 12: Advanced Data Access

Preview from Notesale.co.uk

Page 518 of 715

Figure 12.18. Retrieving data using a data reader

Figure 12.19. Breaking the data set’s ties to the data source once
it has been created

the database—you simply retrieve the data from the data set again and again.
Figure 12.19 illustrates this point.

495

Working with Data Sets and Data Tables

Preview from Notesale.co.uk

Page 521 of 715

ascending) or DESC (for descending). So, if you were sorting the DepartmentID
column, the Sort property would need to be set to DepartmentID ASC or Depart-
ment DESC.

This property must be set before the data binding is performed, as is shown in
the following code, which will sort the data by DepartmentID in descending nu-
meric order:

Visual Basic

dataTable.DefaultView.Sort = "DepartmentID DESC"
departmentsGrid.DataSource = dataTable.DefaultView
departmentsGrid.DataBind()

C#

dataTable.DefaultView.Sort = "Department DESC";
departmentsGrid.DataSource = dataTable.DefaultView;
departmentsGrid.DataBind();

It’s a pretty simple task to sort a DataView in code like this, but if we want to
let users sort the data on the basis of any column, in any direction, things get a
little bit more complicated. In this case, we need to remember the previous sort
method between requests.

In order to be truly user-friendly, our grid should behave like this:

❑ The first time a column header is clicked, the grid should sort the data in as-
cending order, based on that column.

❑ When the same column header is clicked multiple times, the grid should al-
ternate between sorting the data in that column in ascending and descending
modes.

When a column heading is clicked, the grid’s Sorting event is fired. In our case,
the Sorting event handler (which we’ll look at in a moment) saves the details
of the sort column and direction in two properties:

❑ gridSortExpression retains the name of the column on which we’re sorting
the data (such as Department)

❑ gridSortDirection can be either SortDirection.Ascending or SortDirec-
tion.Descending

We create a sorting expression using these properties in BindGrid:

516

Chapter 12: Advanced Data Access

Preview from Notesale.co.uk

Page 542 of 715

Visual Basic File: Departments.aspx.vb (excerpt)

' Prepare the sort expression using the gridSortDirection and
' gridSortExpression properties
Dim sortExpression As String
If gridSortDirection = SortDirection.Ascending Then
 sortExpression = gridSortExpression & " ASC"
Else
 sortExpression = gridSortExpression & " DESC"
End If

C# File: Departments.aspx.cs (excerpt)

// Prepare the sort expression using the gridSortDirection and
// gridSortExpression properties
string sortExpression;
if(gridSortDirection == SortDirection.Ascending)
{
 sortExpression = gridSortExpression + " ASC";
}
else
{
 sortExpression = gridSortExpression + " DESC";
}

In order to implement the sorting functionality as explained above, we need to
remember between client requests which column is being sorted, and whether
it’s being sorted in ascending or descending order. That’s what the properties
gridSortExpression and gridSortDirection do:

Visual Basic File: Departments.aspx.vb (excerpt)

Private Property gridSortDirection()
 Get
 ' Initial state is Ascending
 If (ViewState("GridSortDirection") Is Nothing) Then
 ViewState("GridSortDirection") = SortDirection.Ascending
 End If
 ' Return the state
 Return ViewState("GridSortDirection")
 End Get
 Set(ByVal value)
 ViewState("GridSortDirection") = value
 End Set
End Property
Private Property gridSortExpression()
 Get
 ' Initial sort expression is DepartmentID

517

Implementing Sorting

Preview from Notesale.co.uk

Page 543 of 715

Here, we use the ViewState collection to store information about which column
is being sorted, and the direction in which it’s being sorted.

When the Sorting event handler fires, we set the gridSortExpression and
gridSortDirection properties. The method starts by retrieving the name of the
clicked column:

Visual Basic File: Departments.aspx.vb (excerpt)

Protected Sub departmentsGrid_Sorting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewSortEventArgs) _
 Handles departmentsGrid.Sorting
 ' Retrieve the name of the clicked column (sort expression)
 Dim sortExpression As String = e.SortExpression

C# File: Departments.aspx.cs (excerpt)

protected void departmentsGrid_Sorting(object sender,
 GridViewSortEventArgs e)
{
 // Retrieve the name of the clicked column (sort expression)
 string sortExpression = e.SortExpression;

Next, we check whether the previously-clicked column is the same as the newly-
clicked column. If it is, we need to toggle the sorting direction. Otherwise, we set
the sort direction to ascending:

Visual Basic File: Departments.aspx.vb (excerpt)

' Decide and save the new sort direction
If (sortExpression = gridSortExpression) Then
 If gridSortDirection = SortDirection.Ascending Then
 gridSortDirection = SortDirection.Descending
 Else
 gridSortDirection = SortDirection.Ascending
 End If
Else
 gridSortDirection = WebControls.SortDirection.Ascending
End If

C# File: Departments.aspx.cs (excerpt)

// Decide and save the new sort direction
if (sortExpression == gridSortExpression)
{
 if(gridSortDirection == SortDirection.Ascending)
 {
 gridSortDirection = SortDirection.Descending;
 }

519

Implementing Sorting

Preview from Notesale.co.uk

Page 545 of 715

Membership, and Role Management (Wrox Press, 2006), and Writing Secure Code,
Second Edition (Microsoft Press, 2002).

Basic Security Guidelines
The primary and most important element of building secure applications is to
consider and plan an application’s security from the early stages of its develop-
ment. Of course, we must know the potential internal and external threats to
which an application will be exposed before we can plan the security aspects of
that system. Generally speaking, ASP.NET web application security involves—but
is not limited to—the following considerations:

Validate user input.
Back in Chapter 6, you learned how to use validation controls to enable the
client-side validation of user input, and how to double-check that validation
on the server side.

Since the input your application will receive from web browsers is ultimately
under users’ control, there’s always a possibility that the submitted data will
not be what you expect. The submission of bad or corrupted data can generate
errors in your web application, and compromise its security.

Protect your database.
The database is quite often the most important asset we need to protect—after
all, it’s here that most of the information our application relies upon is stored.
SQL injection attacks, which target the database, are a common threat to
web application security. If the app builds SQL commands by naively assem-
bling text strings that include data received from user input, an attacker can
alter the meaning of the commands the application produces simply by in-
cluding malicious code in the user input.1

You’ve already learned how to use ADO.NET to make use of command
parameters, and parameterized stored procedures, in order to include user
input in SQL queries. Fortunately, ADO.NET has built-in protection against
injection attacks. Moreover, if you specify the data types of the parameters
you add, ASP.NET will throw an exception in cases where the input parameter
doesn’t match the expected data type.

1 You'll find a detailed article on SQL injection attacks at
http://www.unixwiz.net/techtips/sql-injection.html.

528

Chapter 13: Security and User Authentication

Preview from Notesale.co.uk

Page 554 of 715

 <authorization>
 <allow users="jruvalcaba,zruvalcaba" />
 <deny users="*" />
 </authorization>
 </system.web>
</configuration>

In this case, the users with the login names of jruvalcaba and zruvalcaba are
allowed access to the application, but all other users (whether they’re logged in
or not) will be denied access.

Now that you have a basic understanding of the ways in which user access is
configured within the Web.config file, let’s see how we can use Web.config to
store a list of users for our application.

Storing Users in Web.config

The great thing about the Web.config file is that it is secure enough for us to
store user names and passwords in it with confidence. The <credentials> tag,
shown here within the forms element of the Web.config file, defines login cre-
dentials for two users:

File: Web.config

<authentication mode="Forms">
<forms>

 <credentials passwordFormat="Clear" >
 <user name="zak" password="zak" />
 <user name="jessica" password="jessica" />
 </credentials>
 </forms>
</authentication>
<authorization>
 <deny users="?" />
</authorization>

As we want to prevent users from browsing the site if they’re not logged in, we
use the appropriate <deny> tag in our <authorization> tag. The names and
passwords of the users we will permit can then simply be specified in the <cre-
dentials> tag. Change your Web.config file to match the one shown above, and
we’ll try another example.

Let’s modify the code that lies within the <head> tag of the Login.aspx page to
validate the user names and passwords based on the Web.config file. Here’s what
this change looks like:

541

Working with Forms Authentication

Preview from Notesale.co.uk

Page 567 of 715

Securing your Web Application
Now we have two roles, and two users (admin and cristian), but we still need to
secure the application. You should have restricted access earlier in this chapter
by modifying Web.config like this:

File: Web.config (excerpt)

<authorization>
 <deny users="?" />
</authorization>

If you haven’t already done so, you can add this code now, or use Visual Web
Developer to add it for you. Open the ASP.NET Web Site Administration Tool,
click the Security tab, and click Create access rules. Create a new access rule for
the Dorknozzle directory, as shown in Figure 13.14, to Deny all Anonymous users.

Figure 13.14. No anonymous users in Dorknozzle

559

Securing your Web Application

Preview from Notesale.co.uk

Page 585 of 715

with the exception of the Admin Tools link. When you click Admin Tools, you
should be sent back to the Login page. This time, log in with the admin user de-
tails, and voilà! You’ll gain access to the Admin Tools page as well.

Let’s take a few moments to customize the look of your login controls. Stop the
execution of the project, and switch back to Login.aspx in Design View. Select
the Login control and click its smart tag to see the three very useful options shown
in Figure 13.16.

Figure 13.16. Options for the Login control

The Administer Website link launches the ASP.NET Web Site Administration
Tool. The Convert to Template option transforms the current layout of your control
into templates, which you can then customize down to the smallest detail. The
Auto Format… link lets you select a predefined style to apply to this control.

If you were working in a production scenario, I’d advise you to select Convert to
Template and use CSS to fine-tune the appearance of your control, as we did with
the GridView and DetailsView controls in Chapter 11. However, for the purposes
of this exercise, let’s just set the BorderStyle property of the Login control to
Solid, and the BorderWidth property to 1px.

It was simple to add login functionality—we even changed its appearance with
just a few mouse clicks! There are just one or two more things that we need to
take care of before we can continue to add features to our site. First, let’s deal
with personalization.

Customizing User Display

The next feature we want to implement is functionality that gives the user a way
to log out of the application. After you perform the changes that we’re about to
implement, logged-in users will have the option to log out, as Figure 13.17 illus-
trates.

On the other hand, users that aren’t logged in won’t see the menu at all, as Fig-
ure 13.18 indicates.

564

Chapter 13: Security and User Authentication

Preview from Notesale.co.uk

Page 590 of 715

Writing Content to a Text File
For the purposes of the next few exercises, let’s work again with our old friend,
the Learning web application. Start Visual Web Developer, go to File > Open
Web Site, and open the Learning application.

Right-click the project in Solution Explorer, and select Add New Item. Select the
Web Form template, name it WriteFile.aspx, and make sure you aren’t using a
code-behind file or a master page. Click Add, then enter the code shown here in
bold:

File: WriteFile.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.IO" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server">
</script>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Writing to Text Files</title>
</head>
<body>
 <form id="form1" runat="server">

Write the following text within a text file:

 <asp:TextBox ID="myText" runat="server" />
 <asp:Button ID="writeButton" Text="Write" runat="server"
 OnClick="WriteText" />
 </form>
</body>
</html>

As you can see, we import the System.IO namespace—the namespace that contains
the classes for working with text files—first. Next, we add a TextBox control to
handle collection of the user-entered text, and a Button control to send the infor-
mation to the server for processing.

Next, in the <head> tag, we’ll create the WriteText method mentioned in the
OnClick attribute of the Button. This method will write the contents of the
TextBox to the text file:

576

Chapter 14: Working with Files and Email

Preview from Notesale.co.uk

Page 602 of 715

Figure 14.4. Writing text to a file

Figure 14.5. Viewing your new file in Notepad

Figure 14.6. Appending text

Also note that, rather than specifying the full path to the text file, you can use
the MapPath method to generate the full path to the text file automatically. All
you need to do is give the method a path relative to the current directory, as
follows:

Visual Basic File: WriteFile.aspx (excerpt)

 Using streamWriter As StreamWriter = File.AppendText(_
 MapPath("myText.txt"))

579

Writing Content to a Text File

Preview from Notesale.co.uk

Page 605 of 715

 <asp:Label ID="label" runat="server"></asp:Label>
 </form>
</body>
</html>

If you’re using C#, you should place the following code in the <script run-
at="server"> section:

C# File: FileUpload.aspx (excerpt)

<script runat="server">
 void UploadFile(Object s, EventArgs e)
 {
 // Did the user upload any file?
 if (fileUpload.HasFile)
 {
 // Get the name of the file
 string fileName = fileUpload.FileName;
 // Upload the file on the server
 fileUpload.SaveAs(MapPath(fileName));
 // Inform the user about the file upload success
 label.Text = "File " + fileName + " uploaded.";
 }
 else
 label.Text = "No file uploaded!";
 }
</script>

Load the script, and click the Upload! button without selecting a file. The message
“No file uploaded!” is displayed, as shown in Figure 14.11.

Figure 14.11. An error arising as a file has not been specified

592

Chapter 14: Working with Files and Email

Preview from Notesale.co.uk

Page 618 of 715

Appendix A: Web Control
Reference
The following reference includes a list of important properties, methods, and
events for most of the controls you’ll find in the Visual Web Developer Toolbox.

I’ve grouped the lists of controls on the basis of their locations within the Toolbox:

❑ standard controls

❑ validation controls

❑ navigation controls

❑ HTML server controls

As all the web controls listed here are based on (or, more specifically, derived
from) the WebControl class, they inherit its properties and methods. First up,
let’s review the more useful of these, which can be used with any of the web
controls.

The WebControl Class

Properties
AccessKey specifies a shortcut key that quickly selects a control

without the user needing to use a mouse; the shortcut
command is usually Alt plus a letter or number

Attributes allows the accessing and manipulation of the attributes
of the HTML code rendered by the control

BackColor the control’s current background color

BorderColor color for the border

BorderStyle style of border drawn around the web control; default
is NotSet; other values are None, Solid, Double,
Groove, Ridge, Dotted, Dashed, Inset, and Outset

Preview from Notesale.co.uk

Page 637 of 715

CellSpacing sets the number of pixels between individual
CheckBoxes within the CheckBoxList

DataMember represents the particular table within the data source

DataSource represents the actual data source to use when binding
to a CheckBoxList

DataTextField represents the field within the data source to use with
the CheckBoxList text label

DataTextFormatString a format string that determines how the data is dis-
played

DataValueField represents the field within the data source to use with
the CheckBoxList’s value

Items the collection of items within the CheckBoxList

RepeatColumns determines the number of columns to use when display-
ing the CheckBoxList

RepeatDirection indicates the direction in which the CheckBoxes should
repeat; possible values are Horizontal and Vertical

RepeatLayout determines how the check boxes are formatted; possible
values are Table and Flow; default is Table

SelectedIndex represents the index selected within the CheckBoxList

SelectedItem represents the item selected within the CheckBoxList

Events

SelectedIndexChanged raised when a CheckBox within the CheckBoxList is
selected

618

Appendix A: Web Control Reference

Preview from Notesale.co.uk

Page 644 of 715

SetActiveView sets the active view to the View received as parameter

Events

ActiveViewChanged fires when the active view of the MultiView changes

Panel

Properties

BackImageURL the URL of the background image to use within the
Panel

HorizontalAlign sets the horizontal alignment of the Panel; possible
values are Center, Justify, Left, NotSet, and Right

Wrap wraps the contents within the Panel when True; de-
fault value is True.

Visible controls the visibility of the Panel

PlaceHolder

Properties

Visible controls the visibility of the PlaceHolder

RadioButton

Properties

AutoPostBack automatically posts the form containing the
RadioButton whenever checked or unchecked is True

Checked shows the RadioButton as checked if set to True

GroupName determines the name of the group to which the
RadioButton belongs

Text specifies the text displayed next to the RadioButton

625

Panel

Preview from Notesale.co.uk

Page 651 of 715

ControlToValidate specifies the ID of the control that you want to validate

Display shows how the error message within the validation
control will be displayed; possible values are Static,
Dynamic, and None; default is Static

EnableClientScript enables or disables client-side validation; by default, is
set as Enabled

Enabled enables or disables client and server-side validation; by
default, is set as Enabled

ErrorMessage specifies the error message that will be displayed to the
user

IsValid has the value True when the validation check succeeds,
and False otherwise

Text sets the error message displayed by the control when
validation fails

Methods

Validate performs validation and modifies the IsValid property

Events

ServerValidate represents the function for performing server-side val-
idation

RangeValidator

Properties

ControlToValidate specifies the ID of the control that you want to validate

Display shows how the error message within the validation
control will be displayed; possible values are Static,
Dynamic, and None; default is Static

EnableClientScript enables or disables client-side validation; set as Enabled
by default

630

Appendix A: Web Control Reference

Preview from Notesale.co.uk

Page 656 of 715

Navigation Web Controls

SiteMapPath

Properties

CurrentNodeStyle the style used to display the current node

CurrentNodeTemplate the template used to display the current node

NodeStyle the style used to display SiteMapPath nodes

NodeTemplate the template used to display nodes

ParentLevelsDisplayed the maximum number of parent nodes to display

PathDirection specifies the path direction display; possible values are
PathDirection.CurrentToRoot and
PathDirection.RootToCurrent

PathSeparator the string used to separate path nodes

PathSeparatorStyle the styles used to display the path separator

PathSeparatorTemplate the template used to display the separator

Provider the SiteMapProvider object associated with the
SiteMapPath; the default site map provider is
XmlSiteMapProvider, which reads its data from the
Web.sitemap file

RenderCurrentNodeAsLink when set to True, the current site map site will be dis-
played as a link; default value is False

RootNodeStyle the style used to display the root node

RootNodeTemplate the template used to display the root node

ShowToolTips specifies whether the node links should display tooltips
when the cursor hovers over them

634

Appendix A: Web Control Reference

Preview from Notesale.co.uk

Page 660 of 715

MenuItemDataBound fired when a menu item is bound to its data source

TreeView

Properties

AutoGenerateDataBindings
a Boolean value specifying whether the TreeView should automatically gen-
erate tree node bindings; default is True

CheckedNodes
a collection of TreeNode objects representing the checked TreeView nodes

CollapseImageToolTip
the tooltip for the image displayed for the “collapse” node indicator

CollapseImageUrl
a string representing the URL for a custom image to be used as the “collapse”
node indicator

EnableClientScript
a Boolean value that specifies whether or not the TreeView should generate
client-side JavaScript that expands or collapses nodes; True by default

When the value is False, a server postback needs to be performed every time
the user expands or collapses a node.

ExpandDepth
an integer representing the number of TreeView levels that are expanded
when the control is displayed for the first time; default is -1, which displays
all the nodes

ExpandImageToolTip
the tooltip for the image displayed for the “expand” node indicator

ExpandImageUrl
a string representing the URL for a custom image to be used as the “expand”
node indicator

HoverNodeStyle
a TreeNodeStyle object used to define the styles of a node when the cursor
is hovered over it

640

Appendix A: Web Control Reference

Preview from Notesale.co.uk

Page 666 of 715

Properties

Attributes a collection of the element’s attribute names and their
values

CausesValidation if True, validation is performed when the button is
clicked; default is True

Disabled if set to True, the control will be disabled

ID contains the control’s ID

Name the name of the button

Style contains the control’s CSS properties

TagName returns the element’s tag name

Type specifies the type of control displayed by this input
element

Value equivalent to the value attribute of the HTML tag

Visible if set to False, the control won’t be visible

Events

ServerClick raised when the user clicks the button

HtmlInputCheckBox Control
The HtmlInputCheckBox control corresponds to an <input type="checkbox"
runat="server"> tag.

Properties

Attributes a collection of the element’s attribute names and their
values

Checked a Boolean value that specifies whether or not the ele-
ment is to be checked; default is False

648

Appendix A: Web Control Reference

Preview from Notesale.co.uk

Page 674 of 715

HtmlInputText Control
The HtmlInputText control corresponds to an <input runat="server"> tag
with a type attribute of text or password.

Properties

Attributes a collection of the element’s attribute names and their
values

Disabled if set to True, the control will be disabled

ID contains the control’s ID

MaxLength sets the maximum number of characters allowed in the
text box

Name the name of the text box

Size the width of the text box

Style contains the control’s CSS properties

TagName returns the element’s tag name

Type specifies the type of control displayed by this input
element

Value equivalent to the value attribute of the HTML tag

Visible if set to False, the control won’t be visible

Events

ServerChange occurs when the text in the control has changed

HtmlSelect Control
The HtmlSelect control corresponds to an HTML <select runat="server">
tag (which creates a drop-down list).

653

HtmlInputText Control

Preview from Notesale.co.uk

Page 679 of 715

choosing, 475
customizing in GridView, 435–436
displaying selected, 437
properties, 264–265
read-only, 461

Combine method, 589
combining lines of code, 70
CommandField column, 441, 456
company newsletter page

creating, 601–610
CompareValidator control, 231–233,

628
difference from RequiredFieldValid-

ator control, 232
example, 231
for data type checks, 233
to compare value of control to a fixed

value, 232
values, 232

compilation errors, 210
computer name, 341
conditional logic, 70–71
configuration errors, 210
configuration file

elements, 169
configuration section groups, 169
configuration section handler declara-

tions, 170
configuration sections, 169
configuration settings, 169
ConfigurationManager class, 364, 554
Configure Data Source, 473, 479, 490
configuring

Cassini, 12
Internet Information Service, 11
web server, 11–21

confirmPasswordTextBox control, 230
connection string, 334, 336, 363, 578

in Web.config, 364
specifying, 474, 479

constraints, 266
constructors, 81

Content control, 134
ContentLength, 590
ContentPlaceHolder, 200
ContentPlaceHolder control, 133–135
ContentType, 591
control binding, 365
Control class, 85
control events, 52–56

subroutines, 54–56
ControlToCompare property, 232
ControlToValidate property, 230, 232
Convert this field into a TemplateField

link, 460
Convert to Template option, 564
cookieless attribute, 538
cookies, 183–186

creating, 185
COUNT function, 319
CREATE PROCEDURE, 327, 329
CreateText method, 578, 580
CreateUserWizard control, 562
creating users and roles, 554–556
<credentials> tag, 541–542
CSS (see Cascading Style Sheets)
CssClass property, 139–141
current databases, 256
custom errors, 212–213
Custom Errors option, 20
customErrors, 212
CustomValidator control, 239–242,

629

D
data access code

bulletproofing, 351–354
data adapters, 497
data binding, 355, 365–371, 410

and sorting, 516
DataSet to GridView control, 509
DefaultView does not apply when

binding to a DataSet, 510

664

Index

Preview from Notesale.co.uk

Page 690 of 715

using stored procedures, 397–399
using the master page, 199–200
using validation controls, 245–250
view the logged-in user sees, 565
web application, 148
welcome page, 201

Dorknozzle Properties window, 161,
164

drop-down list
created with data binding, 366
selecting directories or files from,

584
DropDownList control, 101, 110, 203,

366, 386, 584, 619
Dynamic mode (validation), 228

E
e As EventArgs (VB), 56
Edit button, 452, 454, 459
Edit columns, 459
Edit employee button, 414
Edit fields, 459
Edit Fields, 491
Edit link, 457
edit mode

DetailsView control, 453, 456–459
GridView control, 453, 456–459

Edit Templates, 423
editing

DataList items, 413–422
field's properties, 460

EditItemStyle, 426
<EditItemTemplate> template, 405,

414, 461
EditRoleGroups, 568
EditUpdate checkbox, 456
element type selectors, 137
Else statement, 70
email

configuring the SMTP server, 595–
597

sending a test email, 597–600
sending with ASP.NET, 593–610

email address
invalid, 237

embedded style sheets, 137
employee database, 253, 258, 266

creating the employee table, 267–
270

creating the remaining tables, 271–
273

entities, 261
relational design concepts, 276–278
with Department ID field, 260

employee details, 387
employee directory, 145, 182, 404

completed page, 361
creating, 360–399
data binding, 365–371
deleting records, 394–397
hiding employee details, 407
inserting records, 371–378
showing employee ID, 411
styled list, 425
updated using DataList, 403–404
updating records, 378–393
using stored procedures, 397–399
viewing an employee in edit mode,

421
employee help desk request web form,

201–204
employee ID, 344–345, 349, 376, 386,

411
invalid, 351

employee list, 343
in a drop-down, 386

employee table, 274
creating, 267–270
extracting information from, 294
referencing records from the Depart-

ments table, 279
structure, 270
using Repeater control, 356–360

669

Preview from Notesale.co.uk

Page 695 of 715

employeeDataSource, 488
employeesList control, 382

populating with list of employees
from database, 382–385

encryption, 529
asymmetric algorithms, 529
symmetric algorithms, 529

End Sub, 30–31
Enforce Foreign Key Constraint, 290
entities (tables), 258
Equals, 85
error messages, 205–206, 210, 212–213

invalid email address, 237
validation errors, 236

Event button, 463
event handler, 52, 58
event receiver, 83
event sender, 83
EventArgs e (C#), 56
events, 51

(see also control events; page events)
naming using past and present tense,

454
triggered by DetailsView action

types, 454
triggered by GridView action types,

454
events (object), 77, 83
"everything is an object", 84
Exception class

properties, 217
Exception object, 217
exceptions, 206

handling locally, 213–218
Execute button, 296
ExecuteNonQuery method, 337, 371,

376
ExecuteReader method, 337, 339
ExecuteScalar method, 337
executing a page, 158

with debugging, 158
without debugging, 158

Exit (VB), 76
exiting loops prematurely, 76
expressions, 310
expressions (SQL), 310
external style sheets, 136

F
fields

choosing, 479
fields (database), 253
fields (object), 77
field’s properties

editing, 460
File class, 572–573
file paths

working with, 586–589
file sharing

disabling, 574
FileBytes property, 590–591
FileContent property, 590–591
FileName property, 590
files, 584

uploading, 590–593
Filestream class, 572
FileUpload control, 125, 590–591, 619
Fill method, 502
filtering data, 520
filtering groups, 321–322
Finally block, 214–215, 351, 364
FindControl method, 412, 466
FirstBulletNumber property, 112
float data type, 263–264
floating point numbers, 59
FLOOR function, 314
font, 138
FooterStyle, 426
<FooterTemplate> template, 356, 405
For Each loop, 72, 75
For loops, 72, 75–76, 205
For Next loop, 72
foreign keys, 278–280

670

Index

Preview from Notesale.co.uk

Page 696 of 715

HTML comments, 41
HTML control classes, 96
HTML documents, 607
HTML elements

access to, 40
HTML hidden form field, 46
HTML output

visitors’ browser interpretation of,
529

HTML pages, 94
HTML server controls, 95–97, 643–658

accessing properties of, 99–100
assigning IDs t, 101
essentially as HTML tags with run-

at="server" attribute, 98
survey form example, 97–101
using, 97–101

HTML tags, 34, 42–43
in HTML server controls, 98
manipulation, 96

HtmlAnchor control, 644
HtmlButton control, 97–98, 109, 644
HtmlForm control, 97–98, 645
HtmlGeneric control, 646
htmlIinputImage control, 651
HtmlImage control, 647
HtmlInputButton control, 647
HtmlInputCheckBox control, 648
HtmlInputFile control, 649
HtmlInputHidden control, 650
HtmlInputRadioButton control, 652
HtmlInputText control, 97–98, 653
HtmlSelect control, 97–98, 653
HtmlTable control, 655
HtmlTableCell control, 656
HtmlTableRow control, 657
HtmlTextArea control, 658
HTTP Headers option, 19
HttpCookie class, 184
HTTPS (HTTP Secure) protocol, 529
HttpUtility.HtmlEncode, 529
HyperLink control, 107, 620

HyperLinkField column, 441

I
identity increment, 265
IDENTITY primary key, 329
IDENTITY property (columns), 265

and primary key, 267
what they are not for, 275

identity seed, 265
identity values, 324
IDENTITY_INSERT property, 267
If statement, 69, 72

combined with Else statement, 70
VB code, 71

if statement (C# code), 71
IIf (in VB), 484
IIS (see Internet Informaton Services)
Image control, 108, 621
ImageButton control, 106, 621
ImageField column, 441
ImageMap control, 108–109, 622
Images folder, 198
ImageURL, 119
ImageUrl attribute, 107
Import directive, 36, 47
Imports (VB), 86
Impressions value, 119
IN operator, 313

use in SELECT queries, 305–306
IndexOutOfRangeException class, 206
inheritance, 83
initialization (variables), 59
inline code, 39
inline expressions, 39–40
inline style rules, 137
inner join, 309
input element, 101
inputString, 581
Insert method, 182
INSERT query, 371, 480
INSERT statement, 323–324, 329

673

Preview from Notesale.co.uk

Page 699 of 715

disposal, 577
events, 77, 83
fields, 77
in .NET, 84–86
methods, 77
properties, 77
state, 77

OnCheckChanged attribute, 107
OnClick attribute, 52–54, 105
OnClick property, 224, 249
OnCommand attribute, 54
OnDataBinding attribute, 54
OnDisposed attribute, 54
one-to-many relationships, 288–290
one-to-one relationship, 288
OnInit attribute, 54
OnItemUpdating property, 472
OnLoad attribute, 54
OnModeChanging property, 472
OnPreRender attribute, 54
OnSelectedIndexChanged property,

472
OnUnloaD attribute, 54
OOP (see object oriented programming)
Open Table Definition, 270
OpenText method, 580–581
operators, 68–70

definition, 68
to break long lines of code, 70
to combine lines of code, 70

operators (SQL), 311–313
OR operator, 312
ORDER BY clause

for sorting query results, 306–307
specifying, 475

ORDER BY... button, 474
out parameters, 349
overwriting text, 578

P
page

definition, 56
Page class, 95

documentation, 85
page counter, 181
page counters, 174–180
Page directive, 36, 47, 90, 134
page events, 56–58

order of execution, 57
subroutines, 56

page templates, 132–135
Page.IsValid property, 225–226, 242,

245
Page_Init event, 56
Page_Load event, 56
Page_Load method, 181, 335, 361,

366, 369, 410, 430
Page_PreRender event, 56
Page_UnLoad event, 57
PageIndex property, 505
PageIndexChanging event, 504
PageIndexChanging event handler, 505
PagerStyle, 477
pages element, 194–195
PageSize, 477
paging, 478, 504–506
paging buttons, 477
Panel control, 109–110, 123, 625
parameters, 346

in functions and subroutines, 67
out, 349
use with queries, 344–350

parent tag, 355
parser errors, 210
partial classes, 90–91

usage, 91
Pascal Casing, 101
Passport accounts, 531
Passport authentication, 531
password confirmation text box, 226

678

Index

Preview from Notesale.co.uk

Page 704 of 715

syntax, 324
updateButton control, 382
UpdateCommand property, 521
UpdateEmployee stored procedure, 421
UpdateItem method, 419–421
updating database records, 378–393

use WHERE statement, 379
updating DetailsView records, 463–468
updating existing data, 322–326
Upload button, 592–593
uploading files, 590–593
uploading files from the client to the

server, 572
UPPER function, 315
uppercase, 315
user access

denying/allowing, 539, 559
setting individual rules, 561

user accounts, 534
hard-coded, 535–538

User instance databases, 546
user interaction

with web application, 3
username, 567

editing, 422
entering, 536
storage in authentication ticket, 537
verification, 537

usernameTextBox control, 230
users, 3

creating, 554–556
Users role

assigning, 558
using (C#), 86
Using construct, 577
using statements, 153

V
validating user input, 528
validation controls, 219–250, 528,

628–633

CompareValidator, 231–233
CustomValidator, 239–242
RangeValidator, 233–234
RegularExpressionValidator, 236–

239
RequiredFieldValidator, 230
using, 229–242
ValidationSummary, 235–236

validation errors, 236
validation groups, 242–245

default, 245
Validation tab, 229
ValidationExpression, 237
ValidationGroup property, 242
ValidationSummary control, 235–236,

633
Value property, 105
variable declarations, 59
variables, 59

data types, 59–60
initialization, 59

VB, 4, 28, 48
and arrays, 207
arrays, 62
as strongly-typed language, 61
case sensitivity, 71
Click event, 53
code-behind files, 88–89
comments in, 37
data types, 60
declaring an array, 63
Do While loop, 74
editing Default.aspx, 152
enabling Debug Mode, 167
End Sub to mark end of script, 30–

31
file upload, 591
For loop, 75
functions, 65
HTML server controls in , 99
If Else statement, 70
operators, 69

686

Index

Preview from Notesale.co.uk

Page 712 of 715

While loop, 342, 580, 582
While loops, 72

results of, 73
whitespace characters

trimming, 315
wildcard characters, 304
Windows Authentication, 335
Windows authentication, 531
Wizard control, 125
Write button, 578
WriteOnly modifier, 129–130
write-only properties, 129–130
WriteText method, 576
writing to text files, 571, 576–580

permissions, 573–575
wwwroot folder, 13

web server access to files in, 13
WYSIWYG interface, 150

X
XML basics, 117
Xml control, 628
XmlDataSource object, 470

Y
YEAR function, 318

Z
zero-based arrays, 64
zooming, 282

689

Preview from Notesale.co.uk

Page 715 of 715

