w sitepoint

BUILD YOUR OWN

ASPNET 2.0
WEB SITE

USING C# & VB

BY CRISTIAN DARIE

‘ ‘ & ZAK RUVALCABA

e

Build Your Own ASP.NET 2.0
Web Site Using C# & VB

by Cristian Darie

and Zak Ruvalcaba

BUT L O ettt 614

CALENAAN oot 615
CRECKBOX ..vviiiiii e 617
ChECKBOXLAST ©uuiiiiiiiieiii e 617
DropDownList ... 619
FAileUPLoad ..ooiveniiiiiiiiee e 619
HiddenFaield oo e s 620
HYPEPLANK ovtiiiniii e 620
IMAGE oot 621
IMAGEBUTEON Loeiieiii e 6

tiZiEEEf‘i’?.:::::::::::::::::::::::::::::::::&(3’&6?..:::":::::::::: o
Literal ..o XN VY TN 624
Multiview -‘(O o "’l 624
Panels. E\N &’lo 625
mh\ e ... 625

P Button ...). L ANA S 625
RadloButtonLl ... 626
TEXTEBOX ettt 627

XML e 628
Validation COntrolscooouiiiiiiiiiiie e 628
ComMPareValidatorcoooe i 628
CUSTOMYALAidator ..o..oiiiieii e 629
RANGEVALLIAATOr toovniiiiiiiii e 630
RegularExpressionValidatorccoooiiiiiiiiiiiiiiiiiiieeen, 631
RequiredFieldValidatorcccooviiiiiiiiiiiiiie e 632
ValidatioNSUMMArYcooiiiiiii it 633
Navigation Web Controlsc.ccciiiiiiiii 634
SITEMAPPAN cooeiiii e 634
MEIMU ottt 635
TrEEVAEW Looviiiii e 640
HTML Server CONtrolsccooouuiiiiiiiiiiiiiie e 643
HtmLANnchor Controloooiiiiiiiiiii e, 644
Htm1Button Controloooiiiiiiiiiii e, 644
HEtmLIForm Controloooiiiiiiiiiii e 645
HtmlGeneric Controlcoooiiiiiiiiiiiiie e 646
HtmLlImage CONntrolocoooviiiiiiiiiii e, 647
Htm1InputButton Controlcoooiiiiiiiiiiiiiieee e, 647
Htm1InputCheckBox Controlccooviiiiiiiiiiiiiiiiiiiiiiiieeieen 648
HtmlInputFile Controlccooooiiiiiiiiiie e 649

ix

Preface

The SitePoint Forums

If you'd like to communicate with us or anyone else on the SitePoint pubhshmg
team about this book, you should join SitePoint’s online community.? The .NET
forum, in particular, can offer an abundance of information above and beyond
the solutions in this book.>

In fact, you should join that community even if you don’t want to talk to us,
because a lot of fun and experienced web designers and developers hang out there.
It’s a good way to learn new stuff, get questions answered in a hurry, and just

have fun. a\e

The SitePoint Newsletters 0{65

In addition to books like this one, Kﬁn@ I shes free e ne sI 5
cluding The SitePoint Tiéb T tePoint 72’ @ m, you'll read
about the latest n eases, tren s Chmques for all aspects
of web de? é\’ nothing)a eful ASP.NET articles and tips,
but if you'# interested in leamme?ﬁ ologies, you'll find them especially
valuable. Sign up to one or more SitePoint newsletters at
http://www.sitepoint.com/newsletter;/.

Your Feedback

If you can’t find your answer through the forums, or if you wish to contact us
for any other reason, the best place to write is books@sitepoint.com. We have
a well-manned email support system set up to track your inquiries, and if our
support staff members are unable to answer your question, they will send it
straight to us. Suggestions for improvements, as well as notices of any mistakes
you may find, are especially welcome.

Acknowledgements

First and foremost, I'd like to thank the SitePoint team for doing such a great
job in making this book possible, for being understanding as deadlines inevitably
slipped past, and for the team’s personal touch, which made it a pleasure to work
on this project.

2 http J//www.sitepoint.com/forums/
3 http://www.sitepoint.com/forums/forumdisplay.php?f=141

0.V¥

Xvi

Chapter I: Introducing ASPNET and the .NET Platform

won’t be the case with the ASPNET scripts you’ll see through the rest of this
book.

Once your new virtual directory has been created, you can see and configure it
through the Internet Information Services management console shown in Fig-
ure 1.8. You can see the folder’s contents in the right-hand panel.

As index.htm is one of the default document names, you can access that page
just by entering http://localhost/Learning/ into your browser’s address bar.
To see and edit the default document names for a virtual directory (or any direct-
ory, for that matter), you can right-click the directory’s name in the IIS manage—
ment console, click Properties, and select the Documents tab. You’ll see é\ g
displayed in Figure 1.10.

Figure 1.10. Default docume%t t}aeﬁo(&XLQ {gﬂlf&%

directory
Custom Errars) 5
| Documents | Directory Sec

[#] Enable Default Document

Default. azp=
m Default.htm Add...
Default. azp

E inde hitm
iizstart. azp
[Enable Document Foater

@ Eﬁl

Learning Properties

Wirtual DireStory

o (o]

By default, when we request a directory without specifying a filename, IIS looks
for a page with the name of one of the default documents, such as index.htm or
default.htm. If there is no index page, IIS assumes we want to see the contents
of the requested location. This operation is allowed only if the Directory Browsing

18

uk

Chapter I: Introducing ASPNET and the .NET Platform

Using Cassini

Custom Errors This option allows you to define your own custom error
pages. Rather than presenting the standard error mes-
sages that appear within Internet Explorer, you can
customize error messages with your company’s logo
and messages of your choice.

ASP.NET This tab allows you to configure the options for the
ASP.NET applications stored in that folder.

One thing to note at this point is that we can set properties for the Default Web
Site node, and choose to have them “propagate” down to all the virtual directories

we’ve created. Otes a\e

5eed

If you’re stuck using a version of _tﬁ esn 't sup ﬁ S.fyo
to make use of Cassml-t ple ASPN ations up and

running. Cassml p r Vlrtual di ri rlty settings, or any of
IIS’s othe?f t res it’s]u web server that gives you the
basics you to get up and ru

To get started using Cassini:

1. Create a directory called C: \WebDocs\Learning, just like the one we created
in the section called “Virtual Directories”.

2. Copy index.htm into this folder. We first saw index.htm in the section
called “Using localhost”.

3. Start Cassini by opening C:\Cassini (or, if you chose to install Cassini
somewhere else, open that folder), then double-click on the file CassiniWeb-
Server.exe.

4. Cassini has just three configuration options:

Application Directory
It’s here that your application’s files are stored. Enter C: \WebDocs\Learn-
ing into this field.

Server Port
Web servers almost always operate on port 80, so we won’t touch this
setting.

0.V¥

20

Installing SQL Server Management Studio Express

Server Management Studio Express is a free tool provided by Microsoft to allow
you to manage your installation of SQL Server 2005.

To install SQL Server Management Studio Express, follow these steps:

1. Navigate again to http:/msdn.microsoft.com/vstudio/express/sql/, and click
the Download Now link.

2. This time, download the SQL Server Management Studio Express edition that
corresponds to the SQL Server 2005 version that you installed previously.

3. After the download completes, execute the file and follow the @
the product. \

Once it’s installed, SQL Server Manager ccessed art > All
Programs > Microsoft SQL Ser rver N\an em nt t Express.
When executed, it will figs i creden ure illustrates.

Figi (@ &@ cti

Microsoft fl':' { Wiors!.&‘bws Server System
SQL Server 2005

Server name: |VM2\SOLEXPRESS v|

Authentication: | Windows Authentication w |

| |

[LConnect *[Cancel] [Help] [Optiong »»]

By default, when installed, SQL Server 2005 Express Edition will only accept
connections that use Windows Authentication, which means that you’ll use your
Windows user account to log in to the SQL Server. Because you're the user that
installed SQL Server 2005, you’ll already have full privileges to the SQL Server.
Click Connect to connect to your SQL Server 2005 instance.

23

uk

Installing Visual Web Developer 2005

Figure 1.14. Changing server settings with SQL Server Management

Studio

F Server Properties - YM2VSOLEXPRESS

‘S Script - w Help

A Processors
Bl S ccuiity
& Connections

A4 Database Settings
A Advanced

A Pemmigzions

1

preN'C

YMASOLEXPRESS

Connection:
W2\ Crigtian

2 View connection properties

Feady

Server authentication

(& Windows Authentication mode

() SOL Server and Windows Authentication mode

Login auditing
) Mone
(%) Failed logins only

O Successiul logins only

() Eoth failed and suc:c:es
Server pr x_l,l

[} servel roxy account

Dptlons

[[] Enable C2 audit tracing

[] Cross database awnership chaining

[Ok][Cancel]

database server, you must specify both the name of the computer and the
name of the SQL Server instance in the form ComputerName /Instance -
Name. You can see this specification back in Figure 1.12 and Figure 1.13,
where we’re connecting to an instance called SQLEXPRESS on a computer
called VM2.

Installing Visual Web Developer 2005

Visual Web Developer automates many of the tasks that you’d need to complete
yourself in other environments, and includes many powerful features. For the
first exercises in this book, we’ll recommend you use a simple text editor such as

25

Chapter I: Introducing ASPNET and the .NET Platform

The runat="server" attribute identifies the tag as something that needs to be
handled on the server. In other words, the web browser will never see the
<asp:lLabel/> tag; when the page is requested by the client, ASPNET sees it
and converts it to regular HTML tags before the page is sent to the browser. It’s
up to us to write the code that will tell ASPNET to replace this particular tag
with the current time.
To do this, we must add some script to our page. ASPNET gives you the choice
languages are VB and C#. Let’s take a look at examples using both. Here’s a
version of the page in VB:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1. Q
"http://www.w3. org/TR/xhtml1/DTD/ 11 dtd">,(lB
<head> " O"
<title>My F1 ‘ﬁ Page</title> 6
End Sub
</script>
<body>
<p>Hello therel</p>
<asp:Label runat="server" id="timeLabel" /></p>
</body>

of a number of different languages to use in your scripts. The two most common
Visual Basic Flle g&\cerpt)
<html>

<scr angu

@ ad(sender é@% As EventArgs)
meLabel Text = Datq§Tim ToString()
</head>

<p>The time is now:

</html>

Here’s the same page written in C#:

C# File: FirstPage.aspx (excerpt)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>

<head>
<title>My First ASP.NET Page</title>
<script runat="server" language="C#">
protected void Page Load(object sender, EventArgs e)

{
timeLabel.Text = DateTime.Now.ToString();

}

</script>

28

Uk

.

So Pyou ve learned what@f@g and what it can do. You’ve installed the

software you need to get going, and, having been introduced to some very simple
form processing techniques, you even know how to create a simple ASPNET
page. Don’t worry if it all seems a little bewildering right now, because, as this
book progresses, you’ll learn how to use ASPNET at more advanced levels.

As the next few chapters unfold, we’ll explore some more advanced topics, includ-
ing the use of controls, and various programming techniques. But before you can
begin to develop applications with ASPNET, you’ll need to understand the inner
workings of a typical ASPNET page—with this knowledge, you’ll be able to
identify the parts of the ASPNET page referenced in the examples we’ll discuss
throughout this book. So, in this chapter, we’ll talk about some key mechanisms
of an ASPNET page, specifically:

[page structure
[Miew state
[damespaces

[directives

ASP.NET Page Structure

Figure 2.1. The life cycle of the ASP.NET page

ASP.NET
Page
(Page.aspx)

First
Request

ASP.NET
Runtime

Subsequent
Requests

B Hello.aspx - Notepad Code Declaration
He Bt Foric%@ Page Language="VB" % Block

<%@ Page Langudage= vo %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
“http://www.w3.org/TR/xhtm11/DTD/xhtmIl-strict.dtd">

g
<% Dim Title As String = "This is generated by a code render block." %>

<html1>
<h5:1qg'le>sam le Page</title <scr1'pt runat="server "> 1
<script rugat="sgrver"> sub Page_Load()
sub Page_toad() -, messageLabel.Text = "Hello world!"
/End.subg . - End_Sub
14 s
<é§§:§£1p g </script> Sgrver S|dte
<body> ommen
ol t=" . 0 m W m W
e e - [asp:Label id="messageLabel” runat="server
<asp:Labe = = ASP.NET
</p> < < 5
P DJ<%—— peclare the title as string and set it ——X% Control

|
<% Dim Title As String = "This is generated by a code render block." %>
<%= Title %>

|

<7Body>

</htm1>

Code Render
Blocks

35

Chapter 2: ASPNET Basics

In VB code, a single quote or apostrophe (') indicates that the remainder of the
line is to be ignored as a comment.

In C# code, two slashes (//) achieve the same end. C# code also lets us span a
comment over multiple lines if we begin it with /* and end it with */, as in this
example:

c#
<script runat="server">

void mySub() \4
(8}

/* Multi-line e
comment */ a\ .
</icr‘ipt> O‘es

Before NET emerged, ASP also sup @l 1pt ags usin 7 @v
er" attribute. However,,t ‘e T cont, & or a Varlety

of reasons, they f; % r amo
Code decl atx ocks are gene Q inside the head of your ASPNET

page. The sample ASPNET page s own in Figure 2.2, for instance, contains the
following code declaration block:

Visual Basic File: Hello.aspx (excerpt)

<script runat="server">
Sub Page_Load()
messagelLabel.Text = "Hello World"
End Sub
</script>

Perhaps you can work out what the equivalent C# code would be:

c# File: Hello.aspx (excerpt)
<script runat="server">
void Page_Load()

{
messagelabel.Text = "Hello World";

}

</script>

The <script runat="server"> tag also accepts two other attributes. We can
set the language that’s used in this code declaration block via the language at-
tribute:

38

Chapter 2: ASPNET Basics

These code blocks simply declare a String variable called Title, and assign it the
value This is generated by a code render block.

Inline expression render blocks can be compared to Response.Write in classic
ASP. They start with <%= and end with %>, and are used to display the values of
variables and methods on a page. In our example, an inline expression appears
immediately after our inline code block:

File: Hello.aspx (excerpt)
<%= Title %> \(

If you're familiar with classic ASP, you’ll know what this code does: it\ig}‘yco *
outputs the value of the variable Title that we declared in thég@ Ay

code block. O"
ASP.NET Server Fontr l‘(oﬂ'\ﬁ\j@ O.‘ ’(lB

At the heart of p age lie ser tr ich represent dynamic
elements }% Ur users ¢ ﬁ re are three basic types of server
control: ASPNET controls, HTME corttrol$”and web user controls.

Usually, an ASPNET control must reside within a <form runat="server"> tag
in order to function correctly. Controls offer the following advantages to ASPNET
developers:

[They give us the ability to access HTML elements easily from within our code:
we can change these elements’ characteristics, check their values, or even up-
date them dynamically from our server-side programming language of choice.

[—ASPNET controls retain their properties thanks to a mechanism called view
state. We'll be covering view state later in this chapter. For now, you need
to know that view state prevents users from losing the data they’ve entered
into a form once that form has been sent to the server for processing. When
the response comes back to the client, text box entries, drop-down list selec-
tions, and so on, are all retained through view state.

[—With ASPNET controls, developers are able to separate a page’s presentational
elements (everything the user sees) from its application logic (the dynamic
portions of the ASPNET page), so that each can be considered separately.

[—Many ASPNET controls can be “bound” to the data sources from which they
will extract data for display with minimal (if any) coding effort.

40

-‘D

Vv W%gaﬁlﬂ ing Basics

(\l \~ 9‘
As ? learned at the end og\ Q’ apter, one of the great things about using

ASP.NET is that we can pick and choose which of the various .NET languages
we like. In this chapter, we’ll look at the key programming principles that will
underpin our use of Visual Basic and C#. We’ll start by discussing some basic
concepts of programming ASPNET web applications using these two languages.
We'll explore programming fundamentals such as variables, arrays, functions,
operators, conditionals, loops, and events, and work through a quick introduction
to object oriented programming (OOP). Next, we’ll dive into namespaces and
address the topic of classes—seeing how they’re exposed through namespaces,
and which ones you’ll use most often.

The final sections of the chapter cover some of the ideas underlying modern, ef-
fective ASPNET design, including code-behind and the value it provides by
helping us separate code from presentation. We finish with an examination of
how object oriented programming techniques impact the ASPNET developer.

Programming Basics

One of the building blocks of an ASPNET page is the application logic: the ac-
tual programming code that allows the page to function. To get anywhere with
ASPNET, you need to grasp the concept of events. All ASPNET pages will
contain controls such as text boxes, checkboxes, and lists. Each of these controls

Chapter 3: VB and C# Programming Basics

Visual Basic

Dim carType As String = "BMW"

C#
string carType = "BMW";

We can also declare and/or initialize a group of variables of the same type simul-
taneously. This practice isn’t recommended, though, as it makes the code more

difficult to read.
Visual Basic UK
Dim carType As String, carColor As String = "blue"

: o1es?e

string carType, carColor = "blue";

Table 3.1 lists the most useful data .ﬁfm in \éanb(%. 7

Table 3\13»L\(I'é\'t% og Lge

veY ° C Y AL Description

Integer int whole numbers in the range -2,147,483,648 to
2,147,483,647

Decimal decimal numbers up to 28 decimal places; this command
is used most often when dealing with costs of
items

String string any text value

Char char a single character (letter, number, or symbol)

Boolean bool true or false

Object object a generic type that can be used to refer to ob-
jects of any type

You’ll encounter many other data types as you progress, but this list provides an
overview of the ones you’ll use most often.

Many Aliases are Available

hote
These data types are the VB- and C#-specific aliases for types of the NET
Framework. For example, instead of Integer or int, you could use
System.Int32 in any .NET language; likewise, instead of Boolean or bool,
you could use System.Boolean, and so on.

60

Chapter 3: VB and C# Programming Basics

string getName()
{

return "Zak Ruvalcaba";

}
// And now we'll use it in the Page_Load handler
void Page_Load()

{

messagelLabel.Text = getName();

}
</script>
</head>
<body>

<asp:Label id="messagelLabel" runat="server"
</form> &es
</body> N
</html> ‘
When the page above 1 6W1nﬁhe browser, @]%’ will be raised
which will i ad event ha be which in turn will call
the get Naﬁ 1gure 3. 4@6@ t in the browser.

Figure 3.4. Executing an ASP.NET function

(j ASP.MET Functions - Windows Internet Explorer E]E|PZ|

t‘.__) - | | €] http:}flocalhost{Learning/Functions. aspx v [@J = FaR
| & m= - [Page ~ OF Tools =

& 9 |;_éASP.NET Furictions |

Zak Buvalcaba

Here’s what’s happening: the line in our Page_Load subroutine calls our function,
which returns a simple string that we can assign to our label. In this simple exam-
ple, we’re merely returning a fixed string, but the function could just as easily
retrieve the name from a database (or somewhere else). The point is that, regard-
less of how the function gets its data, we call it in just the same way.

When we’re declaring our function, we must remember to specify the correct re-
turn type. Take a look at the following code:

Visual Basic

' Here's our function
Function addUp(x As Integer, y As Integer) As Integer
Return x + vy

<form runat="server"> a\e C

66

Chapter 3: VB and C# Programming Basics

Operator? (

Throwing around values with variables and functions isn’t of much use unless
you can use them in some meaningful way, and to do so, we need operators. An

call which will return an integer during execution. Converting numbers to strings
is a very common task in ASPNET, so it’s good to get a handle on it early.

Tip @

Converting Numbers to Strings

There are more ways to convert numbers to strings in .NET, as the following
lines of VB code illustrate:

messagelabel.Text
messagelabel.Text

addUp (5, 2).ToString()
Convert.ToString(addUp(5, 2))

If you prefer C#, these lines of code perform the same operations as the VB

code above: a\e .
addUp (5 2 S r‘ 5
Convert
Don’t be concerned if you ﬁ sed b Wt i nv rs&ﬁ work,
though—the Q(N clear once t¥oriented concepts
later wéw . e

messagelabel.Text
messagelabel.Text

operator is a symbol that has a certain meaning when it’s applied to a value.
Don’t worry—operators are nowhere near as scary as they sound! In fact, in the
last example, where our function added two numbers, we were using an operator:
the addition operator, or + symbol. Most of the other operators are just as well
known, although there are one or two that will probably be new to you. Table 3.2
outlines the operators that you’ll use most often in your ASPNET development.

hote

Operators Abound!

The list of operators in Table 3.2 is far from complete. You can find detailed
(though poorly written) lists of the differences between VB and C# operators
on the Code Project web site.?

3 httpy//www.codeproject.com/dotnet/vbnet_c__difference.asp

68

Chapter 3: VB and C# Programming Basics

This demonstrates that the loop repeats until the condition is no longer met. Try
changing the code so that the counter variable is initialized to 20 instead of 0.
When you open the page now, you won’t see anything on the screen, because
the loop condition was never met.

The other form of the While loop, called a Do While loop, checks whether or not
the condition has been met at the end of the code block, rather than at the be-
ginning:

Visual Basic File: Loops.aspx (excerpt)
Sub Page Load(s As Object, e As EventArgs)
' Initialize counter C

Dim counter As Integer = 0

sa\e:

' Loop "

. WO~ 15
' Update the label ‘g\ ’l l
messagelabel.Text = cou tﬁfo@ ng ()

' We use the += '(,e t ncrease uO@ab by 1

counter +=61V C
En:ogﬂbw@(c t¥r <= 10P age

c# File: Loops.aspx (excerpt)
void Page_Load()
{

// initialize counter
int counter = 0;

// loop

do

{
// Update the label

messagelLabel.Text = counter.ToString();
// C# has the operator ++ to increase a variable by 1
counter++;

}

while (counter <= 10);

}

If you run this code, you’ll see it provides the exact same output we saw when
we tested the condition before the code block. However, we can see the crucial
difference if we change the code so that the counter variable is initialized to 20.
In this case, we will, in fact, see 20 displayed, because the loop code is executed
once before the condition is even checked! There are some instances when this

74

Loops

is just what we want, so being able to place the condition at the end of the loop
can be very handy.

A For loop is similar to a While loop, but we typically use it when we know be-
forehand how many times we need it to execute. The following example displays
the count of items within a DropDownList control called productList:

Visual Basic

Dim i As Integer

For i = 1 To productList.Items.Count \4
messagelLabel.Text = i.ToString() u

Next

- N ole a\e'
%2: ?i = 1; i <= productList. It“‘ou +) ’(’X_B
messageLabel Teé\N ﬁ Qg()’lol O"

op syntax sReg 9 arting and ending values for our counter
varia le w1thm the For stdtement 1tself.

In C#, we assign a starting value (i = 1) along with a condition that will be
tested each time we move through the loop (i <= productList.Items.Count),
and identify how the counter variable should be incremented after each loop
(i++). While this allows for some powerful variations on the theme in our C#
code, it can be confusing at first. In VB, the syntax is considerably simpler, but
it can be a bit limiting in exceptional cases.

The other type of For loop is For Each, which loops through every item within
a collection. The following example loops through an array called arrayName:

Visual Basic

For Each item In arrayName
messagelLabel.Text = item
Next

c#
foreach (string item in arrayName)

{
}

messagelLabel.Text = item;

75

Chapter 3: VB and C# Programming Basics

This is just a simple example to help you visualize what OOP is all about. In the
next few sections, we’ll cover properties and methods in greater detail, and talk
about classes and class instances, scope, events, and inheritance.

Properties

As we’ve seen, properties are characteristics shared by all objects of a particular
class. In the case of our example, the following properties might be used to describe
any given dog:

[dolor

—fength m N _‘ ’l ’X_B
e =t éhe\l""eﬁé ﬁaggtv&@@p

[Height

1D

[Text

[HoreColor

[BackColor

Unfortunately for me, if I get sick of Rayne’s color, I can’t change it in real life.
However, if Rayne was a .NET object, we could change any of his properties in

the same way that we set variables (although a property can be read-only or write-
only). For instance, we could make him brown very easily:

Visual Basic

rayne.Color = "Brown"
c#

rayne.Color = "Brown";

[Teight Sa\e C

80

Objects In .NET

Figure 3.7. The Page class’s documentation

@ Page Class - Microsoft .NET Framework 2.0 SDK Documentation - Microsoft Document Explorer, [ZI[EI[XI
File Edit Wiew Tools ‘Window Help
O Back ,ﬁ lﬁ A¢ @) HowDal - \%iearch _.jx}lndex @gontents jHeIE Favorites ET £ @

~Page Class - X

URL: ms-help: /M5, NETFramework,v20,enfcpref 13fhtmlfT_System_wWeb_UI_Page.htm
\MET Frarmework Class Library
Page Class

See Also Example Merbers

= Collapse all «| Language Filter: All

3 squequog@ xepu{(‘é‘-‘ K-
=

=l Inheritance Hierarchy \%
Systern.Object a o
Systern.web.UL.Control S
Systern.web UI TemplateControl
System.Web.UI.Page 2

Systern. web UL.MobileControls, MoblIePaue
e ﬁ 1 1 - . 0 v
A

You’ll remember from the last section that we said our hypothetical
AustralianShepherd class would inherit from the more general Dog class, which,
in turn, would inherit from the even more general Animal class. This is exactly
the kind of relationship that’s being shown in Figure 3.7—Page inherits methods
and properties from the TemplateControl class, which in turn inherits from a
more general class called Control. In the same way that we say that an Australian
Shepherd is an Animal, we say that a Page is a Control. Control, like all .NET
classes, inherits from Object.

=l Thread Safety‘

Since Object is so important that every other class derives from it, either directly
or indirectly, it deserves a closer look. Object contains the basic functionality
that the designers of .NET felt should be available in any object. The Object
class contains these public members:

[HBquals
[ReferenceEquals
[detHashCode

[QetType

85

Advanced Controls

File: Calendar.aspx (excerpt)
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Calendar Test</title>
</head>
<body>
<form runat="server">
<asp:Calendar id="myCalendar" runat="server" /> \(
</form> u
</body>

</htm1> a\e ‘CO ’
If you save this page in the Learning foldeﬂ@&%%d g;i— %output

Figure 4.4. Displawi

X

g - |g, http:,l’,l’localhost,l’Learning,l’Cndar. ! v | @J lij | | [ﬂﬂ
A | (& Calendar Test [_| B = - [page - "'I Toals ~
= June 2006 =

Sun Mon Tue Wed Thu Fri Sat

28 28 30 31 1 2 3

4 53 6 7 8 & 10

1 12 13 14 15 16 17

18 1% 20 21 22 23 24

25 26 27 28 28 30 1

2 32 4 5 6 1 8

The Calendar control contains a wide range of properties, methods, and events,
including those listed in Table 4.3.

113

Chapter 4: Constructing ASPNET Web Pages

Table 4.3. Some of the Calendar control’s properties

This pro a DateT
I‘é day You 11 use %ﬁ
\ © Wi day the seqr 3

Property Description

DayNameFormat This property sets the format of the day names. Its possible
values are FirstLetter, FirstTwolLetters, Full, and
Short. The default is Short, which displays the three-letter
abbreviation.

FirstDayOfWeek This property sets the day of the week that begins each
week in the calendar. By default, the value of this property
is determined by your server’s region settings, but you can
set this to Sunday or Monday if you want to Conggl\tp

NextPrevFormat Set to CustomText by default, thijs Q‘?et to
ShortMonth or FullMonth to Cﬁ@ at oft 1%
and preV10us nt

SelectedDate

Q specifies the
ot to determine

od&

Selectio

This propde® @heXdines whether days, weeks, or months
can be selected; its possible values are Day, DayWeek, Day -
WeekMonth, and None, and the default is Day. When Day
is selected, a user can only select a day; when DayWeek is
selected, a user can select a day or an entire week; and so
on.

SelectMonthText

This property controls the text of the link that’s displayed
to allow users to select an entire month from the calendar.

SelectWeekText

This property controls the text of the link that’s displayed
to allow users to select an entire week from the calendar.

ShowDayHeader

If True, this property displays the names of the days of the
week. The default is True.

ShowGridLines

If True, this property renders the calendar with grid lines.
The default is True.

ShowNextPrevMonth

If True, this property displays next/previous month links.
The default is True.

ShowTitle

If True, this property displays the calendar’s title. The de-
fault is False.

114

Advanced Controls

As you’ve probably noticed by now, the .xml file enables you to specify properties
for each banner advertisement by inserting appropriate elements inside each of
the Ad elements. These elements include:

ImageURL
the URL of the image to display for the banner ad

NavigateURL
the web page to which your users will navigate when they click the banner
ad

AlternateText \
the alternative text to display for browsers that do né%@g
Keyword S 6
the keyword to use to ca r ad ’l l

If you use t er‘ proper dI%Q:ltor‘ control, you can
? xgles of ban
Impressions P

the relative frequency that a particular banner ad should be shown in relation
to other banner advertisements

The higher this number, the more frequently that specific banner will display
in the browser. The number provided for this element can be as low as one,
but cannot exceed 2,048,000,000; if it does, the page throws an exception.

Except for ImageURL, all these elements are optional. Also, if you specify an Ad
without a NavigateURL, the banner ad will display without a hyperlink.

To make use of this Ads.xml file, create a new ASP.NET page, called AdRotat-
or.aspx, with the following code:

File: AdRotator.aspx (excerpt)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>AdRotator Control</title>
</head>
<body>
<form runat="server">
<asp:AdRotator ID="adRotator" runat="server"

u\k

119

Advanced Controls

Figure 4.8. A breadcrumb created using the SiteMapPath control

= TreeView demo - Windows Internet Explorer, [ZI[EI[XI
% - |g, http: flocalhost{Learning) TreeviewDemo, asp: v | [@J = | | Ol
A | (& Tresview demo [_| B = - [page - "9’ Toals ~

Home> TreeViewDemo
= Home
TreeViewDemo K
ClickEwent O u
Loops C .
e

N File: Tr Vl‘ﬂen%%(excerpt)
<asp:SiteMapPath i ﬁﬂ@ h* runat isen "
PathSepar‘ato \r\r A
</asp:Si é e l
If y u r n the example ,a@see the breadcrumb appear exactly as it’s

shown in Figure 4.8.

Note that the SiteMapPath control shows only the nodes that correspond to ex-
isting pages of your site, so if you don’t have a file named Default.aspx, the
root node link won’t show up. Similarly, if the page you’re loading isn’t named
TreeViewDemo.aspx, the SiteMapPath control won’t generate any output.

Menu

The Menu control is similar to TreeView in that it displays hierarchical data from
a data source; the ways in which we work with both controls are also very similar.
The most important differences between the two lie in their appearances, and
the fact that Menu supports templates for better customization and displays only
two levels of items (menu and submenu items).

MultiView

The MultiView control is similar to Panel in that it doesn’t generate interface
elements itself, but contains other controls. A MultiView can store more pages
of data (called views), and lets you show one page at a time. You can change the
active view (the one being presented to the visitor) by setting the value of the

123

Creating a Web User Control

Figure 4.10. A simple form

s Creating ASP.NET Web Server Controls - Windows Internet Explorer |Z||E|r‘5__<|
%} - |g, http:fflocalhost Learning/ ControlTest, aspx hd | [@J = | | (o]
'1:? aF | @ Creating ASP.MNET Web Server Contraols [_| B = - [page - "‘; Toaols =
Mame: | |
Address: | |

Phone: | | te Sa\e .

you'll then be the web user eréver it’s needed in your

S o)
In ydur Learning folder, E\ta file named SmartBox.ascx. Then, add the

control’s constituent controls—a Label control and a TextBox control—as shown
below:

includes a Label of the ssell '&1 ,and a "I'% icep s 20 characters;

File: SmartBox.ascx (excerpt)
<p>
<asp:Label ID="myLabel" runat="server" Text—" " Width="100" />
<asp:TextBox ID="myTextBox" runat="server" Text="" Width="200"
MaxLength="20" />
</p>

Label Widths in Firefox

hote
Unfortunately, setting the Width property of the Label control doesn’t
guarantee that the label will appear at that width in all browsers. The current
version of Firefox, for example, will not display the above label in the way
it appears in Internet Explorer.

To get around this, you should use a CSS style sheet and the CssClass
property, which we’ll take a look at later in this chapter.

In Chapter 3 we discussed properties briefly, but we didn’t explain how you could
create your own properties within your own classes. So far, you’ve worked with

Comiy | | cO-

127

Creating a Web User Control

return myTextBox.Text;

}
}

</script>

Just like web forms, web user controls can work with code-behind files, but, in
an effort to keep our examples simple, we aren’t using them here. You’ll meet
more complex web user controls in the chapters that follow.

When you use the SmartBox control in a form, you can set its label and have the K
text entered by the user, like this: u

a\e CO:

mySmartBox.LabelText = "Address:"

userAddress = mySmartBox.Text N 6
C# oM ﬁ 1y
mySmartBox. LabelTeW" x 6

userAddress X.Text; 6

? XI@V we 1mple @@nctlonahty In .NET, properties can be

read -only, write-only, or re d wrlte N many cases, you ‘Il want to have properties
that can be both read and write, but in this case, we want to be able to set the
text of the inner Label, and to read the text from the TextBox.

To define a write-only property in VB, you need to use the WriteOnly modifier.
Write-only properties need only define a special block of code that starts with
the keyword Set. This block of code, called an accessor, is just like a subroutine
that takes as a parameter the value that needs to be set. The block of code uses
this value to perform the desired action—in the case of the LabelText property,
that action sets the Text property of our Label control, as shown below:

Visual Basic File: SmartBox.ascx (excerpt)
Public WriteOnly Property LabelText() As String
Set(ByVal value As String)
myLabel.Text = value
End Set
End Property

Assuming that a form uses a SmartBox object called mySmartBox, we could set
the Text property of the Label like this:

Visual Basic

mySmartBox.LabelText = "Address:"

129

Chapter 4: Constructing ASPNET Web Pages

</body>
</html>

Loading this page will produce the output we saw in Figure 4.10.

Now, this is a very simple example indeed, but we can easily extend it for other
purposes. You can see in the code snippet that we set the LabelText property
directly in the control’s tag; we could have accessed the properties from our code
instead. Here's an example:

Visual Basic File: ControlTest.aspx (excerpt) O uK
()

<script runat="server" language="VB">

Protected Sub Page Load() Sa\e |

nameSb.LabelText = "Name:" "e
addressSb.LabelText = "Address:" NO /X‘B

countrySb.LabelText = "Country:.. m ’l
phoneSb.LabelText = "Phon ‘O 8 O,‘

End Sub g \J\J
</script> e\,\e e ’L
C# P (? ag File: ControlTest.aspx (excerpt)
<script runat="server" langbage="C#">
protected void Page Load()
{
nameSb.LabelText = "Name:";

addressSb.LabelText = "Address:";
countrySb.LabelText = "Country:";
phoneSb.LabelText = "Phone:";

}

</script>

Master Pages

Master pages are a new feature of ASPNET 2.0 that can make an important
difference in the way we compose web forms. Master pages are similar to web
user controls in that they are also composed of HTML and other controls; they
can be extended with the addition of events, methods, or properties; and they
can’t be loaded directly by users—instead, they’re used as building blocks to
design the structure of your web forms.

A master page is a page template that can be applied to give many web forms a
consistent appearance. For example, a master page can set out a standard structure

132

Chapter 4: Constructing ASPNET Web Pages

If all the pages in the site have the same header, footer, and navigation menu, it
malkes sense to include these components in a master page, and to build several
web forms that customize only the content areas on each page. We’ll begin to
create such a site in Chapter 5, but let’s work through a quick example here.

To keep this example simple, we won’t include a menu here: we'll include just
the header, the footer, and the content placeholder. In your Learning folder,
create a new file named FrontPages.master, and write the following code into

it: K
File: FrontPages.master (excerpt) O ‘u
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" C

"“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict désa\e)
<html> NO
<head> 6
<title>Front Page</title> m ’l l
</head> "(O O"
A e 60
<for‘m —"w nat="servery' l
0 Superg+ a@
ContentPlaceHol ontPageContent"

runat="server" />
<p>Copyright 2006</p>
</form>
</body>
</html>

The master page looks almost like a web form, except for one important detail:
it has an empty ContentPlaceHolder control. If you want to build a web form
based on this master page, you just need to reference the master page using the
Page directive in the web form, and add a Content control that includes the
content you want to insert.

Let's try it. Create a web form called FrontPage.aspx, and add this code to it:

File: FrontPage.aspx (excerpt)

<%@ Page MasterPageFile="FrontPages.master" %>
<asp:Content id="myContent" runat="server"
ContentPlaceHolderID="FrontPageContent">
<p>
Welcome to our web site! We hope you'll enjoy your visit.
</p>
</asp:Content>

134

142

Meeting the Features

Figure 5.12. The Toolbox

=l Standard »~

k Painter

A Label

[[sbll TextBox N |
Button l’\§

LinkButtan

ImageButton

A HyperlLink

?? DropDownList uK
|22 ListBox
CheckBox CO *
5= CheckBoxList a\e .
(%) RadioButton es

2= RadioButtonList O

|8 Image m
server controls we Wdﬁghapter 4 Ix%’e)(‘)5 is you’ll find other
controls i ﬂ}\ Iidation co ls% ss in Chapter 6, which can

¥ ldatlopba I@l ws the toolbox with all its tabs in

the

sed state.

Figure 5.13. The collapsed Toolbox tabs

03
Standard

Data
Yalidation
Mavigation
Login
WebParts
HTML
General

The Properties Window

When you select a control in the web forms designer, its properties are displayed
automatically in the Properties window. For example, if you select the TextBox
control we added to the form earlier, the properties of that TextBox will display

in the Properties window. If it’s not visible, you can make it appear by selecting
View > Properties Window.

The Properties window doesn’t just allow you to see the properties—it also lets
you set them. Many properties—such as the colors that can be chosen from a
palette—can be set visually, but in other cases, complex dialogs are available to

155

Chapter 5: Building Web Applications

Figure 5.22. Adding a default name for the document

| HTTP Headers Custom Errars || ASPNET |
| Wirtual Directory | Documents | Diirectory Security |

Enable Default Diocument

Default.htm
m Default.asp Add...
index. htm

E iizstart. azp Femove K
[Enable Document Foater ‘ O .

| Browsze... E a\e .
Add Default Document _ O ‘ e

Default Document M ame:

| Default. azp=

While you're here, it’s a good idea to check that Default.aspx is included as a
default file. If it is, then requesting http://localhost/Dorknozzle will load
http://localhost/Dorknozzle/Default.aspx by default. To check this, click
the Documents tab. If Default.aspx isn’t in the list, add it by clicking the Add...
button and entering the filename, as shown in Figure 5.22.

Finally, click OK to close the Dorknozzle Properties window.

If no default document exists in the Dorknozzle folder, the web server will attempt
to return a list of the files and folders inside the Dorknozz1le folder—an operation
that will only succeed if the Directory Browsing option shown in Figure 5.21 is
enabled. If this option is left in its default, disabled state, this operation will result
in an error.

Now, if you load http://localhost/Dorknozzle/ using any web browser, you
should see a little magic (as Figure 5.23 reveals)!

164

Chapter 5: Building Web Applications

The project will open. This time, the root entry in Solution Explorer will be ht-
tp://localhost/Dorknozzle/ instead of c:\WebDocs\Dorknozzle\, as Fig-
ure 5.25 indicates.

Figure 5.25. Solution Explorer displaying an HTTP location

Solution Explorer -

2 gﬂ@b

'_‘P http:/ /localhost /Dorknozzle /

App_Data
= j Default, aspix K
%) Default. aspx.vh

i3 web.config CO .

\S-

C‘iJSqution Explorer |55 Database Explarer Sa

Visual Web Developer knows ho ymls 10cat 1(1

its contents automatlcally in plore co tents are

changed outside of V: ﬁ% e oper yo %d t-click the root

node and g er to refres eveloper s display of the

directory’ gT

Core Web Appllcatlon Features

Let’s continue our exploration of the key topics related to developing ASPNET
web applications. We’ll put them into practice as we move through the book,
but in this quick introduction, we’ll discuss:

[Web.config

[dlobal.asax

[dser sessions

[daching

[dookies

Web.config

Almost every ASPNET web application contains a file named Web . config, which
stores various application settings. By default, all ASPNET web applications are

166

Web.config

configured in the Machine.config file, which contains machine-wide settings,
and lives in the C: \WINDOWS\Microsoft.NET\Framework\version\CONFIG direct-

ory.

For the most part, you won’t want to make any modifications to this file. However,
you can override certain settings of the Machine.config file by adding a
Web.config file to the root directory of your application. You may already have
this file in your project; if you don’t, you can add one by accessing File > New
File..., then selecting Web Configuration File from the dialog that appears. \L

The Web.config file is an XML file that can hold Conflguratlon settmgs f
application in which the file resides. One of the most use ex
Web.config controls is ASPNET’s debug mode. If yo U can en-

able debug mode by opening Web.config anﬁq pllauo%lement

which looks like this: Om “ /l

le: Web.config (excerpt)
<l--
1((@) 1on d ser‘t debugglng
@m into the age Because this
affects per‘for'man , set his value to true only
during development.

Visual Basic options:

Set strict="true" to disallow all data type conversions

where data loss can occur.

Set explicit="true" to force declaration of all variables.
-->

<compilation debug="false" strict="false" explicit="true" />

Enabling debug mode is as simple as changing the value of the debug attribute
to true. The other attributes listed here were added by Visual Web Developer
to offer a helping hand to VB developers migrating from older versions. For ex-
ample, strict="false" makes the compiler forgive some of the mistakes we
might make, such as using the wrong case in variable names.

If you're using C#, you’ll need to create the Web.config file yourself. Go to File
> New File..., then select Web Configuration File from the dialog that appears,
and click Add. This will create the default Web.config file, which will contain
the following section:

File: Web.config (excerpt)
<l--
Set compilation debug="true" to insert debugging

167

Web.config

<add namespace="System.Web.UI.WebControls" />
<add namespace="System.Web.UI.WebControls.WebParts"/>
<add namespace="System.Web.UI.HtmlControls" />
</namespaces>
</pages>

We can use classes from these namespaces in our code without needing to refer-
ence them in every file in which they’re used. As you can see, Visual Web Deve-
loper tries to offer an extra level of assistance for VB developers, but users of C#
(or any other language) could also add these namespace references to Web.config.

book, so if you wish, you can skip the rest of these detall
back to them later as you need them.

The Web.config file’s root elemen S ﬁlgur‘atl ch&&ontam
three different types ele 6 O%
confi ura ﬂk‘):ps &9
é and th @J@v 1K are so configurable, configuration
les could easily bec if we didn’t have a way to break the files
into groups of related settmgs A number of predefined section grouping tags
let you do just that. For example, settings specific to ASPNET must be placed

inside a system.web section grouping element, while settings that are relevant
to .NET’s networking classes belong inside a system.net element.

You’ll learn more about working with Web.config as you p]rogresxt\él
d Come

General settings, like the appSettings element we saw above, stand on their
own, outside the section grouping tags. In this book, though, our configuration
files will also contain a number of ASPNET-specific settings, which live inside
the system.web element.

configuration sections
These are the actual setting tags in our configuration file. Since a single ele-
ment can contain a number of settings (e.g. the appSettings element we
saw earlier could contain a number of different strings for use by the applic-
ation), Microsoft calls each of these tags a “configuration section.” ASPNET
provides a wide range of built-in configuration sections to control the various
aspects of your web applications.

The following list outlines some of the commonly used ASP.NET configura-
tion sections, all of which must appear within the system.web section
grouping element:

u\k

169

Chapter 5: Building Web Applications

authentication
outlines configuration settings for user authentication, and is covered in
detail in Chapter 14

authorization
specifies users and roles, and controls their access to particular files
within an application; discussed more in Chapter 14.

compilation
contains settings that are related to page compilation, and lets you specify \)K
the default language that’s used to compile pages \ C

customErrors
used to customize the way errors display NOtesa

globalization 1 l
used to Customlze Ch e&&@mregﬁan &
pages @
? Conflgurat 9 specific ASPNET pages; allows
t

o disable session s ing, and view state, for example

sessionState
contains configuration information for modifying session state (i.e. vari-
ables associated with a particular user’s visit to your site)

trace
contains information related to page and application tracing

configuration section handler declarations

ASP.NET’s configuration file system is so flexible that it allows you to define
your own configuration sections. For most purposes, the built-in configuration
sections will do nicely, but if we wanted to include some custom configuration
sections, we’d need to tell ASPNET how to handle them. To do so, we’d
declare a configuration section handler for each custom configuration section
we wanted to create. This is pretty advanced stuff, so we won’t worry about
it in this book.

Global.asax

Global.asax is another special file that can be added to the root of an application.
It defines subroutines that are executed in response to application-wide events.

170

Chapter 5: Building Web Applications

c#
Application.Remove("SiteName");

If you find you have multiple objects and application variables lingering in applic-
ation state, you can remove them all at once using the RemoveAll method:

Visual Basic

Application.RemoveAll()

C#

Application.RemoveAll(); O uK
.

It’s important to be cautious when using application variables. Obje k@ C
in application state until you remove them using the Reﬁ@ eAll
methods, or shut down the application in IIS. If 0 saV

into the application state without re ov1 - g you can place

ON Server resources and dramati l% e perfo an yo hca-

tions. \Na 2

Let’s take g&llcatlon s @a Ication state is very commonly
task i

used to m tam hit counters, in this example will be to build
one! Let’s modlfy the Default aspx page that Visual Web Developer created
for us. Double-click Default.aspx in Solution Explorer, and add a Label control
inside the form element. You could drag the control from the Toolbox (in either
Design View or Source View) and modify the generated code, or you could simply
enter the new code by hand. We’ll also add a bit of text to the page, and change
the Label’s ID to myLabel, as shown below:

File: Default.aspx (excerpt)
<form id="form1" runat="server">
<div>
The page has been requested
<asp:Label ID="myLabel" runat="server" />
times!
</div>
</form>

In Design View, you should see your label appear inside the text, as shown in
Figure 5.27.

Now, let’s modify the code-behind file to use an application variable that will
keep track of the number of hits our page receives. Double-click in any empty
space on your form; Visual Web Developer will create a Page_Load subroutine
automatically, and display it in the code editor.

174

Chapter 5: Building Web Applications

End If
' Display page counter
myLabel.Text = Application("PageCounter")

End Sub

C# File: Default.aspx.cs (excerpt)
protected void Page Load(object sender, EventArgs e)

{

// Reset counter when it reaches 10
if (Application["PageCounter"] != null &&
(int)Application["PageCounter"] >= 10)

{ cO-
Application.Remove ("PageCounter"); a.\e .

}

// Initialize or increment page counter‘ N x_%%ge 1

if (Application["PageCounter"] ==

{
Appllcatlon["Paquou "]"(1 02
else ge 2
Applg’clon [" PageCountQ a

(int)Application["PageCounter"] + 1;

}
// Display page counter
myLabel.Text = Convert.ToString(Application["PageCounter"]);

}

Before analyzing the code, press F5 to run the site and ensure that everything
works properly. Every time you refresh the page, the hit counter should increase
by one until it reaches ten, when it starts over. Now, shut down your browser
altogether, and open the page in another browser. We’ve stored the value within
application state, so when you restart the application, the page hit counter will
remember the value it reached in the original browser, as Figure 5.28 shows.

If you play with the page, reloading it over and over again, you’ll see that the
code increments PageCounter every time the page is loaded. First, though, the
code verifies that the counter hasn’t reached or exceeded ten requests. If it has,
the counter variable is removed from the application state:

Visual Basic File: Default.aspx.vb (excerpt)
' Reset counter when it reaches 10
If Application("PageCounter") >= 10 Then
Application.Remove ("PageCounter")
End If

176

Chapter 5: Building Web Applications

c# File: Global.asax (excerpt)
void Session_Start(Object sender, EventArgs e)
{
Session.Timeout = 1560;
}

Using the Cache Object

In traditional ASP, developers used application state to cache data. Although
there’s nothing to prevent you from doing the same thing here, ASPNET provides uK
a new object, Cache, specifically for that purpose. Cache is also a collectign

we access its contents similarly to the way we accessed the xb

Application. Another similarity is that both have ﬁ 1 111ty,

being shared between all users who access a web ap

Let’s assume that there’s a list of e“ h t you'd rm the
database. To spare the da resourc e table from
the database t é\’l\l might sa eem Cache using a command
like this: P g

Visual Basic

Cache("Employees") = employeesTable

c#
Cache["Employees"] = employeesTable;

By default, objects stay in the cache until we remove them, or server resources
become low, at which point objects begin to be removed from the cache in the
order in which they were added. The Cache object also lets us control expira-
tion—if, for example, we want to add an object to the cache for a period of ten
minutes, we can use the Insert method. Here’s an example:

Visual Basic

Cache.Insert("Employees", employeesTable, Nothing,
DateTime.MaxValue, TimeSpan.FromMinutes(10))

C#

Cache.Insert("Employees", employeesTable, null,
DateTime.MaxValue, TimeSpan.FromMinutes(10));

The third parameter, which in this case is Nothing or null, can be used to add
cache dependencies. We could use such dependencies to invalidate cached items

182

Chapter 5: Building Web Applications

We'll keep all the files related to the default appearance of Dorknozzle in this
Blue folder.

Creating a New Style Sheet

We’ll start by adding a new CSS file to the Blue theme. CSS files can be created

independently of themes, but it’s easier in the long term to save them to

themes—this way, your solution becomes more manageable, and you can save

different versions of your CSS files under different themes. Any files with the

.css extension in a theme’s folder will be automatically linked to any web form uK
that uses that theme. O .

Right-click the Blue folder, and select Add New Item.. ?@e
template to create a new file named Dorknozzle. c
Dorknozzle.css will be almost empty: Om i

\N " lGDonzle css (excerpt)
body { P(e\,\e g 2

}

Let’s make this file more useful ﬁdding more styles to it. We’ll use these styles
soon, when we build the first page of Dorknozzle.

File: Dorknozzle.css (excerpt)

body
{

font-family: Tahoma, Helvetica, Arial, sans-serif;

font-size: 12px;
}
h1
{

font-size: 25px;

:link, a:visited

D

text-decoration: none;
color: Blue;

:hover

D

color: Red;

.Header

{

190

Building the Master Page

</namespaces>
</pages>

If you're using C#, you'll need to add the pages element to the system.web ele-
ment yourself:

File: Web.config (excerpt)
<system.web>

<pages theme="Blue" />)\(

</system.web>

Building the Master Page SOXQS
This is where the real fun begﬂxﬂ‘?{e\m es in Dol zﬂw@)mmon

structure, with the sa e etop,a tﬂma e Jrkenu on the left, so it
makes sense tﬂl‘l a¥ter page Wlth page in place, we’ll be able
he site ontent that makes them different,
ratc}? @e

n writing the h e menu afresh for each page.

Figure 5.38. Creating a new master page

Add News Item - http:#localhost/Dorknozzle/

HE

Templates:

¥isual Studio installed templates

3 ‘Web Form H-| web User Control —
:] HTML Page E] Wweb Service ¥e] Class
,ﬂﬂ Skyle Sheet g_:,Web Confi inn il

=] Text File

| A Master Page for Web Applications

Mame: | Dorknozzle. master

Language: |Visual Basic v | Place code in separate file

[Add H Cancel]

Right-click again on the root node in Solution Explorer and select Add New Item....
There, select the Master Page template from the list of available templates, and
name it Dorknozzle.master. Choose the language you want to program the
master page in from the Language drop-down list, and check the Place code in a

195

Extending Dorknozzle

Figure 5.43. Editing a web form that uses a master page

i3]
Content - Contentl (Custom)

Company News

['We'll add some news later.

Company Events
\e CO
(&g

[We'll add company events later.

£
= Source <baody = || <form#forml = NO lB
- t&‘tﬁgzzle! O" 7

Figure 5.44. Welco

& Home Company News
& Help Desk p y

Y iggrlzzf::olfcmw wie'l add sorme news later,

Q Departments

@ admin Tooks Company Events
& admin Newsletter

we'll add company events later,

Extending Dorknozzle

We'll extend the Dorknozzle site by adding an employee help desk request web
form. This form will allow our fictitious employees to report hardware, software,

201

Chapter 5: Building Web Applications

In more complex scenarios, if you enter the name of an object, the Watch window
will let you explore its members as we just saw.

If you switch to the Locals window (Debug > Windows > Locals) shown in Fig-
ure 5.50, you can see the variables or objects that are visible from the line of code
at which the execution was paused.

Figure 5.50. The Locals window

Mame Value Type
{ASP . errortest_aspx}
W a {Length=11} Integer() e
we {5ystem Eventargs}h Syskem.E a *
@i 11 Inkeger 5

W s {ASP. errortest_aspx} Object Ote
FlLocals | E]watch m 1 l ’

Another nice feature B -X evelope Qrou hover your
cursor ove [ﬁ, dltmg wm e at -a-glance information
about tha@ {

Sometimes, you’ll want to debug your apphcatlon even if it doesn’t generate an
exception. For example, you may find that your code isn’t generating the output
you expected. In such cases, it makes sense to execute pieces of code line by line,
and see in detail what happens at each step.

The most common way to get started with this kind of debugging is to set a
breakpoint in the code. In Visual Web Developer, we do this by clicking on the
gray bar on the left-hand side of the editing window. When we click there, a red
bullet appears, and the line is highlighted with red to indicate that it’s a break-
point, as Figure 5.51 illustrates.

Once the breakpoint is set, we execute the code. When the execution pointer
reaches the line you selected, execution of the page will be paused and Visual
Web Developer will open your page in debug mode. In debug mode, you can
perform a number of tasks:

[Yiew the values of your variables or objects.

[Step into any line of code by selecting Debug > Step Into. This executes the
currently highlighted line, then pauses. If the selected line executes another
local method, the execution pointer is moved to that method so that you can
execute it line by line, too.

208

Chapter 6: Using the Validation Controls

the OnClick property to the Button control, and give it the value submitBut-
ton_Click. This mimics what Visual Web Developer would do if you double-
clicked the button in Design View.

<!-- Submit Button -->
<p>
<asp:Button id="submitButton" runat="server" Text="Submit"
OnClick="submitButton_Click" />
</p>

Next, create the submitButton_Click subroutine. You can add this between
<script runat="server">and </script> tags in the head of the web
place it in a code-behind file. If Visual Web Developer generates x

you, they may appear a little differently than they’re p es

Visual Basic “ File: L, ?x&%

Protected Sub submitButton ect @
submitButton. Text '- 2 e

End Sub e

C# E ag File: Login.aspx (excerpt)

protected void submitButton® lle (object sender, EventArgs e)

{
submitButton.Text = "Clicked";

}

Now, if you're trying to submit invalid data using a browser that has JavaScript
enabled, this code will never be executed. However, if you disable your browser’s
JavaScript, you'll see the label on the Button control change to Clicked! Obviously,
this is not an ideal situation—we’ll need to do a little more work to get validation
working on the server side.

Disabling JavaScript in Firefox
Tip@

To disable JavaScript in Firefox, go to Tools > Options..., click the Content
tab and uncheck the Enable JavaScript checkbox.

Disabling JavaScript in Opera
Tip@

To disable JavaScript in Opera, go to Tools > Preferences..., click the Ad-
vanced tab, select Content in the list on the left, and uncheck the Enable
JavaScript checkbox.

cO-

224

Uk

Enforcing Validation on the Server

Disabling JavaScript in Internet Explorer
Tip@

To disable JavaScript in Internet Explorer, go to Tools > Internet Options...
and click the Security tab. There, select the zone for which you’re changing
the settings (the zone will be shown on the right-hand side of the browser’s
status bar—it will likely be Local Intranet Zone if you're developing on the
local machine) and press Custom Level.... Scroll down to the Scripting sec-
tion, and check the Disable radio button for Active Scripting.

ASPNET makes it easy to verify on the server side if the submitted data complies uK
to the validator rules without our having to write very much C# or VB C @

all. All we need to do is to check the Page object’s IsValid prop t
returns True if all the validators on the page are happ ﬁa
ess of

trols they’re validating. This approach will al
osen

he con-
browser the user has, or the settmgs

%eh web
Let’s add this pro‘p%\tNulﬁﬁgzvem ha%e&— O“
Visu TQ e File: Login.aspx (excerpt)
Pro?t d “Sub SmeltBPoa'g s As Object, e As EventArgs)
I

Page.IsValid Th
submitButton.Text = "Valid"
Else
submitButton.Text = "Invalid!"
End If
End Sub

c# File: Login.aspx (excerpt)
protected void submitButton_Click(object s, EventArgs e)

{
if(Page.IsValid)

{
}

else

{

}
}

submitButton.Text = "Valid";

submitButton.Text = "Invalid!";

Load the page again after disabling JavaScript, and press the Submit button
without entering any data in the text boxes. The text label on the button should
change, as shown in Figure 6.2.

225

Chapter 6: Using the Validation Controls

As you’ve probably noticed, the CompareValidator control differs very little from
the RequiredFieldValidator control:

File: Login.aspx (excerpt)
<asp:RequiredFieldValidator id="confirmPasswordReq" runat="server"
ControlToValidate="confirmPasswordTextBox"
ErrorMessage="Password confirmation is required!"
SetFocusOnError="True" Display="Dynamic" />
<asp:CompareValidator id="comparePasswords" runat="server"

ControlToCompare="passwordTextBox" \4
ControlToValidate="confirmPasswordTextBox" u
ErrorMessage="Your passwords do not match up!" CO
Display="Dynamic" /> a\e

The only difference is that in addition to a Cont proper y

CompareValidator hasa ControlToComp set thes r{)&;

to the IDs of the controls we \r\a‘\Sé pare Sgain %xa the

ControlToValidate pmp et ¥o* the conf % Box, and the

Cont rolToCompa set to th
The CompaE Sldator‘ can be? gpare the value of a control to a fixed
value, too. CompareValidator can check whether the entered value is equal to,

less than, or greater than, any given value. As an example, let’s add an age field
to our login form:

File: Login.aspx (excerpt)
<l-- Age -->
<p>
Age:

<asp:TextBox id="ageTextBox" runat="server" />
<asp:RequiredFieldValidator id="ageReq" runat="server"
ControlToValidate="ageTextBox"
ErrorMessage="Age is required!"
SetFocusOnError="True" Display="Dynamic" />
<asp:CompareValidator id="ageCheck" runat="server"
Operator="GreaterThan" Type="Integer"
ControlToValidate="ageTextBox" ValueToCompare="15"
ErrorMessage="You must be 16 years or older to log in" />
</p>

In this case, the CompareValidator control is used to check that the user is old
enough to log in to our fictitious web application. Here, we set the Operator
property of the Comparevalidator to GreaterThan. This property can take on
any of the values Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan,

232

Custom Validator

Regular Expressions in JavaScript*

another great article, this time on the use of regular expressions with JavaScript

Table 6.2. Common regular expression components and their

descriptions
Special Description
Character

any character

" beginning of string L o~ C

$ end of string .

\d numeric digit a\

\s whitespace char A\ ” ’ 6

\S non-whiges racter C\ O .

(abc) \@Nlﬁ!; abc as a ‘«pgup}f@m(ters

? precedsi ﬂ@&t group is optional

+ one or thore of the preceding character or group

* zero or more of the preceding character or group

{n} exactly n of the preceding character or group

{n,m} n to m of the preceding character or group

(alb) either a or b

\$ a dollar sign (as opposed to the end of a string); we can ‘escape’
any of the special characters listed above by preceding it with
a backslash. For example, \. matches a period character, \?
matches a question mark, and so on

You’ll find a complete guide and reference to regular expressions and their com-

ponents in the .NET Framework SDK Documentation.

CustomValidator

The validation controls included with ASPNET allow you to handle many kinds
of validation, yet certain types of validation cannot be performed with these
built-in controls. For instance, imagine that you needed to ensure that a new

* http://www.sitepoint.com/article/expressions-javascript

Uk

239

Chapter 6: Using the Validation Controls

user’s login details were unique by checking them against a list of existing user-
names on the server. The Customvalidator control can be helpful in this situation,
and others like it. Let’s see how:

Visual Basic File: Customvalidator.aspx (excerpt)
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>
<head>
<title>CustomValidator Control Sample</title> K
<script runat="server" language="VB"> u

e As ServerValidateEventArgs)

Sub CheckUniqueUserName(s As Object, _ \e CO .
. iEL |

Dim username As String = e.Value.ToLoyer &‘e
If (username = "zak" Or username = \% Then
e.IsValid = False m ’l l
End If _‘
End Sub " O 6 O

a CllC @t As EventArgs)
sValid Th

submltButton Tex alid"
Else
submitButton.Text = "Invalid!"
End If
End Sub
</script>
</head>
<body>
<form runat="server">
<p>
New Username:

<asp:TextBox ID="usernameTextBox" runat="server" />
<asp:CustomValidator ID="usernameUnique" runat="server"
ControlToValidate="usernameTextBox"
OnServerValidate="CheckUniqueUserName"
ErrorMessage="This username already taken!" />
</p>
<p>
<asp:Button ID="submitButton" runat="server"
OnClick="submitButton Click" Text="Submit" />
</p>
</form>
</body>
</html>

240

Primary Keys

IDENTITY
Identity columns are numbered automatically. If you set a column as an
IDENTITY column, SQL Server will generate numbers automatically for that
column as you add new rows to it. The first number in the column is called
the identity seed. To generate subsequent numbers, the identity column
adds a given value to the seed; the value that’s added is called the identity
increment. By default, both the seed and increment have a value of I, in
which case the generated values are 1, 2, 3, and so on. If the identity seed

were 5 and the identity increment were 10, the generated numbers would be
5,15, 25, and so on.

IDENTITY is useful for ID columns, such as Department I @ip@ou
don’t care what the values are, as long as th en you use
é that

IDENTITY, the generated values will alwa y defaul u can’t
specify values for an IDENTITY col N % ﬂIL t%q never
contain NULL.

@ity 701 ©
%"\'& ng NULL 2
8 A
? e sure not to P @.Lg equivalent to 0 (in numerical columns), or an
h

empty string (irfthe case of string columns). Both 0 and an empty string are
values; NULL defines the lack of a value.

NULL and Default Values

hote
I've often heard people say that when we set a default value for a column,
it doesn’t matter whether or not we set it to accept NULLs. Many people
seem to believe that columns with default values won’t store NULL.

That’s incorrect. You can modify a record after it was created, and change
any field that will allow it to NULL. Your columns’ ability to store NULL is
important for the integrity of your data, and it should reflect the purpose of
that data. A default value does make things easier when we create new rows,
but it’s not as vital as is correctly allowing (or disallowing) NULL in columns.

Primary Keys

Primary keys are the last fundamental concept that you need to understand before
you can create your first data table. In the world of relational databases, each
row in a table must be identified uniquely by a column called a key, on which all
database operations are based.

Uk

265

Chapter 7: Database Design and Development

The tables in your databases could contain hundreds or even thousands of rows
of similar data—you could have several hundred employees in your Employees
table alone. Imagine that your program needs to update or delete the record for
John Smith, and there are several people with that name in your organization.
You couldn’t rely on the database to find the record for the particular John Smith
that you were trying to work with—it might end up updating or deleting the
wrong record.

identifies each row in the table. The first step toward achieving this goal is to
add to the table an ID column that provides a unique for each employee, as did
the Employee ID column that we saw in Figure 7.1.

We can avoid these kinds of problems only by using a system that uniquely K

Remember that when we discussed this Employees @ (@ﬁat you
be tempted to use each employee’s username iq§e ntify eac
After all, that’s what the network a Mes them fo‘ﬁ@hy h

you? It’s true that thls col Ufle edtable, and we
call such a colu ey Howev ? e a good idea to use
this colu b se op ‘ ¢r of reasons. Firstly, network

usernamesyhav been known to Zhd such a change would wreak havoc
on any database of more than a ouple of tables. As we’ll see later, keys are fun-
damental to establishing relationships between tables, and these relationships
rely on the fact that keys will never change. Secondly, non-numeric keys require
much more processing power than simple numeric ones. Using an nvarchar field
to uniquely identify rows in your table will bring your SQL Server to a grinding
halt much, much quicker than if you chose a simple, numeric key.

The column that we choose to uniquely identify a row in a table in practice is
called the primary key. In the case of our Employee table, the Employee 1D will
always be unique, so it would be a suitable primary key.

Multi-column Keys
note

To make the concept of keys easier to understand, we kept the definition
simple, although it’s not 100% technically correct. A key isn’t necessarily
formed by a single column—it can be formed by two or more columns. If
the key is made up of multiple columns, the set of values in those columns
must be unique for any given record. We'll see an example of such a key in
a moment.

Although we usually refer to primary keys as if they were columns, technically they
are constraints that we apply to the existing columns of a table. Constraints
impose restrictions on the data we can enter into our tables, and the primary key

266

Creating the Employees Table

Figure 7.10. Specifying column properties

41
X

dbo.Tablel: Ta...s.Dorl | \"‘] HelpDesk, aspx.vb App_Themes/Bl. . .orknozzle, css
Colurmn Mame Data Type Allove Mulls
it O
O

Column Properties |

Identity Increment 1
Identity Seed 1
{Is Identity)

Y\
U“‘

Figure 7. I\I‘emoyees ta

db ployges:...ss.Dorknozzle) | Helpfesk, T emes Bl orknozzle.css ¥ X
Data Type r

it |:|

DepartmentID int O
Marne revarchar{S0) O
Username rvarchar{50) O
Password rvarchar{50)
Address revarchar{S0)
Ciky revarchar{S0)
State revarchar{S0)
Zip revarchar{S0)
HomePhone rvarchar{50)
Extension rvarchar{50)
MobilePhone revarchar{S0)
O

Column Properties |

A~
(Is Identity) es
Identity Increment 1 E
Identity Seed 1

v

Identity Specification

269

Populating the Data Tables

The SQL scripts included in the code archive contains all the commands required
for this entire chapter—it even creates the sample data and table references that
are covered later.

Populating the Data Tables

If tables represent drawers in a filing cabinet, rows represent individual paper

records in those drawers. Suppose that our intranet web application was a real
application. As people begin to register and interact with the application, rows K
are created within the various tables, and are filled up with the mformatlon c@ u
those people. é

Once the data structures are in place, adding rqw Q asy as typmg
information into the cells in the Datashget Hﬂ‘ ;’z s a bit
like a spreadsheet. To acces ort the table qec Table
Data in Visual Web Deme&(ﬁ able i ﬁ Q

at

gement Studio.
You can use th t opens to sta et’s add some sample

dat e just creatg - an test the Dorknozzle database
\@ the apphc \tig to Table 7.11 represent the tables and

data you should add.

Inserting Data and Identity Columns
note

If you correctly set the ID column as an identity column, you won’t be al-
lowed to specify the values manually—the ID values will be generated for
you automatically. You need to be careful, because an ID value will never
be generated twice on the same table. So even if you delete all the rows in a
table, the database will not generate an ID with the value of 1; instead, it
will continue creating new values from the last value that was generated for
you.

Keep in mind that a new row is saved to the database at the moment that you
move on to the next row. It’s very important that you remember this when you
reach the last row, as you’ll need to move to an empty row even if you aren’t
adding any more records.

273

Populating the Data Tables

The Employees table contains a few more columns than those outlined here, but,
due to the size constraints of this page, I've left them out. Feel free to add your
own data to the rest of the cells, or you could leave the remaining cells empty,
as they’re marked to accept NULL.

Table 7.9. The HelpDeskCategories table

CategoryID (Primary Key) Category
1 Hardware K
Software u
Workstation g e .
Other/Don' \K‘oh"e DY -

Table 7.10. The HelpDeW@mble A 0-‘ ’l l‘o
Py

StatusID Q’p‘@r\k&) ‘AN) Astatus

AR AMENSY-" =2

2 ' Y “cidsed

Al WO N

Table 7.11. The HelpDeskSubjects table

SubjectID (Primary Key) Subject

—_

Computer won't start

Monitor won't turn on

Chair is broken

Office won't work

Windows won't work

Computer crashes
Other

Nfo|jlo|h~|WO|N

What IDENTITY Columns are not For

hote
In our examples, as in many real-world scenarios, the ID values are sequences
that start with 1 and increment by 1. This makes many beginners assume
that they can use the ID column as a record-counter of sorts, but this is a
mistake. The ID is really an arbitrary number that we know to be unique;
no other information should be discerned from it.

275

Chapter 7: Database Design and Development

Using Database Diagr “oﬂ'\ N

isting departments in the Department table. However, as with primary keys, just
having the correct fields in place doesn’t mean that our data is guaranteed to be
correct.

For example, try setting the DepartmentID field for one of the employees to 123.
SQL Server won’t mind making the change for you, so if you tried this in practice,
you’d end up storing invalid data. However, after we set the foreign keys correctly,
SQL Server will be able to ensure the integrity of our data—specifically, it will
forbid us to assign employees to nonexistent departments, or to delete departments
with which employees are associated.

The easiest way to create foreign keys using Visual Web Developeé X%L‘C

Server Management Studio is through database diagrams, ﬁ(iétg

, 00‘7@5

To keep thedat, gﬁ,t&'\ahe Dorkno eﬁta%egg should contain quite
a few fore?(gr he good ne ﬁ@ ave access to a great feature called
database diagrams, which makdg it &€t to create foreign keys. You can define
the table relationships visually using the database diagrams tool in Visual Web

Developer or SQL Server Management Studio, and have the foreign keys generated
for you.

them.

Database diagrams weren’t created specifically for the purpose of adding foreign
keys. The primary use of diagrams is to offer a visual representation of the tables
in your database and the relationships that exist between them, to help you to
design the structure of your database. However, the diagrams editor included in
Visual Web Developer and SQL Server Management Studio is very powerful, so
you can use the diagrams to create new tables, modify the structure of existing
tables, or add foreign keys.

Let’s start by creating a diagram for the Dorknozzle database. To create a database
diagram in Visual Web Developer, right-click the Database Diagrams node, and
select Add New Diagram, as shown in Figure 7.15.

The process is similar in SQL Server Management Studio, which, as Figure 7.16
illustrates, has a similar menu.

The first time you try to create a diagram, you’ll be asked to confirm the creation
of the database structures that support diagrams. Select Yes from the dialog,
which should look like the one shown in Figure 7.17.

o V¥

280

Chapter 7: Database Design and Development

There are three types of relationships that can occur between the tables in your
database:

[dne-to-one relationships
[dne-to-many relationships

[Thany-to-many relationships

One-to-one Relationships

A one-to-one relationship means that for each record in one table only \@e;
related record can exist in another table. 8

One-to-one relationships are rarely used, 51 ore € f
combine the two records and store as col Q&

For example, every empl W tabase VVl & mber stored
in the HomePhone ét e mployees eo , we could store the
phone nu?n‘ arate t via a foreign key in the Em-

ployeest ut this would ba? t to our application, since we assume
that one phone number can belohg to only one employee. As such, we can leave
this one-to-one relationship (along with any others) out of our database design.

One-to-many Relationships

The one-to-many relationship is by far the most common relationship type.
Within a one-to-many relationship, each record in a table can be associated with
multiple records from a second table. These records are usually related on the
basis of the primary key from the first table. In the employees/departments ex-
ample, a one-to-many relationship exists between the Employees and Departments
tables, as one department can be associated with many employees.

When a foreign key is used to link two tables, the table that contains the foreign
key is on the “many” side of the relationship, and the table that contains the
primary key is on the “one” side of the relationship. In database diagrams, one-
to-many relationships are signified by a line between the two tables; a golden key
symbol appears next to the table on the “one” side of the relationship, and an
infinity sign (e0) is displayed next to the table that could have many items related
to each of its records. In Figure 7.27, those icons appear next to the Employees
and Departments tables.

288

OU\‘

Diagrams and Table Relationships

Figure 7.27. Database diagram showing a one-to-many
relationship

% EmployvesID
DepartrnentID

Employees [r—+ Departments

% DepartmentID

Department

Mame
Username

Passwaord

Address
City
State O
.
\e G

HomePhane

. NO 656'
o sf ﬁyo]have a diagram

As you can see, one-to. y&l& thps are a
32 ote that the symbols don’t

at hand—just | ‘ﬁ cons next to t
s that form they simply identify the tables
m&sp"x@ éj@

Select the line that appears between two related tables to view the properties of
the foreign key that defines that relationship. The properties display in the
Properties window (you can open this by selecting View > Properties Window).
As Figure 7.28 illustrates, they’re the same options we saw earlier in Figure 7.24.

Figure 7.28. The properties of a foreign key

[Rel] FK_Employees_Departments -

Z=[5l|| =
i y FK_Employees_Departments
Check Existing Data On Creation Or Re-Enabling Yes
Description
Enforce For Replication es
Enforce Foreign Key Constraint ‘fes
= INSERT And UPDATE Specification
Delete Rule Mo Action
Update Rule Mo Action

= Tables And Columns Specification

{Name)

289

Chapter 8: Speaking SQL

Figure 8.2. A new query window

/[ocalhost\SqIE...— SQLQueryZ.sqI] Summary

»||®

1|

< | >

In the query window, type your first command: Notes

SELECT Name m

FROM Employees . \N "(O 2 O

Click the w \‘Agpress Fﬁg@hi%%b as planned, the result
akesi

will appe latto Figure 8.

Figure 8.3. Executing a simple query

/focaIhost\SqIE...SQLQueryZ.sqI"‘] Summary
SELECT MName
FROM Employees

»||®

1|

<
[Results | _3 Messages

Ted Lindzey
Shane Weebe
D avid Levingon
Geaff Kim

[= IS S

@ Query executed 5. | localhosthSglExpress (3.0 RTM) CRISTIANACristian Darie [52] Dorknozzle 00:00:00 | B rows

Nice work! Now that we’ve taken our first look at SQL, let’s talk more about
SQL queries.

. : 0.
% Connected. localhosthS glE <press (9.0 RTH] CRISTIAM Cristian D arie [52] Dorknozzle 00:00:00 | O rows a\e ‘C

296

Selecting Certain Fields

Viewing Results in Text Format
note

By default, the query editor of SQL Server Management Studio displays the
results in a grid like the one shown in Figure 8.3. As you work with SQL
Server, you may start to find this view a little impractical; in particular, it
makes viewing longer strings of text painful because each time you run the
query, you need to resize the columns in the grid. Personally, I prefer the
plain text view, which is shown in Figure 8.4. You can enable this mode by

selecting Query > Results To > Results To Text.

Let’s move on and take a look at some variations of the SELECT query. Then wi
see how easy it is to insert, modify, and delete items from the dgtghase us
other keywords. \

Selecting Certain Fields NOXe 5
If you didn’t want to m aﬁ{ Qlds % ta@e able you’d include

elds that yqu lace of the * in your query.
i

the names of V
ﬁ u're r e department names—not their
could execute t

SELECT Department
FROM Departments

This statement would retrieve data from the Department field only. Rather than
specifying the *, which would return all the fields within the database table, we
specify only the fields that we need.

Selecting All Columns Using *
note

To improve performance in real-world development scenarios, it’s better to
ask only for the columns that are of interest, rather than using *. Moreover,
even when you need all the columns in a table, it’s better to specify them by
name, to safeguard against the possibility that future changes, which cause
more columns to be added to the table, affecting the queries you're writing
now.

It’s important to note that the order of the fields in a table determines the order
in which the data will be retrieved. Take this query, for example:

SELECT DepartmentID, Department
FROM Departments

You could reverse the order in which the columns are returned with this query:

299

Chapter 8: Speaking SQL

SELECT DepartmentID, Department
FROM Departments
WHERE DepartmentID NOT BETWEEN 2 AND 5

In this example, all rows whose DepartmentIDs are less than 2 or greater than 5
are returned.

Matching Patterns with LIKE

As we’ve just seen, the WHERE clause allows us to filter results based on criteria
that we specify. The example we discussed earlier filtered rows by comparjng two
numbers, but SQL also knows how to handle strings. For example, if d
to search the company’s Employees table for all employees n

we'd use the following SQL statement: 3{

N
SELECT EmployeeID, Username -‘(Om ?)0 O“ 13—6

FROM Employees
WHERE Name = 'Za

However, ?\rx aee many su 9 ahty In real-world scenarios, most
record matching is done by mat mary key of the table to some specific
value. When an arbitrary string suCh as a name is used (as in the example above),

it’s likely that we’re searching for data based on partially complete information.

A more realistic example is one in which we want to find all employees with the
surname Ruvalcaba. The LIKE keyword allows us to perform pattern matching
with the help of wildcard characters. The wildcard characters supported by SQL
Server are the percentage symbol (%), which matches any sequence of zero or
more characters, and the underscore symbol (_), which matches exactly one
character.

If we wanted to find all names within our Employees table with the surname of
Ruvalcaba, we could modify the SQL query using a wildcard, as follows:

SELECT EmployeeID, Name
FROM Employees
WHERE Name LIKE 'S%Ruvalcaba‘’

With this query, all records in which the Name column ends with Ruvalcaba are
returned, as shown below.

EmployeeID Name

1 Zak Ruvalcaba

o V¥

304

Table Joins

Note that we’re using the IN operator instead of the equality operator (=). We
do so because our subquery could return a list of values. For example, if we added
another department with the name “Product Engineering,” or accidentally added
another Engineering record to the Departments table, our subquery would return
two IDs. So, whenever we’re dealing with subqueries like this, we should use the
IN operator unless we’re absolutely certain that the subquery will return only one
record.

Querying Multiple Tables
Tip@

When using queries that involve multiple tables, it’s useful to take a ’ uK
the database diagram you created in Chapter 7 to see Whaé C \ﬁ

each table, and to get an idea of the relatlons

Table Joins NO £ T lB
An inner join ako yg\dg "egd and CO Qn two tables between
which a re}éﬂ E ta hshed ¢ Created such a relationship
bet@n loyees partments table using a foreign key.
Let’s make use of this rel tlonshlp now, to obtain a list of all employees in the
engineering department:

SELECT Employees.Name

FROM Departments

INNER JOIN Employees ON Departments.DepartmentID =
Employees.DepartmentID

WHERE Departments.Department LIKE 'SEngineering'

The first thing to notice here is that we qualify our column names by preceding
them with the name of the table to which they belong, and a period character
(.). We use Employees.Name rather than Name, and Departments.DepartmentID
instead of DepartmentID. We need to specify the name of the table whenever
the column name exists in more than one table (as is the case with DepartmentID);
in other cases (such as with Employees.Name), adding the name of the table is
optional.

As an analogy, imagine that you have two colleagues at work named John. John
Smith works in the same department as you, and his desk is just across the aisle.
John Thomas, on the other hand, works in a different department on a different
floor. When addressing a large group of colleagues, you would use John Smith’s
full name, otherwise people could become confused. However, it would quickly
become tiresome if you always used John Smith’s full name when dealing with

309

String Functions

String Functions

MoD
MOD returns the remainder of one value divided by another. The following
query would return the value 2:

SELECT MOD(8, 3)

SIGN
This function returns -1, 0, or 1, to indicate the sign of the argument.

POWER \4
This function returns the result of one Value raised to the power of anotlb u

The following query returns the result of 2°: \e
SELECT POWER(2, 3) 53-

e
SQRT O‘ ’X‘B
SQRT returns the non- neg&{ @1 ré root of ’l

v
Many, ma ﬁs \Nmatlcal fu O%Ajlallable—check SQL Server
pretiage

String functions work with literal text values rather than numeric values.

UPPER, LOWER
This function returns the value passed in as all uppercase or all lowercase,
respectively. Take the following query as an example:

SELECT LOWER (Username), UPPER(State)
FROM Employees

The query above will return a list of usernames in lowercase, and a list of
states in uppercase.

LTRIM, RTRIM
This function trims whitespace characters, such as spaces, from the left- or
right-hand side of the string, respectively.

REPLACE
Use the REPLACE function to change a portion of a string to a new sequence
of characters that you specify.

SELECT REPLACE('I like chocolate', 'like', 'love')

315

Chapter 8: Speaking SQL

DATEADD
adds an interval to an existing date (a number of days, weeks, etc.) in order
to obtain a new date

DATEDIFF
calculates the difference between two specified dates

DATEPART
returns a part of a date (such as the day, month, or year)

DAY
returns the day number from a date

MONTH te
returns the month number from a date NO

groM
returns the year Qﬂe\N
We won’t \%@g with the?: eour example application, but it’s
pt e's%e (o

good to ki em in mind. H k example that displays the current
year:

SELECT YEAR(GETDATE())
The result (assuming it’s still 2006, of course) is shown below:

CurrentYear

(1 row(s) affected)

Working with Groups of Values

Transact-SQL includes two very useful clauses that handle the grouping of records,
and the filtering of these groups: GROUP BY and HAVING. These clauses can help
you find answers to questions like, “Which are the departments in my company
that have at least three employees?” and “What is the average salary in each de-
partment?"2

2 Assuming, of course, that your Employees table has a Salary column, or some other way of
keeping track of salaries.

318

Chapter 8: Speaking SQL

Try the above SQL statement. Then, to read the new list of records, execute the
following:

SELECT DepartmentID, Department
FROM Departments

All records in the Departments table will be displayed, along with our Cool New
Department and its automatically-generated DepartmentID.

Identity Values
Tip@

use the scope_identity function like this:

SELECT scope_identity() NO‘, ’X‘B

To obtain programatically the identity value that we just genelated\éan CO .

The UPDATE StateléQN:‘

We use t]? tement es ;:0 existing records within our
database tdbles. The UPDATE sta ires certain keywords, and usually a
WHERE clause, in order to modify particular records. Consider this code:

UPDATE Employees
SET Name = 'Zak Christian Ruvalcaba'
WHERE EmployeeID = 1

This statement would change the name of the employee whose EmployeelID is 1.
Let’s break down the UPDATE statement's syntax:

UPDATE
This clause identifies the statement as one that modifies the named table in
the database.

table name
We give the name of the table we’re updating.

SET
The SET clause specifies the columns we want to modify, and gives their new
values.

column names and values
We provide a list of column names and values, separated by commas.

324

Chapter 8: Speaking SQL

The command above would execute successfully because there aren’t any employ-
ees linked to the new department.

Deleting Records

IMPORTANT Like the UPDATE command, the WHERE clause is best used together with
DELETE; otherwise, you can end up deleting all the records in the table inad-

vertently!
Stored Procedures
Stored procedures are database objects that group one or more T- S \1@5‘0
Much like VB or C# functions, stored procedures Caﬁm return
values.

action. For example let want to a te functlonahty
that allows de a e eleted. W you must delete all of
the depar@ ? ployees be I@g{ete the department itself.

To help with such management 1ssues, you could have a stored procedure that
copies the employees of that department to another table (called Employees-
Backup), deletes those employees from the main Employees table, then removes

the department from the Department table. As you can imagine, having all this
logic saved as a stored procedure can make working with databases much easier.

Stored procedures are used to Erju nds t s1rge,)o'g1cal

We’ll see a more realistic example of a stored procedure in the next chapter, when
we start to add more features to the Dorknozzle project, but until then, let’s learn
how to create a stored procedure in SQL Server, and how to execute it.

The basic form of a stored procedure is as follows:

CREATE PROCEDURE ProcedureName
(
@Parameteri DataType,
@Parameter2 DataType,
)
AS
-- SQL Commands here

326

Chapter 9: ADO.NET

If you get sick of typing quotes, ampersands, and underscores, you can combine
the three bold strings in the above code into a single string. However, I'll continue
to present connection strings as above throughout this book—not only are they
more readable that way, but they fit on the page, too!

If you’re using C#, your code should look like this:

C# File: AccessingData.aspx (excerpt)
protected void Page_Load(object sender, EventArgs e)

// Define database connection

SqlConnection conn = new SqlConnection(e C
"Server=localhost\\SqlExpress;Database=Dorknozzle a
"Integrated Security=True");

} WO 5
Be aware that, in C#, the backsl s]&\{@mhas a ﬂﬁa 1 A’en it
appears inside a string, = M\/e h to use e av se the double

backslash
Preparin? e Commg

Now we’re at step three, in which we create a Sq1Command object and pass in our
SQL statement. The SqlCommand object accepts two parameters: the first is the
SQL statement, and the second is the connection object that we created in the
previous step.

Visual Basic File: AccessingData.aspx (excerpt)
Protected Sub Page Load(ByVal sender As Object,
ByVal e As System.EventArgs)
' Define database connection
Dim conn As New SqlConnection("Server=localhost\SqlExpress;" & _
"Database=Dorknozzle;Integrated Security=True")
' Create command
Dim comm As New SqlCommand(_
"SELECT EmployeeID, Name FROM Employees", conn)
End Sub

C# File: AccessingData.aspx (excerpt)
protected void Page Load(object sender, EventArgs e)

// Define database connection
SqlConnection conn = new SglConnection(
"Server=localhost\\SqlExpress;Database=Dorknozzle;" +

336

Executing the Command

"Integrated Security=True");
// Create command
SqlCommand comm = new SqlCommand (
"SELECT EmployeeID, Name FROM Employees", conn);
}

Executing the Command

When we’re ready to run the query, we open the connection and execute the
command. The SqlCommand class has three methods that we can use to execute
a command; we simply choose between them depending on the s ec1f1cs

query. The three methods are as follows: a
ExecuteReader es
ExecuteReader is used for quer1 stoye p cedu one or
more rows of data. Exec urns an Sq ‘% ject that
can be used ts of the in a forward -only,
read- o mg the Sql gﬁé ject is the fastest way to re-
? rom t t itcan’t be used to update the data or
ess the results i der

The SqlDataReader keeps the database connection open until all the records
have been read. This can be a problem, as the database server will usually
have a limited number of connections—people who are using your application
simultaneously may start to see errors if you leave these connections open.
To alleviate this problem, we can read all the results from the SqlDataReader
object into an object such as a DataTable, which stores the data locally
without needing a database connection. You'll learn more about the
DataTable object in Chapter 12.

ExecuteScalar
ExecuteScalar is used to execute SQL queries or stored procedures that re-
turn a single value, such as a query that counts the number of employees in
a company. This method returns an Object, which you can convert to specific
data types depending on the kinds of data you expect to receive.

ExecuteNonQuery
ExecuteNonQuery is an oddly-named method that’s used to execute stored
procedures and SQL queries that insert, modify, or update data. The return
value will be the number of affected rows.

uk

337

Chapter 9: ADO.NET

We already know that the SqlDataReader class reads the data row by row, in a
forward-only fashion. Only one row can be read at any moment. When we call
reader.Read, our SqlDataReader reads the next row of data from the database.
If there’s data to be read, it returns True; otherwise—if we’ve already read the
last record returned by the query—the Read method returns False. If we view
this page in the browser, we’ll see something like Figure 9.4.

Using Parameters with Queries

What if the user doesn’t want to view information for all employees, but instead,
wants to see details for one specific employee? \

we's ‘S g query,
et was i

SELECT EmployeelD, Name, Us r‘ﬂ@ sWord
FROM Employees Nq ’(

WHERE Employee

Let’s buildg@ p e like the one s@ra\%ure 9.5 to display this information.

Figure 9.5. Retrieving details of a specific employee

X

To get this information from our Employees table,
replacing Employeel D with the ID of the employee in

. sing Query Parameters - Windows Internet Explorer

@ o ¥ | 8] http:fflacalhost{Learning/QueryParameters, aspx M #| | = Folks
S b |@Using Query Paramekers |_| (3] f=h - |7bPage - () Tools +
Tser ID: |5 Get Data
Employee ID: 5

Mame: Dawvid Levinzon
TTsername: david
Pazsword: dawid

Create a new web form called QueryParameters.aspx and alter it to reflect the
code shown here:

File: QueryParameters.aspx (excerpt)
<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

co V¥

344

Chapter 9: ADO.NET

Let’s go ahead and add the necessary code to Page_Load in HelpDesk.aspx to
populate the DropDownList controls from the database. After the changes are
made, the lists will be populated with the data you added to your database in

Chapter 7, as illustrated in Figure 9.10.

Figure 9.10. A drop-down list created with data binding
FBX

= Dorknozzle Help Desk - Windows Inte'net Explorer

B

Ermployes Directory) .
& addrass Book Station Mumber: |
Departments
& admin Tadks
& admin Newsletter

Problern Category:
Hardwgge

Computer won't start!
Maonitor waon't turn on
 Chair is broken
Office won't work
Windows won't work
Computer crashes
Other

Submit Reguest

b :‘] |é, http: fflocalhost (Dorknozzle/HelpDesk, aspsx v| +5|| X |
S b [@Dorknozzle Help Desk l_] B EEJ - [i2page - ,)_ ol o
v
%ggggesk Employee Help Desk Request

Open HelpDesk.aspx in Design View and double-click an empty space on the
form to have the signature of the Page_Load method generated for you. Then,

add the following code:

Visual Basic

Imports System.Data.SqlClient
Imports System.Configuration

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then

' Define data objects

Dim conn As SqglConnection

Dim categoryComm As SglCommand

Dim subjectComm As SglCommand

Dim reader As SqlDataReader

' Read the connection string from Web.config

File: HelpDesk.aspx.vb (excerpt)

366

Inserting Records

Figure 9.11. Displaying an error message in the catch block

(_f Dorknozzle Help Desk - Windows Internet Explorer EI[EW__Q

& http:fflocalhast/DorknozzlefHelpDesk, aspx M #| | = Folks

{3 ﬁ'ﬁ | :é Dorknozzle Help Desk

o v ;b Page = {0 Tools -

the official dorknozzle company intranet

Q Home

& Help Desk
Ermployes Directory

& address Book

Departments
Adrmin Tools

preY

% '\SéWr
Adrnin Mewslettgr

Employee Help Des Qsa'\

Error subrnitting the helpdesk e | Pease Wy actain later, andjor ~ E ,
change the enterﬁ | -‘ P =
Problern C? E00} age
Hardware @

Problern Subject:

Computer not starting
Problern Description:

Very Long Description Very Long
Description Very Long Description Very

Long Description Wery Long Description
Very Long Description

Submit Reguest

If Page.IsValid Then
' Code that uses the data entered by the user

End If
End Sub

C#

File: HelpDesk.aspx.cs (excerpt)

protected void submitButton_Click(object sender, EventArgs e)

{

if (Page.IsValid)

{

// Code that uses the data entered by the user

}
}

373

Chapter 9: ADO.NET

comm.Parameters.Add("@Description",
System.Data.SqlDbType.NVarChar, 50);
comm.Parameters["@Description"].Value =
descriptionTextBox.Text;
comm.Parameters.Add("@StatusID", System.Data.SqlDbType.Int);
comm.Parameters["@StatusID"].Value = 1;
// Enclose database code in Try-Catch-Finally
try
{
// Open the connection
conn.Open();
// Execute the command

comm.ExecuteNonQuery(); \e _C
// Reload page if the query executed success EEL
Response.Redirect("HelpDesk. aspx“), <:)

}

catch _‘ O _"l
// Display er E 2 O
dbE ‘
ﬁé stibmittin a@ sk request' Please " +
"try agaln later hange the entered data!";
f1na11y

// Close the connection
conn.Close();
}
}
}

Make Sure you’ve Set the Identity Property!

hote
Note that when we’re inserting a new record into the HelpDesk table, we
rely on the ID column, RequestID, to be generated automatically for us by
the database. If we forget to set RequestID as an identity column, we’ll re-
ceive an exception every time we try to add a new help desk request!

Did you notice the use of the ExecuteNonQuery method? As you know, we use
this method when we’re executing any SQL query that doesn’t return a set of
results, such as INSERT, UPDATE, and DELETE queries.

You’ll remember that, in order to make the example simpler, we hard-coded the
EmployeelD (to the value of 5), and the Status (to the value of 1). To make the
application complete, you could add another drop-down list from which employees

376

Updating Records

"WHERE UniqueField=@UniqueFieldParameter", conn)
comm.Parameters.Add("@Parameteri", System.Data.SqlDbType.TypeT)
comm.Parameters ("@Parameteri").Value = valuet
comm.Parameters.Add("@Parameter2", System.Data.SqlDbType.Type2)
comm.Parameters ("@Parameter2").Value = value2

C#

comm = new SqlCommand ("UPDATE Table " +
"SET Field1=@Parameteri, Field2=@Parameter2, .. " +
"WHERE UniqueField=@UniqueFieldParameter", conn);

comm.Parameters.Add("@Parameteri", System.Data.SqlDbType.Typet) u\k
comm.Parameters["@Parameteri"].Value = valueft; O

comm.Parameters.Add("@Parameter2", System. Data SqlDbT \@)q
comm.Parameters|["@Parameter2"].Value = value a

Once the SqlCommand object has been N@thls UPD éent we
simply pass in the necessary ﬁ‘ we d1d % INBE tement.
The important thin, ﬁ en updas that you must take

care to perforgt‘ on the correc A do this, you must include
h¥t spec ;5 ég t reCord usmg a value from a suitable
t

uni lumn (usually key), as shown above.

Handle Updates with Care!

IMPORTANT When updating a table with some new data, if you don’t specify a WHERE
clause, every record in the table will be updated with the new data, and
(usually) there’s no way to undo the action!

Let’s put all this theory into practice as we build the Admin Tools page. The
database doesn’t contain a table that’s dedicated to this page; however, we’ll use
the Admin Tools page as a centralized location for a number of tables associated
with other pages, including the Employees and Departments tables. For instance,
in this section, we’ll allow an administrator to change the details of a specific
employee.

Create a new web form named AdminTools.aspx in the same way you created
the other web forms we’ve built so far. Use the Dorknozzle.master master page
and a code-behind file. Then, add the following code to the content placeholder,
and modify the page title as shown below.

File: AdminTools.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
AutoEventWireup="true" CodeFile="AdminTools.aspx.vb"
Inherits="AdminTools" title="Dorknozzle Admin Tools" %>

379

Chapter 9: ADO.NET

Deleting Records

Just as we can insert and update records within the database, we can also delete
them. Again, most of the code for deleting records resembles that which we’ve
already seen. The only major part that changes is the SQL statement within the
command:

Visual Basic
comm = New SqlCommand("DELETE FROM Table " & _
"WHERE UniqueField=@UniqueFieldParameter", conn) O u

o \e. G
comm = new SqlCommand("DELETE FROM Table " + e a-
"WHERE UniqueField=@UniqueFieldParamet @

Once we’ve created the DELETE qu nd ob]ect 1}3—@5
in the necessary paramgter \N ?’(A{Z

Visual Basic @ %
comm.Par‘?t(dd("@Unlq a@ ter",
Systelm.Data.SqlDbType.

comm.Parameters("@UnlqueFleldParameter") Value = UniqueValue

c#

comm.Parameters.Add("@UniqueFieldParameter",
System.Data.SqlDbType.Type);

comm.Parameters["@UniqueFieldParameter"].Value = UniqueValue;

To demonstrate the process of deleting an item from a database table, we’ll expand
on the Admin Tools page. Since we’re allowing administrators to update inform-
ation within the Employees table, let’s also give them the ability to delete an
employee’s record from the database. To do this, we’ll place a new Button control
for deleting the selected record next to our Update Employee button.

Start by adding the new control at the end of AdminTools.aspx:

File: AdminTools.aspx (excerpt)
<p>
<asp:Button ID="updateButton" Text="Update Employee"
Enabled="False" runat="server" />
<asp:Button ID="deleteButton" Text="Delete Employee"
Enabled="False" runat="server" />
</p>

394

Chapter 10: Displaying Content Using Data Lists

Handling DataList Events

One problem you may encounter when working with container controls such as
the DatalList or the Repeater is that you can’t access the controls inside their
templates directly from your code. For example, consider the following
ItemTemplate, which contains a Button control:

<asp:DatalList ID="employeesList" runat="server">

<ItemTemplate> \4
Employee ID: <%#Eval("EmployeeID")%> O u
<asp:Button runat="server" ID="myButton" Text="Select" C .

</ItemTemplate> a’_\e |

</asp:DatalList>

Although it may not be obvious at the fir t ﬂcan t ac
easily through your Code The folloﬁlg ld ge ate
Visual Basic 1?

r;lygﬁic]‘lcf)n? Khe False Page

Things get even more complicated if you want to handle the Button’s Click
event, because—you guessed it—you can’t do so without jumping through some
pretty complicated hoops.

So, if we can’t handle events raised by the buttons and links inside a template,
how can we interact with the data in each template? We’ll improve our employee
directory by making a simpler, basic view of the items, and add a “View More”
link that users can click in order to access more details about the employee. To
keep things simple, for now, we’ll hide only the employee ID from the standard
view; we’ll show it when the visitor clicks the View More link.

After we implement this feature, our list will appear as shown in Figure 10.2.
You’'ll be able to view more details about any employee by clicking on the appro-
priate link.

Open EmployeeDirectory.aspx, and modify the ItemTemplate of the DataList
as shown below:

Visual Basic File: EmployeeDirectory.aspx (excerpt)
<asp:DatalList id="employeesList" runat="server">
<ItemTemplate>

<asp:Literal ID="extraDetailsLiteral" runat="server"

406

Chapter 10: Displaying Content Using Data Lists

erty, and the employee’s new name and username from the TextBox control. The
techniques used in this code are the ones we used earlier, but be sure to read the
code carefully to ensure that you understand how it works.

Visual Basic

File: EmployeeDirectory.aspx.vb (excerpt)

ElseIf e.CommandName = "CancelEditing" Then

' Cancel edit mode
employeesList.EditItemIndex = -1
' Refresh the DatalList

BindList () \4
ElseIf e.CommandName = "UpdateItem" Then u

' Get the employee ID CO .

Dim employeeId As Integer = e.CommandArgument a\e .

' Get the new username

Dim nameTextBox As TextBox = _ NO
e.Item.FindControl("nameTe lB

Dim newName As String = n @ “

' Get the new name A O

Dim username Xn extBox = A

Dim Q ame As Str@ énlgnameTextBox Text

Update the item
UpdateItem(employeeId, newName, newUsername)
' Cancel edit mode

employeesList.EditItemIndex = -1
' Refresh the DatalList

BindList()
End If
End Sub
c# File: EmployeeDirectory.aspx.cs (excerpt)
else if (e.CommandName == "CancelEditing")
{
// Cancel edit mode
employeesList.EditItemIndex = -1;
// Refresh the DatalList
BindList () ;
else if (e.CommandName == "UpdateItem")
{

// Get the employee ID

int employeeId = Convert.ToInt32(e.CommandArgument) ;

// Get the new username

TextBox nameTextBox =
(TextBox)e.Item.FindControl("nameTextBox");

string newName = nameTextBox.Text;

418

Chapter 10: Displaying Content Using Data Lists

Finally
' Close the connection
conn.Close()

End Try

End Sub

C#

File: EmployeeDirectory.aspx.cs (excerpt)

protected void UpdateItem(int employeeld, string newName,

{

}

string newUsername)

// Declare data objects

SglConnection conn; O .
SqlCommand comm; \e .C

// Read the connection string from Web.config esa-

string connectionString =
ConfigurationManager. Connectlo ng

"Dorknozzle"]. Connectlo -‘ ’l
// Initialize connect (:)
on ectlonStrl A

conn = new SqlCo

/] Cre g\&‘ @
comm = @ ommand (ag conn)
// Spechify we're calllng S procedure

comm.CommandType = System.Data.CommandType.StoredProcedure;
// Add command parameters
comm.Parameters.Add("@EmployeeID", SqlDbType.Int);
comm.Parameters["@EmployeeID"].Value = employeeld;
comm.Parameters.Add("@NewName", SqlDbType.NVarChar, 50);
comm.Parameters["@NewName"].Value = newName;
comm.Parameters.Add("@NewUsername", SqlDbType.NVarChar, 50);
comm.Parameters["@NewUsername"].Value = newUsername;
// Enclose database code in Try-Catch-Finally
try
{

// Open the connection

conn.Open();

// Execute the command

comm.ExecuteNonQuery();
}
finally
{

// Close the connection

conn.Close();

}

420

Styling the DataList

Figure 10.11. The styled Employee Directory list

{= Dorknozzle Employee Directory - Windows Internet Explorer.

@

W ﬁ'ﬁ | {é Dorknozzle Employee Directory

* | & http:fflocalhost/Dorknozzle/EmployeeDiractory aspx % *s

A

Q Home
& HelpDesk
& Ermployes Directory
& address Book
Q Departments
Q Adrmin Tools
& admin Newslet

pre

Employee Directory

Mame: 2ak Ruvalgaba

Username: zak ZQ

Wiewy ror tails VE| caba
E Zak caba

sica Ruvalcaba
arne:]essn:a

Wigny mare I @ @llcaba
Edit: ernpld

Marne: Ted |ndsey

Username: ted

Wigw more details about Ted Lindsey
Edit employee Ted Lindsey

o\
N 0,‘7

<SelectedItemStyle BackColor="#C5BBAF" Font-Bold="True"

ForeColor="#333333" />

<AlternatingItemStyle BackColor="White" />

<ItemStyle BackColor="#E3EAEB" />

<HeaderStyle BackColor="#1C5E55" Font-Bold="True"

ForeColor="White" />
</asp:DatalList>

The significance of these new elements is as follows:

HeaderStyle

customizes the appearance of the DataList’s heading

ItemStyle

customizes the appearance of each item displayed within the DatalList

AlternatingItemStyle

customizes the appearance of every other item displayed within the DataList

425

Chapter 11: Managing Content Using Grid View and Details View

C#

File: AddressBook.aspx.cs (excerpt)

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls; u\k
using System.Data.SqlClient; \e CO .

{
{

public partial class AddressBook : System.Web.UI.P esa-

protected void Page_Load(object se meg /l ’X‘B
1f (!IsPostBack), "(O 6 “

oreN'© o age &

pr1vate void BindGrid()

{

// Define data objects
SqlConnection conn;
SqlCommand comm;
SqlDataReader reader;
// Read the connection string from Web.config
string connectionString =
ConfigurationManager.ConnectionStrings|
"Dorknozzle"].ConnectionString;
// Initialize connection
conn = new SqlConnection(connectionString);
// Create command
comm = new SqlCommand (
"SELECT EmployeeID, Name, City, State, MobilePhone " +
“FROM Employees", conn);
// Enclose database code in Try-Catch-Finally
try
{
// Open the connection
conn.Open();
// Execute the command
reader = comm.ExecuteReader();
// Fill the grid with data

432

Using the GridView Control

grid.DataSource = reader;
grid.DataBind();

// Close the reader
reader.Close();

}
finally

// Close the connection
conn.Close();

}

} UK
} (;O

What’s going on here? If you disregard the fact mg the
SqlDataReadertozaGr1dV1ew1nstulofa 1st code is
almost identical to that which we saw C ap

Now save your work K Qage in t ‘SA 1.2 shows how
the Gr‘ldVleW% f the data w1t ployees table in a cleanly
f E

Figure 11.2. Dlsplayg the address book in GridVview

{= Dorknozzle Address Book - Windows Internet Explorer,

" \. | * | & http:{flocalhost/Dorknozzle/dddressBook, aspx: M #| | =
G @

v ke | & Dorknozzle Address Book | | B f=h - |7bPage - () Tools +

the official dork

 Horre Address Book

& HelpDesk
Ermployes Directory

& add Bnok EmployeelD Name City State MobilePhone
D ra?tS:nezﬁs 1 Zak Ruwalcaba San Diego Ca 555-555-5551
& dp' ool 2 Jessica Ruvalcaba San Diego Ca 555-555-5552
o min 1 0ok 3 Tedlindsey SanDiegoCa 555-5595-5555
Adrin Newsletter 4 Shane Wesbe SanDiegoCa S95-555-5554

=1 David Levinson San Diego Ca 555-555-5553

G Geoff Kim San Diego Ca 555-555-5556

433

Chapter 11: Managing Content Using Grid View and Details View

that you want displayed. To do so, list the columns inside the <asp:GridView>
and </asp:GridView> tags, as shown below:

File: AddressBook.aspx (excerpt)
<asp:GridView ID="grid" runat="server"
AutoGenerateColumns="False">
<Columns>
<asp:BoundField DataField="Name" HeaderText="Name" />
<asp:BoundField DataField="City" HeaderText="City" />
<asp:BoundField DataField="MobilePhone"
HeaderText="Mobile Phone" />

</asp:GridView>

</Columns> \ C

control inside a set of <Columns> and </Col Bou
has a DataField property, which t e name
a

HeaderText property, w-hié:ﬂ\'he atne of the ¢ @
to the user. \, \ A

Now, savefyou work and view P owser This time, only the columns
that you specified to be bound are displayed in the GridView. The results should
appear as shown in Figure 11.3.

Notice that each column that we want to dlsplay is Q @%ou &
ac
nd a

t it dlsplayed

Note that if you don’t include the HeaderText property for any of the bound
columns, those columns will not have a header.

We’ve now succeeded in displaying only the information we want to display, but
the GridView still looks plain. In the next section, we’ll use styles to customize
the look of our GridView.

Styling the Gridview with Templates, Skins, and
CSS

The GridView control offers a number of design-time features that are tightly
integrated with the Visual Web Developer designer. As with the DatalList class,
when you click the grid’s smart tag, you get quick access to a number of very
useful features, as Figure 11.4 illustrates.

436

Styling the GridView with Templates, Skins, and CSS

Figure 11.3. Displaying selected columns

{= Dorknozzle Address Book - Windows Internet Explorer,

@

7:? ke | {é Dorknozzle Address Book

-

& http: fflocalhast/Darknozzlef dddressBook, aspx

W[| K

|52k Page + {F Tools ~

Q Home
& HelpDesk
& Ermployes Directory

& address Book Name

Address Book

City 3
ba S -555- 5552

Zak Ruvalcaba -
% Dgpa.rtmenlts J955|ca Rigyal
D Adm'” T°°5| 5 Dlego 555-555- 55
Adrmin Mewslet \:| Pe San Diego 55
3vicl Lewnson ar Dig -] 55 3
Geoff Kim %‘ -5556
Figure 11.4. The smart tag options of GridView
AddressBook.aspx - X
i3] -
Content - Contentl (Custom)
Address Book
A Gridview Task
i[EIE;Tame City Mobhile Phone A:;o ;:r:atas =
Databound Datab ound Databound elec N tore)
Databound Datab ound Databound Zeler el he
Databound Datab ound Databound Zeler Edd: Columnsl' N
Databound Databound Databound ~ Selec :d't TNEW Icot il
Databound Databound Databound Seleci; bl
w
£ >
[l Source <body = || <aspicontent#contentl =

If you click the Auto Format...

link from the smart tag menu and choose one

of the predefined styles, Visual Web Developer generates a number of template

styles for you, like this:

437

Chapter 11: Managing Content Using Grid View and Details View

Figure 11.6. Adding a new Gridview column

Grid¥iew Tasks

Auto Format. ..
Choose Data Source: | (Mone) -

Edit Columnns...
Add Mew Column

Edit Templates @

If you’re using Visual Web Developer, you can quickly and easily add a new
column to your table in Design View. Click the Gridview’s smart tag, and click

the Add New Column... item, as shown in Figure 11.6.
&ahmand

pealﬁsl

In the dialog that appears, change the field type to
name to Select, and set the Text field to Select, so
in Figure 11.7.

M\
Figure 17. Adi E\@\Nﬁ-‘xo

Add Field

20°

Choose a field type:

| ButtonField v

Header text:

| |
Button bype:

| Link. v |
Command name:

| Select: v |

Texk:
|Select |

[Ok H Cancel]

After clicking OK, your brand new column shows up in Design View. If you switch
to Source View, you can see it there, too:

File: AddressBook.aspx (excerpt)
<asp:GridView ID="grid" runat="server"
AutoGenerateColumns="false">
<Columns>
<asp:BoundField DataField="Name" HeaderText="Name" />
<asp:BoundField DataField="City" HeaderText="City" />

e.CO:

442

Uk

Chapter 11: Managing Content Using Grid View and Details View

contains many fields—so many, in fact, that the main grid can’t display all of
them.

A common use of the DetailsView control is to create a page that shows a list
of items, and allows you to drill down to view the details of each item. For in-
stance, an ecommerce site might initially present users with only a little inform-
ation about all available products, to reduce download time and make the inform-
ation more readable. Users could then select a product to see a more detailed
view of that product.

Let’s see how this works by using a GridView and a DetailsView in our Address
Book web form.

\S.
Replace detailsLabel with a DetailsView controﬁ@%@&%ﬁo ing

</asp:GridView>\,'\e\N "(OmAjltZdr@&k.:(x:}x:erpt)

AN 2
<asp:D?i(s iBw id="emp@e&g runat="server" />

</asp:Content>

Next, we’ll modify the BindGrid method to specify the grid’s data key. The data
key feature of the GridView control basically allows us to store a piece of data
about each row without actually displaying that data. We’ll use it to store the
EmployeelD of each record. Later, when we need to retrieve additional data about
the selected employee, we’ll be able to read the employee’s ID from the data key,
and use it in our SELECT query.

Add this row to your code-behind file:

Visual Basic File: AddressBook.aspx.vb (excerpt)

' Open the connection

conn.Open()

' Execute the command

reader = comm.ExecuteReader ()

' Fill the grid with data

grid.DataSource = reader

grid.DataKeyNames = New String() {"EmployeeID"}
grid.DataBind()

' Close the reader

reader.Close()

o V¥

446

Chapter 11: Managing Content Using Grid View and Details View

employeeDetails.FindControl("editAddressTextBox")
Dim newCityTextBox As TextBox =
employeeDetails. F1ndControl(" ditCityTextBox")
' Extract the updated data from the TextBoxes
Dim newAddress As String = newAddressTextBox.Text
Dim newCity As String = newCityTextBox.Text
' Declare data objects
Dim conn As SqglConnection
Dim comm As SqglCommand
' Read the connection string from Web.config
Dim connectionString As String = _ \)K
ConfigurationManager.ConnectionStrings(_ CO .
"Dorknozzle").ConnectionString \e |
' Initialize connection a.
conn = New SqlConnection(connectionStrin
' Create command QN
comm = New SqglCommand ("Upda& ails",

comm. CommandType = Data.Cqm tore
' Add command par g
comm.Par‘ m E loyeeID“ bType.Int)

comm.P (T@Employ = employeeId
comm.Pa ameters Add ("@Ne Data.SqlDbType.NVarChar, 50)
ress

comm.Parameters ("@NewAdd ") Value = newAddress
comm.Parameters.Add("@NewCity", Data.SqlDbType.NVarChar, 50)
comm.Parameters("@NewCity").Value = newCity
' Enclose database code in Try-Catch-Finally
Try
' Open the connection
conn.Open()
' Execute the command
comm.ExecuteNonQuery ()
Finally
' Close the connection
conn.Close()
End Try
" Exit edit mode
employeeDetails.ChangeMode (DetailsViewMode.ReadOnly)
' Reload the employees grid
BindGrid()
' Reload the details view
BindDetails()
End Sub

c# File: AddressBook.aspx.cs (excerpt)

protected void employeeDetails ItemUpdating(object sender,
DetailsViewUpdateEventArgs e)

464

Updating DetailsView Records

Figure 11.18. Updating an employee’s address and city

{= Dorknozzle Address Book - Windows Internet Explorer, |Z||E|r‘5__<|
@\'1_/' 3[4 [x] | (2]
ﬂ? abe [@Dorknozzle Address Baok. l_] B Eéé M li,"Page < "'I Toals ~
A
ewre ¥ pddress Book
& HelpDesk
Ermployes Directory
2 address Book Name City Maobile Phone
& Departrnents Zak Ruwalcaba San Diego 555-555-5551 Select u
g Admin Toals Jessica Ruvalcaba San Diego 555-555-5552 Select CO .
Admin Newsletter Ted Lindsey SanDiegn 595-555-5555 Select

e

Sharie Weebe SanDiegn 555-555-55% tsa,\

David Levinson San Diego 555.555- ‘

Geoff Kim San Dnagom clect
2 O

Ted Lindse:

oreN's

State

Zip |

Horne Phone |

Extension |

Upn:\i%e Cancel

Next, we call a stored procedure to take care of the database update. To create
this stored procedure, run the following script in SQL Server Management Studio:

54|

CREATE PROCEDURE UpdateEmployeeDetails
(
@EmployeelID Int,
@NewAddress nvarchar(50),
@NewCity nvarchar (50)
)
AS
UPDATE Employees
SET Address = @NewAddress, City = @NewCity
WHERE EmployeeID = @EmployeelID

467

Binding the DetailsView to a SqlDataSource

Binding the DetailsView to a SqlDataSource

Here, our aim is to replicate the functionality the DetailsView gave us in
Chapter 11, and to add functionality that will allow users to add and delete
employees’ records.

Let’s start by adding another SqlDataSource control, either next to or below the

existing one, in AddressBook.aspx. Give the new SqlDataSource the name em-
ployeeDataSource. Click its smart tag, and select Configure Data Source. The \(
Configure Data Source wizard will appear again. O u

be taken to the second screen, where there
specifying the Employees table and chic{,lq

0 do. Start by

mns‘T & 1n Fig-

In the first screen, choose the Dorknozzle Connectlon strin &&d you’ll
iu

ure 12.9.

Confi ;ure D\ ta Source - employeeDat, Sor ce

Configure the Select Statement
e !l!)

How would you like to retrieve data from your database?

() Specify a custom SQL statement or stored procedure
(%) Specify columns From a table or view
Mame:

|Empl0yees v

Colurnns:

F* Address MobilePhone [Return only unique rows
EmploveelD Ciky
DepartmentID State

Username

Password

SELECT statement:
SELECT [EmployeeID], [Mame], [Address], [City], [State], [Zip], [HomePhone], [Extension] FROM [Employvess]

< Previous Mext =

479

Chapter 12: Advanced Data Access

Figure 12.10. Creating a new condition

Add WHERE Clause

Add one or more conditions to the WHERE clause for the statement, For each condition you can specify
either a literal value or a parameterized value, Parameterized values get their values at runtime based on
their properties.

Colurnn: Parameter properties
|EmployeeID 3 | Contral 1D

Ogsrator v
|= 2 | Default value:

Source: | |

| Contral v |

. S
Forend NO©
\6\'\! A\ o

Next, click the WHERE... button.”In the dialog that opens, select the EmployeeID
column, specify the = operator, and select Control in the Source field. For the
Control ID select grid, and leave the default value empty; as Figure 12.10 shows.

Finally, click Add, and the expression will be added to the WHERE clause list. The
SQL expression that’s generated will filter the results on the basis of the value
selected in the GridView control. Click OK to close the dialog, then click the Ad-
vanced... button. Check the Generate INSERT, UPDATE, and DELETE statements
checkbox, as shown in Figure 12.11.

Click OK to exit the Advanced SQL Generation Options dialog, then click Next.
In the next screen, feel free to click on Test Query to ensure everything’s working
as expected. If you click Test Query, you’ll be asked for the Employee ID’s type
and value. Enter 1 for the value, leave the type as Int32, then click OK. The row
should display as shown in Figure 12.12.

Click Finish.

Congratulations! Your new SglDataSource is ready to fill your DetailsView.
Next, we need to tie this SqlDataSource to the DetailsView and specify how
we want the DetailsView to behave. Open AddressBooks.aspx, locate the
DetailsView control and set the properties as outlined in Table 12.2.

O .
SQL Expression: Walue: e C
L)
|[Empl0yeeID]=@EmployeeID | |grid.SeIectedVaIue | [add] a

480

Binding the DetailsView to a SqlDataSource

Figure 12.11. Generating INSERT, UPDATE, and DELETE statements

Advanced SOL Generation Options

Additional INSERT, UPDATE, and DELETE statements can be generated to
update the data source,

Generate INSERT, UPDATE, and DELETE statements

Generates INSERT, UPDATE, and DELETE statements based on your
SELECT statement. You must have all primary key fields selected for this
option to be enabled.

|:| Use optimistic concurrency
Modifies UPDATE and DELETE statements ko detect whether the
database has changed since the record was loaded into the DataSet,

This helps prevent concurrency conflicts,
Ok] [Caniel Sa\e *

To preview the data returned by this data source, click Test Query, To complete this wizard, click Finish,

EmployeelD | DepartmentID | Mame Username | Password | Address | City State | Zip | Ho

5 Zak Ruvalcaba | zak zak San Diego | Ca

< | >

Tesk CQuery
SELECT statement:

SELECT [EmployeelD], [DepartmentID], [Mame], [Username], [Password], [Address], [City], [State], [Zip],
[HomePhone], [Extension], [MobilePhone] FROM [Employees] WHERE {[EmployeelD] = @EmployeslD})

[Finish][Cancel]

481

Chapter 12: Advanced Data Access

Table 12.2. Properties to set for the DetailsView control

Property Value

AutoGenerateDeleteButton True

AutoGenerateEditButton True

AutoGenerateInsertButton True

AllowPaging False

DataSourcelD employeeDataSource uK
DataKeyNames EmployeeID CO .

If you're using Design View, m muwoose Yes ﬂ“%%
about recreating the s and dageskey, using
Design Vlew'sse‘ﬁ s'as shown l%

e File: AddressBook.aspx (excerpt)
; eld s> ag

<asp:BoundField®*DataField="EmployeeID"
HeaderText="EmployeeID" InsertVisible="False"
ReadOnly="True" SortExpression="EmployeeID" />

<asp:BoundField DataField="DepartmentID"
HeaderText="DepartmentID"
SortExpression="DepartmentID" />

<asp:BoundField DataField="Name" HeaderText="Name"
SortExpression="Name" />

<asp:BoundField DataField="Username"
HeaderText="Username"
SortExpression="Username" />

<asp:BoundField DataField="Password"
HeaderText="Password"
SortExpression="Password" />

Recreating the Columns
note

<asp:BoundField DataField="MobilePhone"
HeaderText="MobilePhone"
SortExpression="MobilePhone" />
</Fields>

You're ready! Execute the project, and enjoy the new functionality that you
implemented without writing a single line of code! Take it for a quick spin to
ensure that the features for editing and deleting users are perfectly functional!

482

Chapter 12: Advanced Data Access

the name of a department than a department ID when they’re updating or inser-
ting the details of an employee. Figure 12.16 shows how the page will look once
we’ve created this functionality:.

Figure 12.16. Viewing the Department drop-down list in DetailsView

{= Dorknozzle Address Book - Windows Internet Explorer, |Z||E|P5__<|

e
i

g,http:,l’,l’locaIhost,l’Dorknozzle,l’AddressBook.aspx V| || X | | 2~

i’:.? abe [@Dorknozzle Address Baok. l_l B Eéa M E‘,"Page - "J Tools -)K

Geoff Kim
ErmployeslD 5] C

Departrnent Accounting hd te - ,
Accounting NO
Mame 1 l
. wy

Username
ngineering

passw:‘e Faciitis
pred™ paoe

—

®
Q
©

Zip |

Extension |

|
|
HormePhone | |
|
|

MaobilePhone |555-555-5556

Update Cancel

|

Start by adding a new SglDataSource control beside the two existing data source
controls in AddressBook . aspx. Name the control departmentsDataSource, click
its smart tag, and select Configure Data Source. In the first screen, select the
Dorknozzle connection, then click Next. Specify the Departments table and select
both of its columns, as shown in Figure 12.17.

Click Next, then Finish to save the data source configuration. The definition of
your new data source control will look like this:

File: AddressBook.aspx (excerpt)

<asp:SglDataSource id="departmentsDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:Dorknozzle %>"

490

Chapter 12: Advanced Data Access

Text="'<%# Bind("DepartmentID") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>

Modify this generated template as highlighted below:

File: AddressBook.aspx (excerpt)
<asp:TemplateField HeaderText="Department"
SortExpression="DepartmentID">
<EditItemTemplate> K
<asp:DropDownList id="didDdl" runat="server" u
DataSourceID="departmentsDataSource" CO
DataTextField="Department" DataValueField="Depart *e
SelectedValue="<%# BJ.nd("DepartmentID") %> e “‘8-
</EditItemTemplate> t

<InsertItemTemplate> ’X‘B
<asp:DropDownlList ID_“dld“ merver“ -‘
neltipkehso O

DataSourceID—“d urce"
DataTextFJ. tment"

Departme ﬁ
eqt a ue-'</ mentID") %>' />

</Inser ItemTemplate>
<ItemTemplate>
<asp:DropDownList ID="didDdl" runat="server"

DataSourceID="departmentsDataSource"
DataTextField="Department"
DataValueField="DepartmentID"
SelectedValue="'<%# Bind("DepartmentID") %>'
Enabled="False" />

</ItemTemplate>

</asp:TemplateField>

When you reload your address book now, you'll see that the departments are
displayed in a drop-down list. You can use that list when you’re inserting and
editing employee data—a feature that the intranet’s users are sure to find very
helpfull

More on SqlDataSource

The SqlDataSource object can make programming easier when it’s used correctly
and responsibly. However, the simplicity of the SqlDataSource control comes
at the cost of flexibility and maintainability, and introduces the potential for
performance problems.

492

Working with Data Sets and Data Tables

Figure 12.18. Retrieving data using a data reader

Data Read@
Data Source u\(

Application

FlgP ‘ﬁ 0. Breaklﬁta.ga set’s ties to the data source once

it has been created

i @
Data Source

Application

&

the database—you simply retrieve the data from the data set again and again.
Figure 12.19 illustrates this point.

495

Chapter 12: Advanced Data Access

ascending) or DESC (for descending). So, if you were sorting the DepartmentID
column, the Sort property would need to be set to DepartmentID ASC or Depart-
ment DESC.

This property must be set before the data binding is performed, as is shown in
the following code, which will sort the data by DepartmentID in descending nu-
meric order:

Visual Basic

dataTable.DefaultView.Sort
departmentsGrid.DataSource

“DepartmentID DESC"
dataTable.DefaultView

c#
dataTable.DefaultView.Sort

"Department Dm
departmentsGrid. DataSour‘ce data 6lma iew; l
departmentsGrid.DataBind (.‘ O“
It’s a pretty simpl 313 DataView % is, but if we want to
let users XO éﬂ n any direction, things get a
A o ot

little bit plicated. In need to remember the previous sort
method between requests.

In order to be truly user-friendly, our grid should behave like this:

[The first time a column header is clicked, the grid should sort the data in as-
cending order, based on that column.

[—When the same column header is clicked multiple times, the grid should al-
ternate between sorting the data in that column in ascending and descending
modes.

When a column heading is clicked, the grid’s Sorting event is fired. In our case,
the Sorting event handler (which we’ll look at in a moment) saves the details
of the sort column and direction in two properties:

[gridSortExpression retains the name of the column on which we’re sorting
the data (such as Department)

[gridSortDirection can be either SortDirection.Ascending or SortDirec-
tion.Descending

We create a sorting expression using these properties in BindGrid:

departmentsGrid.DataBind () a\e ‘C

516

.

Implementing Sorting

Visual Basic File: Departments.aspx.vb (excerpt)
' Prepare the sort expression using the gridSortDirection and
' gridSortExpression properties
Dim sortExpression As String
If gridSortDirection = SortDirection.Ascending Then
sortExpression = gridSortExpression & " ASC"

Else
sortExpression = gridSortExpression & " DESC"
End If
c# File: Departments.aspx.cs (exce

// Prepare the sort expression using the gridSortDirecty
/] gridSortExpression properties \él

string sortExpression; Le
if (gridSortDirection == SortDirection @

{ sortExpression = gridS m + " ASC": 1 ’X—B
R

}

else?E(p@Q!o\n? r@o‘a@%l?+ " DESC";

In order to implement the sorting functionality as explained above, we need to
remember between client requests which column is being sorted, and whether
it’s being sorted in ascending or descending order. That’s what the properties
gridSortExpression and gridSortDirection do:

Visual Basic File: Departments.aspx.vb (excerpt)

Private Property gridSortDirection()
Get
' Initial state is Ascending
If (ViewState("GridSortDirection") Is Nothing) Then
ViewState("GridSortDirection") = SortDirection.Ascending
End If
' Return the state
Return ViewState("GridSortDirection")
End Get
Set (ByVval value)
ViewState("GridSortDirection") = value
End Set
End Property
Private Property gridSortExpression()
Get
' Initial sort expression is DepartmentID

517

uk

Implementing Sorting

Here, we use the ViewState collection to store information about which column
is being sorted, and the direction in which it’s being sorted.

When the Sorting event handler fires, we set the gridSortExpression and
gridSortDirection properties. The method starts by retrieving the name of the
clicked column:

Visual Basic File: Departments.aspx.vb (excerpt)
Protected Sub departmentsGrid_Sorting(ByVal sender As Object, _
ByvVal e As System.Web.UI.WebControls.GridViewSortEventArgs) _ \{L»
Handles departmentsGrid.Sorting
' Retrieve the name of the clicked column (sort expre *
Dim sortExpression As String = e. Sor‘tExpr‘essmn \

c# N Departmen S. 6(excerpt)
protected void departmen Gr mn object se 7 /S_
Gr‘1dV1ewSor‘tEventA
{ \N ‘f?
// Retr‘%ﬂ ame of the c (sort expression)

xpr‘ess %e(pr‘essmn

Next, we check whether t prev1ously -clicked column is the same as the newly-
clicked column. If it is, we need to toggle the sorting direction. Otherwise, we set
the sort direction to ascending:

Visual Basic File: Departments.aspx.vb (excerpt)
' Decide and save the new sort direction
If (sortExpression = gridSortExpression) Then
If gridSortDirection = SortDirection.Ascending Then
gridSortDirection = SortDirection.Descending

Else
gridSortDirection = SortDirection.Ascending
End If
Else
gridSortDirection = WebControls.SortDirection.Ascending
End If
C# File: Departments.aspx.cs (excerpt)
// Decide and save the new sort direction
if (sortExpression == gridSortExpression)
{
if(gridSortDirection == SortDirection.Ascending)
{
gridSortDirection = SortDirection.Descending;
}

519

Chapter 13: Security and User Authentication

Membership, and Role Management (Wrox Press, 2006), and Writing Secure Code,
Second Edition (Microsoft Press, 2002).

Basic Security Guidelines

The primary and most important element of building secure applications is to
consider and plan an application’s security from the early stages of its develop-
ment. Of course, we must know the potential internal and external threats to
which an application will be exposed before we can plan the security aspects of
that system. Generally speaking, ASPNET web application security involves—but
is not limited to—the following considerations:

Validate user input. esa
Back in Chapter 6, you learned how to u N ntrols t ﬁ;%
client-side validation of user m @m double -ch TT

on the server side.

Since Y@l pphcatlon c@e f web browsers is ultimately
under er¥ control, there’s 551bility that the submitted data will

not be what you expect. The 3ubmission of bad or corrupted data can generate
errors in your web application, and compromise its security.

Protect your database.

The database is quite often the most important asset we need to protect—after
all, it’s here that most of the information our application relies upon is stored.
SQL injection attacks, which target the database, are a common threat to
web application security. If the app builds SQL commands by naively assem-
bling text strings that include data received from user input, an attacker can
alter the meaning of the commands the application produces simply by in-
cluding malicious code in the user input.

You've already learned how to use ADO.NET to make use of command
parameters, and parameterized stored procedures, in order to include user
input in SQL queries. Fortunately, ADO.NET has built-in protection against
injection attacks. Moreover, if you specify the data types of the parameters
you add, ASPNET will throw an exception in cases where the input parameter
doesn’t match the expected data type.

" You'll find a detailed article on SQL injection attacks at
http://www.unixwiz.net/techtips/sql-injection.html.

528

co V¥

Working with Forms Authentication

<authorization>
<allow users="jruvalcaba,zruvalcaba" />
<deny users="*" />
</authorization>
</system.web>
</configuration>

In this case, the users with the login names of jruvalcaba and zruvalcaba are
allowed access to the application, but all other users (whether they’re logged in

or not) will be denied access. uK

Now that you have a basic understanding of the ways in Wthh ac
configured within the Web.config file, let’s see how we Ca &)év
store a list of users for our application.

Storing Users in Web. co% N _‘ ’l 'X_B
The g1eat thing config fl]%q%lt it isstcure enough for us to
stor asmNords ence. The <credentials> tag,
sho ithin the f @ f the Web.config file, defines login cre-

dent als for two users:

File: Web.config
<authentication mode="Forms">
<forms>
<credentials passwordFormat="Clear" >
<user name="zak" password="zak" />
<user name="jessica" password="jessica" />
</credentials>
</forms>
</authentication>
<authorization>
<deny users="?" />
</authorization>

As we want to prevent users from browsing the site if they’re not logged in, we
use the appropriate <deny> tag in our <authorization> tag. The names and
passwords of the users we will permit can then simply be specified in the <cre-
dentials> tag. Change your Web.config file to match the one shown above, and
we’ll try another example.

Let’s modify the code that lies within the <head> tag of the Login.aspx page to
validate the user names and passwords based on the Web. config file. Here’s what
this change looks like:

541

Securing your Web Application

Securing your Web Application

Now we have two roles, and two users (admin and cristian), but we still need to
secure the application. You should have restricted access earlier in this chapter
by modifying Web.config like this:

File: Web.config (excerpt)
<authorization>

<deny users="?" /> \(
</authorization> u
If you haven’t already done so, you can add this code now, \
Developer to add it for you. Open the ASPNET Wk egﬁx ration Tool
click the Security tab, and click Create access a new ule for

the Dorknozzle directory, as sﬁ:wx@ T§u % to Den‘a s users.

ol

Web Site Administration Tool

Home Security H Application H Provider]

You can optionally add access rules to control access to the whole
Web site or to individual folders, Rules can apply to specific users
and roles, to all users, to anonymous users, or to some
combination of these, Rules apply to subfolders.

Add New Access Rule

Select a directory for this Rule applies to: Permission:
rule: O Role
— O allow
=[] Dorknozzle Administrators ¥
[0 App_Data O user
=[] App_Themes | |
01 Blue ® Deny
G Images Search for users
O all users

@ ANOnymous users

[Ol] [Cancel]

559

Chapter 13: Security and User Authentication

with the exception of the Admin Tools link. When you click Admin Tools, you
should be sent back to the Login page. This time, log in with the admin user de-
tails, and woila! You’ll gain access to the Admin Tools page as well.

Let’s take a few moments to customize the look of your login controls. Stop the
execution of the project, and switch back to Login.aspx in Design View. Select
the Login control and click its smart tag to see the three very useful options shown
in Figure 13.16.

Figure 13.16. Options for the Login control

Login Tasks e C
.
Auto Format. .. a

Convert ko Template
Administer Website

The Administer Website link lau CF% thI}IET m1 1strat10n
t tof

Tool. The Convert to Te &% ansforms t your control
into temp, T@‘\E n then cus 0 the smallest detail. The
Auto Form@ ts you seleP @@1@ style to apply to this control.

If you were working in a production scenario, I'd advise you to select Convert to
Template and use CSS to fine-tune the appearance of your control, as we did with
the GridVview and DetailsView controls in Chapter 11. However, for the purposes

of this exercise, let’s just set the BorderStyle property of the Login control to
Solid, and the BorderWidth property to 1px.

It was simple to add login functionality—we even changed its appearance with
just a few mouse clicks! There are just one or two more things that we need to
take care of before we can continue to add features to our site. First, let’s deal
with personalization.

Customizing User Display

The next feature we want to implement is functionality that gives the user a way
to log out of the application. After you perform the changes that we’re about to
implement, logged-in users will have the option to log out, as Figure 13.17 illus-
trates.

On the other hand, users that aren’t logged in won’t see the menu at all, as Fig-
ure 13.18 indicates.

.

564

Chapter 14: Working with Files and Email

Writing Content to a Text File

For the purposes of the next few exercises, let’s work again with our old friend,
the Learning web application. Start Visual Web Developer, go to File > Open
Web Site, and open the Learning application.

Right-click the project in Solution Explorer, and select Add New Item. Select the
Web Form template, name it WriteFile.aspx, and make sure you aren’t using a
code-behind file or a master page. Click Add, then enter the code shown here in
bold:

File: Wr1teFlga\xat)
<%@ Page Language="VB" %>
<%@ Import Namespace="System.IO0" %> N
Transitio

<!DOCTYPE html PUBLIC "-//W3C/ 1
"http://www.w3. or‘g/T\/N M(&D h ml16 t@ﬁ d">
<script runat="serv ?Z

</script>

<html xm?‘ha /www w3 @m
<head ru server"> ?g
i

<title>Writing to Text Files</title>
</head>
<body>
<form id="formi1" runat="server">
Write the following text within a text file:

<asp:TextBox ID="myText" runat="server" />
<asp:Button ID="writeButton" Text="Write" runat="server"
oOnClick="WriteText" />
</form>
</body>
</html>

As you can see, we import the System.JO namespace—the namespace that contains
the classes for working with text files—first. Next, we add a TextBox control to
handle collection of the user-entered text, and a Button control to send the infor-
mation to the server for processing.

Next, in the <head> tag, we’ll create the WriteText method mentioned in the
onClick attribute of the Button. This method will write the contents of the
TextBox to the text file:

co V¥

576

Writing Content to a Text File

Figure 14.4. Writing text to a file

Is Writing to Text Files - Windows Internet Explorer |:||§|r>__<|
SAZ M |@, http: fflocalhost fLearningwriteFile, aspsx V| *2|| X | | R~
w o [@Writing to Text Files l l B géa - |2k Page - f_‘}- Tools -

“Write the following tesxt within a test file:

|I\fe wiitten this text! | Write[

Figure 14.6. Appending text

B myText.txt - Notepad
File Edit Format View Help

I've written this text!
Appending this text...

Also note that, rather than specifying the full path to the text file, you can use
the MapPath method to generate the full path to the text file automatically. All
you need to do is give the method a path relative to the current directory, as
follows:

Visual Basic File: WriteFile.aspx (excerpt)

Using streamWriter As StreamWriter = File.AppendText(_
MapPath("myText.txt"))

579

Chapter 14: Working with Files and Email

<asp:Label ID="label" runat="server"></asp:Label>
</form>
</body>
</html>

If you're using C#, you should place the following code in the <script run-
at="server"> section:

C# File: FileUpload.aspx (excerpt) K
<script runat="server's u

void UploadFile(Object s, EventArgs e)

// Did the user upload any file?

if (fileUpload.HasFile) S
? ileUpload.HasFile NO‘

// Get the name of the

string fileName = Wugﬁ){d 1leNamel% O"

the server

// Upload SA
\l MapPat
?ﬁv he user a ég upload success
1ab 1.Text = "File " e + " uploaded.";

}

else
label.Text = "No file uploaded!";
}

</script>

Load the script, and click the Upload! button without selecting a file. The message
“No file uploaded!” is displayed, as shown in Figure 14.11.

Figure 14.11. An error arising as a file has not been specified

= File Upload - Windows Internet Explorer. E|@|Fz|
—

@.\- i |§, http: fflocalhost fLearning/FileUpload, asp: V| *2|| X | | L

W @ [_@Fne Upload l_l B - & - [5raoe - G Tooks -

| | Browse._]| Ypload!

Mo file uploaded!

592

Appendix A: Web Control
Reference

The following reference includes a list of important properties, methods, and
events for most of the controls you’ll find in the Visual Web Developer Toolbox.

I've grouped the lists of controls on the basis of their locations within the Toolbox:

[standard controls

[validation controls NO‘G 6
[Davigation controls m -‘ ’l l
£¥O O

[jiTML servi @NN

controls d&% ased on (or, more specifically, derived
fro the WebControl c tiey“Mherit its properties and methods. First up,

let’s review the more useful of these, which can be used with any of the web

controls.
The WebControl Class
Properties
AccessKey specifies a shortcut key that quickly selects a control
without the user needing to use a mouse; the shortcut
command is usually Alt plus a letter or number
Attributes allows the accessing and manipulation of the attributes
of the HTML code rendered by the control
BackColor the control’s current background color
BorderColor color for the border
BorderStyle style of border drawn around the web control; default

is NotSet; other values are None, Solid, Double,
Groove, Ridge, Dotted, Dashed, Inset, and Outset

Appendix A: Web Control Reference

CellSpacing

DataMember

DataSource
DataTextField
DataTextFormatString
DataValueField

Items

RepeatCo@n{ e\,
RepeatDirection

RepeatLayout

SelectedIndex

SelectedItem

Events

SelectedIndexChanged

sets the number of pixels between individual
CheckBoxes within the CheckBoxList

represents the particular table within the data source

represents the actual data source to use when binding
to a CheckBoxList

represents the field within the data source to use with

the CheckBoxList text label K
O.)

a format string that determines how the dat @s C
played x

represents the field w1th1N@‘s@rce to %ﬁ
the Chec% LO a\ue _‘B ’l §
eWect of 1tem56 kBoxList

deter er of columns to use when display-
ing t List

indicates the direction in which the CheckBoxes should
repeat; possible values are Horizontal and Vertical

determines how the check boxes are formatted; possible
values are Table and Flow; default is Table

represents the index selected within the CheckBoxList

represents the item selected within the CheckBoxList

raised when a CheckBox within the CheckBoxList is
selected

618

Panel

SetActiveView

Events

ActiveViewChanged

Panel
Properties

BackImageURL

HorizontalAlign

Vlsii

PlaceHolder

Properties

Visible
RadioButton

Properties

AutoPostBack

Checked

GroupName

Text

Wrap \l\lrraps the conte@%&-
(\, \e faulﬁ-q@' rie
entrols e visibility of the Panel

sets the active view to the View received as parameter

fires when the active view of the MultiView changes

co: uk

the URL of the background image t t
Panel ﬁ.

sets the hor tam e‘n? of t e50351ble
Valfv@m Justlfy,éﬁ No sg—a d Right

the Panel when True; de-

controls the visibility of the PlaceHolder

automatically posts the form containing the
RadioButton whenever checked or unchecked is True

shows the RadioButton as checked if set to True

determines the name of the group to which the
RadioButton belongs

specifies the text displayed next to the RadioButton

625

Appendix A: Web Control Reference

ControlToValidate specifies the ID of the control that you want to validate

Display shows how the error message within the validation
control will be displayed; possible values are Static,
Dynamic, and None; default is Static

EnableClientScript enables or disables client-side validation; by default, is
set as Enabled

Enabled enables or disables client and server-side validation; by
default, is set as Enabled

ErrorMessage specifies the error message that will be dg@&é

user
IsvValid has the V%n w tﬁlldatlon ?ec'qs g_&
i%e

and Fads
Text (e\, \ s the error % %&/@by the control when
P vahdm

Methods
Validate performs validation and modifies the IsvValid property
Events
ServerValidate represents the function for performing server-side val-
idation
RangeValidator
Properties
ControlToValidate specifies the ID of the control that you want to validate
Display shows how the error message within the validation
control will be displayed; possible values are Static,
Dynamic, and None; default is Static
EnableClientScript enables or disables client-side validation; set as Enabled

by default

co V¥

630

Appendix A: Web Control Reference

Navigation Web Controls
SiteMapPath

Properties
CurrentNodeStyle the style used to display the current node K
CurrentNodeTemplate the template used to display the current node O u

NodeStyle the style used to display SlteMapPatérgaﬁ\e

NodeTemplate the template used to pN@ 6

ParentLevelsDJ.splayed thﬁ r of par (ﬁ“o d" }

PathDirection \, ies the s;ay, possible values are
P e Path r‘entToRoot

and
Path

ootToCurrent
PathSeparator the string used to separate path nodes
PathSeparatorStyle the styles used to display the path separator
PathSeparatorTemplate the template used to display the separator

Provider the SiteMapProvider object associated with the
SiteMapPath; the default site map provider is
XmlSiteMapProvider, which reads its data from the
Web.sitemap file

RenderCurrentNodeAsLink when set to True, the current site map site will be dis-
played as a link; default value is False

RootNodeStyle the style used to display the root node
RootNodeTemplate the template used to display the root node
ShowToolTips specifies whether the node links should display tooltips

when the cursor hovers over them

634

Appendix A: Web Control Reference

MenuItemDataBound fired when a menu item is bound to its data source

TreeView

Properties

AutoGenerateDataBindings
a Boolean value specifying whether the TreeView should automatically gen-
erate tree node bindings; default is True

CheckedNodes @ C
a collection of TreeNode objects representing the checke { ég

CollapseImageToolTip

the tooltip for the image displa %‘ \chlla Se node 1n?cq lB

CollapseImageUrl W @
a strin \,g\@U Lforac (@ rr@ be used as the “collapse”
node g @

EnableClientScript
a Boolean value that specifies whether or not the TreevView should generate
client-side JavaScript that expands or collapses nodes; True by default

When the value is False, a server postback needs to be performed every time
the user expands or collapses a node.

ExpandDepth
an integer representing the number of TreeView levels that are expanded
when the control is displayed for the first time; default is -1, which displays
all the nodes

ExpandImageToolTip
the tooltip for the image displayed for the “expand” node indicator

ExpandImageUrl
a string representing the URL for a custom image to be used as the “expand”
node indicator

HoverNodeStyle
a TreeNodeStyle object used to define the styles of a node when the cursor
is hovered over it

640

Appendix A: Web Control Reference

Properties
Attributes a collection of the element’s attribute names and their
values
CausesValidation if True, validation is performed when the button is
clicked; default is True
Disabled if set to True, the control will be disabled K
iD contains the control’s ID u

Name the name of the button Sa\e C

Style contains the contro ﬁ{ NQSE ,l 6
TagName retW tﬁ“ Qﬁ s tag B?T\ “

e P(e\'\eleﬁigthe ge &

1 displayed by this input

Value equivalent to the value attribute of the HTML tag

Visible if set to False, the control won’t be visible
Events

ServerClick raised when the user clicks the button

HtmlInputCheckBox Control

The HtmlInputCheckBox control corresponds to an <input type="checkbox"
runat="server"> tag.

Properties
Attributes a collection of the element’s attribute names and their
values
Checked a Boolean value that specifies whether or not the ele-

ment is to be checked; default is False

648

HtmlInputText Control

HtmlInputText Control

The HtmlInputText control corresponds to an <input runat="server"> tag
with a type attribute of text or password.

Properties
Attributes a collection of the element’s attribute names and their
values \)K
Disabled if set to True, the control will be dlsable e CO
.

ID contains the Contr“
MaxLength se)t%?e er of ch? ’ls %_&l in the

9O
Namfp(e\,\e the nag ’Lox

f the text box

Style contains the control’s CSS properties
TagName returns the element’s tag name
Type specifies the type of control displayed by this input
element
Value equivalent to the value attribute of the HTML tag
Visible if set to False, the control won’t be visible
Events
ServerChange occurs when the text in the control has changed

HtmlSelect Control

The HtmlSelect control corresponds to an HTML <select runat="server">
tag (which creates a drop-down list).

653

Index

choosing, 475

customizing in GridView, 435-436

displaying selected, 437

properties, 264-265

read-only, 461
Combine method, 589
combining lines of code, 70
CommandField column, 441, 456
company newsletter page

creating, 601-610
CompareValidator control, 231-233,

628
difference from RequiredField Valid-
ator control, 232
example, 231

for data type checks, 233

to compare Value of c fl)Sd(
val

P

values é
compilatioh errors, 210

computer name, 341
conditional logic, 70-71
configuration errors, 210
configuration file
elements, 169
configuration section groups, 169
configuration section handler declara-
tions, 170
configuration sections, 169
configuration settings, 169
ConfigurationManager class, 364, 554
Configure Data Source, 473, 479, 490
configuring
Cassini, 12
Internet Information Service, 11
web server, 11-21
confirmPassword TextBox control, 230
connection string, 334, 336, 363, 578
in Web.config, 364
specifying, 474, 479
constraints, 266
constructors, 81

Content control, 134
ContentLength, 590
ContentPlaceHolder, 200
ContentPlaceHolder control, 133-135
ContentType, 591
control binding, 365
Control class, 85
control events, 52-56

subroutines, 54-56
ControlToCompare property, 232

ControlToValidate property, 23 C
Convert this field into a T

link, 460
Convert t

t@uon 56
Ctg\is ttMbute, 53
é ids, 183—

Crea
ion, 3 19
TE PROCEDURE, 327, 329
eateText method, 578, 580
CreateUserWizard control, 562
creating users and roles, 554-556
<credentials> tag, 541-542
CSS (see Cascading Style Sheets)
CssClass property, 139-141
current databases, 256
custom errors, 212-213
Custom Errors option, 20
customErrors, 212
CustomValidator control, 239-242,
629

D

data access code
bulletproofing, 351-354

data adapters, 497

data binding, 355, 365-371, 410
and sorting, 516
DataSet to GridView control, 509
DefaultView does not apply when

binding to a DataSet, 510

o V¥

664

using stored procedures, 397-399
using the master page, 199-200
using validation controls, 245-250
view the logged-in user sees, 565
web application, 148
welcome page, 201
Dorknozzle Properties window, 161,
164
drop-down list
created with data binding, 366
selecting directories or files from,
584
DropDownlList control, 101, 110, 203,
366, 386, 584, 619

Dynamic mode (Vahdatlon 228

o

Edit columns, 459
Edit employee button, 414
Edit fields, 459
Edit Fields, 491
Edit link, 457
edit mode
DetailsView control, 453, 456-459
GridView control, 453, 456-459
Edit Templates, 423
editing
DatalList items, 413-422
field's properties, 460
EditItemStyle, 426
<EditltemTemplate> template, 405,
414,461
EditRoleGroups, 568
EditUpdate checkbox, 456
element type selectors, 137
Else statement, 70
email
configuring the SMTP server, 595-
597

%!\\4354 4@ age

sending a test email, 597-600
sending with ASPNET, 593-610
email address
invalid, 237
embedded style sheets, 137
employee database, 253, 258, 266
creating the employee table, 267-
270
creating the remaining tables, 271-

273
e

entities, 261

relational d651g
Wlth D d 260
em

1rect0 l 04
Com 'g
6%bmdmg, 365-371

deleting records, 394-397
hiding employee details, 407
inserting records, 371-378
showing employee 1D, 411
styled list, 425
updated using DataList, 403-404
updating records, 378-393
using stored procedures, 397-399
viewing an employee in edit mode,
421
employee help desk request web form,
201-204
employee ID, 344-345, 349, 376, 386,
411

invalid, 351

employee list, 343
in a drop-down, 386

employee table, 274
creating, 267-270
extracting information from, 294

referencing records from the Depart-

ments table, 279
structure, 270
using Repeater control, 356-360

669

B\

Index

employeeDataSource, 488
employeesList control, 382
populating with list of employees
from database, 382-385
encryption, 529
asymmetric algorithms, 529
symmetric algorithms, 529
End Sub, 30-31
Enforce Foreign Key Constraint, 290
entities (tables), 258
Equals, 85
error messages, 205-206, 210, 212-213
invalid email address, 237
validation errors, 236
Event button, 463
event handler, 52, 58 -‘
event receiver, 83 \N
event sende \, e
EventMgSQ(@%
events, 51
(see also control events; page events
naming using past and present tense
454
triggered by DetailsView action
types, 454
triggered by GridView action types,
454
events (object), 77, 83
"everything is an object", 84
Exception class
properties, 217
Exception object, 217
exceptions, 206
handling locally, 213-218
Execute button, 296
ExecuteNonQuery method, 337, 371,
376
ExecuteReader method, 337, 339
ExecuteScalar method, 337
executing a page, 158
with debugging, 158
without debugging, 158

Exit (VB), 76

exiting loops prematurely, 76
expressions, 310

expressions (SQL), 310
external style sheets, 136

F
fields

choosing, 479
fields (database) 253
tields (object),
tield’ s propertles

Vx@t

or qng 58
f11e sha
74

ytes property, 590-591

gleContent property, 590-591

FileName property, 590
files, 584

uploading, 590-593
Filestream class, 572
FileUpload control, 125, 590-591, 619
Fill method, 502
filtering data, 520
filtering groups, 321-322
Finally block, 214-215, 351, 364
FindControl method, 412, 466
FirstBulletNumber property, 112
float data type, 263-264
floating point numbers, 59
FLOOR function, 314
font, 138
FooterStyle, 426
<FooterTemplate> template, 356, 405
For Each loop, 72, 75
For loops, 72, 75-76, 205
For Next loop, 72
foreign keys, 278-280

670

HTML comments, 41 HyperLinkField column, 441
HTML control classes, 96

HTML documents, 607 |
HTML elements identity increment, 265

access to, 40 . IDENTITY primary key, 329
HTML hidden form field, 46 IDENTITY property (columns), 265
HTML output and primary key, 267

visitors” browser interpretation of, what they are not for, 275

529 identity seed, 265 \4

HTML pages, 94 identity values, 324
HTML server controls, 95-97, 643-658 IDENTITY_INSERT pr 4 2@0 .

accessing properties of, 99-100 If statement, 69, 7 f‘é

assigning IDs t, 101 com 1 atement 70

essentially as HTML tags with run-

at="server" attribute, 98 tatement (C# q &6
survey form example, 97— O f
using, 97—101:&% (9 nformaton Services)
HT %@5@3’ e dontrol. 108, 621
i erver ContrP ﬁg ImageButton control, 106, 621

nipulation, 96 ImageField column, 441

HtmlAnchor control, 644 ImageMap control, 108-109, 622
HtmlButton control, 97-98, 109, 644 Images folder, 198

HtmlForm control, 97-98, 645 ImageURL, 119

HtmlGeneric control, 646 ImageUrl attribute, 107
htmllinputImage control, 651 Import directive, 36, 47
HtmlImage control, 647 Imports (VB), 86
HtmlInputButton control, 647 Impressions value, 119
HtmlInputCheckBox control, 648 IN operator, 313

HtmlInputFile control, 649 use in SELECT queries, 305-306
HtmlInputHidden control, 650 IndexOutOfRangeException class, 206
HtmlInputRadioButton control, 652 inheritance, 83

HtmlInputText control, 97-98, 653 initialization (variables), 59
HtmlSelect control, 97-98, 653 inline code, 39

HtmlTable control, 655
HtmlTableCell control, 656
HtmlTableRow control, 657
HtmlTextArea control, 658

inline expressions, 39-40
inline style rules, 137
inner join, 309

input element, 101

HTTP Headers option, 19 inputString, 581

HttpCookie class, 184 Insert method, 182

HTTPS (HTTP Secure) protocol, 529 [NSERT query, 371, 480
HttpUtility HtmlEncode, 529 INSERT statement, 323-324, 329

HyperLink control, 107, 620

673

Index

disposal, 577
events, 77, 83
fields, 77
in .NET, 84-86
methods, 77
properties, 77
state, 77
OnCheckChanged attribute, 107
OnClick attribute, 52-54, 105
OnClick property, 224, 249
OnCommand attribute, 54
OnDataBinding attribute, 54
OnDisposed attribute, 54
one-to-many relationships, 288-290
one-to-one relationship, 288
Onlnit attribute, 54
OnltemUpdating prop

OnSelectedIndexChanged property,
472
OnUnloaD attribute, 54
OOP (sce object oriented programming)
Open Table Definition, 270
OpenText method, 580-581
operators, 68-70
definition, 68
to break long lines of code, 70
to combine lines of code, 70
operators (SQL), 311-313
OR operator, 312
ORDER BY clause
for sorting query results, 306-307
specifying, 475
ORDER BY... button, 474
out parameters, 349
overwriting text, 578

OnLoad attgib
OnMode@ irgproperty, 47 a ge_ PreRender event, 56
OnPreRender attribute, 54 age_UnLoad event, 57

P

page
definition, 56

Page class, 95
documentation, 85

page counter, 181

page counters, 174-180

Page directive, 36, 47, 90, 134

page events, 56-58
order of execution, 57
subroutines, 56

page templates, 132-1
Page. IsVal&
eve

nt, 56

Ao

\eC

1 335, 361,
410 430

PaeL

Pagelndex property, 505
PageIndexChanging event, 504
PageIndexChanging event handler, 505
PagerStyle, 477
pages element, 194-195
PageSize, 477
paging, 478, 504-506
paging buttons, 477
Panel control, 109-110, 123, 625
parameters, 346
in functions and subroutines, 67
out, 349
use with queries, 344-350
parent tag, 355
parser errors, 210
partial classes, 90-91
usage, 91
Pascal Casing, 101
Passport accounts, 531
Passport authentication, 531
password confirmation text box, 226

678

o V¥

Index

syntax, 324
updateButton control, 382
UpdateCommand property, 521
UpdateEmployee stored procedure, 421
Updateltem method, 419-421
updating database records, 378-393
use WHERE statement, 379
updating DetailsView records, 463468
updating existing data, 322-326
Upload button, 592-593
uploading files, 590-593
uploading files from the client to the
server, 572
UPPER function, 315
uppercase, 315
user access

denymg/allowmg, 53 é&l\l -‘
setting i
user acco@
hard-coded, 535-538
User instance databases, 546
user interaction
with web application, 3
username, 567
editing, 422
entering, 536
storage in authentication ticket, 537
verification, 537
username TextBox control, 230
users, 3
creating, 554-556
Users role
assigning, 558
using (C#), 86
Using construct, 577
using statements, 153

\'

validating user input, 528

validation controls, 219-250, 528,
628-633

vféme

édata types, 59-60

CompareValidator, 231-233
CustomValidator, 239-242
Range Validator, 233-234
RegularExpressionValidator, 236—
239
RequiredField Validator, 230
using, 229-242
ValidationSummary, 235-236
validation errors, 236
validation groups, 242-245
default, 245
Validation tab, 229

ValidationEx; resa
ahdatmnﬁ;@ Y, 242
ary co*rol’?i%
%ms 59

les, 59

\e co V¥

initialization, 59
VB, 4, 28, 48
and arrays, 207
arrays, 62
as strongly-typed language, 61
case sensitivity, 71
Click event, 53
code-behind files, 88—89
comments in, 37
data types, 60
declaring an array, 63
Do While loop, 74
editing Default.aspx, 152
enabling Debug Mode, 167
End Sub to mark end of script, 30—
31
file upload, 591
For loop, 75
functions, 65
HTML server controls in , 99
If Else statement, 70
operators, 69

686

While loop, 342, 580, 582
While loops, 72
results of, 73
whitespace characters
trimming, 315
wildcard characters, 304
Windows Authentication, 335
Windows authentication, 531
Wizard control, 125
‘Write button, 578 UK
WriteOnly modifier, 129-130

write-only properties, 129-130 Sa\e .

WriteText method, 576

writing to text files, 571, 576-580 Note

permissions, 573-575
wwwroot folder, 13

e mﬁ ol

XML basics, 117
Xml control, 628
XmlDataSource object, 470

Y
YEAR function, 318

Z

zero-based arrays, 64
zooming, 282

689

