## **Action Potentials**

- "very rapid reversal of the membrane potential"
- "constitutes the message carried by the axon from the cell body to the terminal buttons"
- Electrical message
- o caused by a brief increase in permeability of the membrane to the Na+ (sodium) to immediately followed by transient increase in the permeability of the membrane to K+ (potassium)
  - is this why we need so much of this stuff in our diet
- Conduction of the action potential
  - all or none law: once an action potential is triggered it won't stop until it reaches the end of the fiber
  - Rate law: variations in stimulus intensity or other info are represented by variations in the rate at which the axon fires
  - Saltatory conduction: jumping node to node
    - AP is retriggered at each node

## Membrane Potential

- **Diffusion**: movement of molecules from regions of high concentrations to regions of low concentration
  - <u>EX</u>: sugar dissolving in a glass of water; distributes evenly after a certain period of time
    Diffusion= trying to become even
- Electrostatic pressure: the attractive force bit atomic particles charged w/ opposite signs
  - the repulsive force by a tamic particles (harged w/ the same sign)
  - the force is electrostatic

## Tools to measuring electrica potentials

- o can really only measure in giant squids- we can SEE their axons
- **Electrodes**: measures electrical charges generated by axon
- Microelectrodes: very small electrode, made of metal or glass
  - glass cannot conduct electricity thus glass microelectrode is filled w/ a liquid that does (i.e., KCI)
  - measures membrane potential; electrical charge across a cell membrane (difference in electrical potential inside and out)
- Oscilloscope: displays a graph of voltage as a function of time on the face of cathode ray tube

## **Action Potential State**

- threshold of excitement- charge that must be reached for AP to be triggered
  - -70 mV
- When at -60 mV, Na+ channels open; sodium begins to enter the cell
  - depolarization
- o K+ channels open, K+ begins to leave cell
- o At about +40 mV, Na+ channels become refractory, no more Na+ enters cell
- K+ continues to leave cell, causes membrane potentials to return to resting level
  - refractory state
- o K+ channels close. Na+ channels reset
  - REPOLARIZATION- trying to get back to its resting place (-70 mV)