
Java Servlets

v

15. SERVLET – HANDLING DATE ... 80

Getting Current Date & Time ... 81

Date Comparison ... 82

Date Formatting using SimpleDateFormat ... 82

Simple DateFormat Format Codes ... 83

16. SERVLETS – PAGE REDIRECTION ... 85

17. SERVLETS – HITS COUNTER .. 87

Hit Counter for a Web Page ... 87

18. SERVLETS – AUTO PAGE REFRESH .. 92

Auto Page Refresh Example ... 92

19. SERVLETS – SENDING EMAIL .. 95

Send a Simple Email .. 95

Send an HTML Email .. 98

Send Attachment in Email ... 100

User Authentication Part ... 103

20. SERVLETS – PACKAGING ... 104

Creating Servlets in Packages .. 104

Compiling Servlets in Packages .. 105

Packaged Servlet Deployment ... 106

21. SERVLETS – DEBUGGING .. 107

System.out.println() .. 107

Message Logging ... 107

Using JDB Debugger ... 108

Using Comments ... 109

Client and Server Headers ... 109

Preview from Notesale.co.uk

Page 6 of 132

Java Servlets

11

 out.println("<h1>" + message + "</h1>");

 }

 public void destroy()

 {

 // do nothing.

 }

}

Compiling a Servlet

Let us create a file with name HelloWorld.java with the code shown above. Place this file

at C:\ServletDevel (in Windows) or at /usr/ServletDevel (in Unix). This path location

must be added to CLASSPATH before proceeding further.

Assuming your environment is setup properly, go in ServletDevel directory and compile

HelloWorld.java as follows:

$ javac HelloWorld.java

If the servlet depends on any other libraries, you have to include those JAR files on your

CLASSPATH as well. I have included only servlet-api.jar JAR file because I'm not using

any other library in Hello World program.

This command line uses the built-in javac compiler that comes with the Sun

Microsystems Java Software Development Kit (JDK). For this command to work properly,

you have to include the location of the Java SDK that you are using in the PATH

environment variable.

If everything goes fine, above compilation would produce HelloWorld.class file in the

same directory. Next section would explain how a compiled servlet would be deployed in

production.

Servlet Deployment

By default, a servlet application is located at the path <Tomcat-installation-

directory>/webapps/ROOT and the class file would reside in <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/classes.

If you have a fully qualified class name of com.myorg.MyServlet, then this servlet

class must be located in WEB-INF/classes/com/myorg/MyServlet.class.

For now, let us copy HelloWorld.class into <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/classes and create following entries in web.xml file

located in <Tomcat-installation-directory>/webapps/ROOT/WEB-INF/

<servlet>

 <servlet-name>HelloWorld</servlet-name>

Preview from Notesale.co.uk

Page 18 of 132

Java Servlets

21

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

// Extend HttpServlet class

public class ReadParams extends HttpServlet {

 // Method to handle GET method request.

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 // Set response content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Reading All Form Parameters";

 String docType =

 "<!doctype html public \"-//w3c//dtd html 4.0 " +

 "transitional//en\">\n";

 out.println(docType +

 "<html>\n" +

 "<head><title>" + title + "</title></head>\n" +

 "<body bgcolor=\"#f0f0f0\">\n" +

 "<h1 align=\"center\">" + title + "</h1>\n" +

 "<table width=\"100%\" border=\"1\" align=\"center\">\n" +

 "<tr bgcolor=\"#949494\">\n" +

 "<th>Param Name</th><th>Param Value(s)</th>\n"+

 "</tr>\n");

 Enumeration paramNames = request.getParameterNames();

 while(paramNames.hasMoreElements()) {

 String paramName = (String)paramNames.nextElement();

 out.print("<tr><td>" + paramName + "</td>\n<td>");

 String[] paramValues =

Preview from Notesale.co.uk

Page 28 of 132

Java Servlets

32

Methods to Set HTTP Response Header

There are following methods which can be used to set HTTP response header in your

servlet program. These methods are available with HttpServletResponse object.

S.N. Method & Description

1

String encodeRedirectURL(String url)

Encodes the specified URL for use in the sendRedirect method or, if encoding is

not needed, returns the URL unchanged.

2

String encodeURL(String url)

Encodes the specified URL by including the session ID in it, or, if encoding is not

needed, returns the URL unchanged.

3

boolean containsHeader(String name)

Returns a Boolean indicating whether the named response header has already

been set.

4
boolean isCommitted()

Returns a Boolean indicating if the response has been committed.

5
void addCookie(Cookie cookie)

Adds the specified cookie to the response.

6
void addDateHeader(String name, long date)

Adds a response header with the given name and date-value.

7
void addHeader(String name, String value)

Adds a response header with the given name and value.

8
void addIntHeader(String name, int value)

Adds a response header with the given name and integer value.

9
void flushBuffer()

Forces any content in the buffer to be written to the client.

10
void reset()

Clears any data that exists in the buffer as well as the status code and headers.

11

void resetBuffer()

Clears the content of the underlying buffer in the response without clearing

headers or status code.

12

void sendError(int sc)

Sends an error response to the client using the specified status code and

clearing the buffer.

13
void sendError(int sc, String msg)

Sends an error response to the client using the specified status.

14

void sendRedirect(String location)

Sends a temporary redirect response to the client using the specified redirect

location URL.

15
void setBufferSize(int size)

Sets the preferred buffer size for the body of the response.

16 void setCharacterEncoding(String charset)

Preview from Notesale.co.uk

Page 39 of 132

Java Servlets

36

The format of the HTTP request and HTTP response messages are similar and will have

following structure:

 An initial status line + CRLF (Carriage Return + Line Feed i.e. New Line)

 Zero or more header lines + CRLF

 A blank line, i.e., a CRLF

 An optional message body like file, query data or query output.

For example, a server response header looks as follows:

HTTP/1.1 200 OK

Content-Type: text/html

Header2: ...

...

HeaderN: ...

 (Blank Line)

<!doctype ...>

<html>

<head>...</head>

<body>

...

</body>

</html>

The status line consists of the HTTP version (HTTP/1.1 in the example), a status code

(200 in the example), and a very short message corresponding to the status code (OK in

the example).

Following is a list of HTTP status codes and associated messages that might be returned

from the Web Server:

Code Message Description

100 Continue

Only a part of the request has been received by

the server, but as long as it has not been

rejected, the client should continue with the

request

101 Switching Protocols The server switches protocol.

8. Servlets – Http Status Codes

Preview from Notesale.co.uk

Page 43 of 132

Java Servlets

37

200 OK The request is OK

201 Created
The request is complete, and a new resource is

created

202 Accepted
The request is accepted for processing, but the

processing is not complete.

203
Non-authoritative

Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices
A link list. The user can select a link and go to

that location. Maximum five addresses

301 Moved Permanently The requested page has moved to a new url

302 Found
The requested page has moved temporarily to

a new url

303 See Other
The requested page can be found under a

different url

304 Not Modified

305 Use Proxy

306 Unused
This code was used in a previous version. It is

no longer used, but the code is reserved.

307 Temporary Redirect
The requested page has moved temporarily to

a new url.

400 Bad Request The server did not understand the request

401 Unauthorized
The requested page needs a username and a

password

402 Payment Required You cannot use this code yet

403 Forbidden Access is forbidden to the requested page

404 Not Found The server cannot find the requested page.

405 Method Not Allowed
The method specified in the request is not

allowed.

Preview from Notesale.co.uk

Page 44 of 132

Java Servlets

48

3

javax.servlet.error.message

This attribute gives information exact error message which can be stored and

analyzed after storing in a java.lang.String data type.

4

javax.servlet.error.request_uri

This attribute gives information about URL calling the servlet and it can be

stored and analysed after storing in a java.lang.String data type.

5

javax.servlet.error.exception

This attribute gives information about the exception raised, which can be stored

and analysed .

6

javax.servlet.error.servlet_name

This attribute gives servlet name which can be stored and analyzed after

storing in a java.lang.String data type.

Error Handler Servlet – Example

This example would give you basic understanding of Exception Handling in Servlet, but

you can write more sophisticated filter applications using the same concept:

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

// Extend HttpServlet class

public class ErrorHandler extends HttpServlet {

 // Method to handle GET method request.

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 // Analyze the servlet exception

 Throwable throwable = (Throwable)

 request.getAttribute("javax.servlet.error.exception");

 Integer statusCode = (Integer)

 request.getAttribute("javax.servlet.error.status_code");

 String servletName = (String)

 request.getAttribute("javax.servlet.error.servlet_name");

 if (servletName == null){

 servletName = "Unknown";

Preview from Notesale.co.uk

Page 55 of 132

Java Servlets

50

 out.println("The exception message: " +

 throwable.getMessage());

 }

 out.println("</body>");

 out.println("</html>");

 }

 // Method to handle POST method request.

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

Compile ErrorHandler.java in usual way and put your class file in <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/classes.

Let us add the following configuration in web.xml to handle exceptions:

<servlet>

 <servlet-name>ErrorHandler</servlet-name>

 <servlet-class>ErrorHandler</servlet-class>

</servlet>

<!-- servlet mappings -->

<servlet-mapping>

 <servlet-name>ErrorHandler</servlet-name>

 <url-pattern>/ErrorHandler</url-pattern>

</servlet-mapping>

<error-page>

 <error-code>404</error-code>

 <location>/ErrorHandler</location>

</error-page>

<error-page>

 <exception-type>java.lang.Throwable</exception-type >

 <location>/ErrorHandler</location>

</error-page>

Now try to use a servlet which raise any exception or type a wrong URL, this would

trigger Web Container to call ErrorHandler servlet and display an appropriate message

Preview from Notesale.co.uk

Page 57 of 132

Java Servlets

54

This method returns the comment describing the purpose of this cookie, or null

if the cookie has no comment.

Setting Cookies with Servlet

Setting cookies with servlet involves three steps:

(1) Creating a Cookie object: You call the Cookie constructor with a cookie name and

a cookie value, both of which are strings.

Cookie cookie = new Cookie("key","value");

Keep in mind, neither the name nor the value should contain white space or any of the

following characters:

[] () = , " / ? @ : ;

(2) Setting the maximum age: You use setMaxAge to specify how long (in seconds)

the cookie should be valid. Following would set up a cookie for 24 hours.

cookie.setMaxAge(60*60*24);

(3) Sending the Cookie into the HTTP response headers: You use

response.addCookie to add cookies in the HTTP response header as follows:

response.addCookie(cookie);

Example

Let us modify our Form Example to set the cookies for first and last name.

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class HelloForm extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 // Create cookies for first and last names.

 Cookie firstName = new Cookie("first_name",

Preview from Notesale.co.uk

Page 61 of 132

Java Servlets

55

 request.getParameter("first_name"));

 Cookie lastName = new Cookie("last_name",

 request.getParameter("last_name"));

 // Set expiry date after 24 Hrs for both the cookies.

 firstName.setMaxAge(60*60*24);

 lastName.setMaxAge(60*60*24);

 // Add both the cookies in the response header.

 response.addCookie(firstName);

 response.addCookie(lastName);

 // Set response content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Setting Cookies Example";

 String docType =

 "<!doctype html public \"-//w3c//dtd html 4.0 " +

 "transitional//en\">\n";

 out.println(docType +

 "<html>\n" +

 "<head><title>" + title + "</title></head>\n" +

 "<body bgcolor=\"#f0f0f0\">\n" +

 "<h1 align=\"center\">" + title + "</h1>\n" +

 "\n" +

 " First Name: "

 + request.getParameter("first_name") + "\n" +

 " Last Name: "

 + request.getParameter("last_name") + "\n" +

 "\n" +

 "</body></html>");

 }

}

Compile the above servlet HelloForm and create appropriate entry in web.xml file and

finally try following HTML page to call servlet.

Preview from Notesale.co.uk

Page 62 of 132

Java Servlets

68

The timeout is expressed as minutes, and overrides the default timeout which is 30

minutes in Tomcat.

The getMaxInactiveInterval() method in a servlet returns the timeout period for that

session in seconds. So if your session is configured in web.xml for 15 minutes,

getMaxInactiveInterval() returns 900.

Preview from Notesale.co.uk

Page 75 of 132

Java Servlets

75

File Upload:

Select a file to upload:

 No File Chosen

NOTE: This is just dummy form and would not work.

Writing Backend Servlet

Following is the servlet UploadServlet which would take care of accepting uploaded file

and to store it in directory <Tomcat-installation-directory>/webapps/data. This directory

name could also be added using an external configuration such as a context-param

element in web.xml as follows:

<web-app>

....

<context-param>

 <description>Location to store uploaded file</description>

 <param-name>file-upload</param-name>

 <param-value>

 c:\apache-tomcat-8.0.28\webapps\data\

 </param-value>

</context-param>

....

</web-app>

Following is the source code for UploadServlet which can handle multiple file uploading

at a time. Before proceeding you have make sure the followings:

 Following example depends on FileUpload, so make sure you have the latest

version of commons-fileupload.x.x.jar file in your classpath. You can download

it from http://commons.apache.org/fileupload/.

 FileUpload depends on Commons IO, so make sure you have the latest version of

commons-io-x.x.jar file in your classpath. You can download it from

http://commons.apache.org/io/.

Choose File

Upload File

Preview from Notesale.co.uk

Page 82 of 132

Java Servlets

78

 out.println("</head>");

 out.println("<body>");

 while (i.hasNext ())

 {

 FileItem fi = (FileItem)i.next();

 if (!fi.isFormField ())

 {

 // Get the uploaded file parameters

 String fieldName = fi.getFieldName();

 String fileName = fi.getName();

 String contentType = fi.getContentType();

 boolean isInMemory = fi.isInMemory();

 long sizeInBytes = fi.getSize();

 // Write the file

 if(fileName.lastIndexOf("\\") >= 0){

 file = new File(filePath +

 fileName.substring(fileName.lastIndexOf("\\"))) ;

 }else{

 file = new File(filePath +

 fileName.substring(fileName.lastIndexOf("\\")+1)) ;

 }

 fi.write(file) ;

 out.println("Uploaded Filename: " + fileName + "
");

 }

 }

 out.println("</body>");

 out.println("</html>");

 }catch(Exception ex) {

 System.out.println(ex);

 }

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, java.io.IOException {

 throw new ServletException("GET method used with " +

Preview from Notesale.co.uk

Page 85 of 132

Java Servlets

83

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 // Set response content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Display Current Date & Time";

 Date dNow = new Date();

 SimpleDateFormat ft =

 new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

 String docType =

 "<!doctype html public \"-//w3c//dtd html 4.0 " +

 "transitional//en\">\n";

 out.println(docType +

 "<html>\n" +

 "<head><title>" + title + "</title></head>\n" +

 "<body bgcolor=\"#f0f0f0\">\n" +

 "<h1 align=\"center\">" + title + "</h1>\n" +

 "<h2 align=\"center\">" + ft.format(dNow) + "</h2>\n" +

 "</body></html>");

 }

}

Compile above servlet once again and then call this servlet using URL

http://localhost:8080/CurrentDate. This would produce following result:

Display Current Date & Time

Mon 2010.06.21 at 10:06:44 PM GMT+04:00

Simple DateFormat Format Codes

To specify the time format use a time pattern string. In this pattern, all ASCII letters are

reserved as pattern letters, which are defined as the following:

Preview from Notesale.co.uk

Page 90 of 132

Java Servlets

89

 <servlet>

 <servlet-name>PageHitCounter</servlet-name>

 <servlet-class>PageHitCounter</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>PageHitCounter</servlet-name>

 <url-pattern>/PageHitCounter</url-pattern>

 </servlet-mapping>

....

Now call this servlet using URL http://localhost:8080/PageHitCounter. This would

increase counter by one every time this page gets refreshed and it would display

following result:

Total Number of Hits

6

Hit Counter for a Website:

Many times you would be interested in knowing total number of hits on your whole

website. This is also very simple in Servlet and we can achieve this using filters.

Following are the steps to be taken to implement a simple website hit counter which is

based on Filter Life Cycle:

 Initialize a global variable in init() method of a filter.

 Increase global variable every time doFilter method is called.

 If required, you can use a database table to store the value of global variable in

destroy() method of filter. This value can be read inside init() method when filter

would be initialized next time. This step is optional.

Here I'm assuming that the web container will not be restarted. If it is restarted or

servlet destroyed, the hit counter will be reset.

Example

This example shows how to implement a simple website hit counter:

// Import required java libraries

import java.io.*;

Preview from Notesale.co.uk

Page 96 of 132

Java Servlets

97

 "<!doctype html public \"-//w3c//dtd html 4.0 " +

 "transitional//en\">\n";

 out.println(docType +

 "<html>\n" +

 "<head><title>" + title + "</title></head>\n" +

 "<body bgcolor=\"#f0f0f0\">\n" +

 "<h1 align=\"center\">" + title + "</h1>\n" +

 "<p align=\"center\">" + res + "</p>\n" +

 "</body></html>");

 }catch (MessagingException mex) {

 mex.printStackTrace();

 }

 }

}

Now let us compile the above servlet and create the following entries in web.xml

....

 <servlet>

 <servlet-name>SendEmail</servlet-name>

 <servlet-class>SendEmail</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>SendEmail</servlet-name>

 <url-pattern>/SendEmail</url-pattern>

 </servlet-mapping>

....

Now call this servlet using URL http://localhost:8080/SendEmail which would send an

email to given email ID abcd@gmail.com and would display following response:

Send Email
Sent message successfully....

If you want to send an email to multiple recipients then following methods would be

used to specify multiple email IDs:

void addRecipients(Message.RecipientType type,

Preview from Notesale.co.uk

Page 104 of 132

Java Servlets

99

 String from = "web@gmail.com";

 // Assuming you are sending email from localhost

 String host = "localhost";

 // Get system properties

 Properties properties = System.getProperties();

 // Setup mail server

 properties.setProperty("mail.smtp.host", host);

 // Get the default Session object.

 Session session = Session.getDefaultInstance(properties);

 // Set response content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 try{

 // Create a default MimeMessage object.

 MimeMessage message = new MimeMessage(session);

 // Set From: header field of the header.

 message.setFrom(new InternetAddress(from));

 // Set To: header field of the header.

 message.addRecipient(Message.RecipientType.TO,

 new InternetAddress(to));

 // Set Subject: header field

 message.setSubject("This is the Subject Line!");

 // Send the actual HTML message, as big as you like

 message.setContent("<h1>This is actual message</h1>",

 "text/html");

 // Send message

 Transport.send(message);

 String title = "Send Email";

 String res = "Sent message successfully....";

Preview from Notesale.co.uk

Page 106 of 132

Java Servlets

104

The web application structure involving the WEB-INF subdirectory is standard to all Java

web applications and specified by the servlet API specification. Given a top-level

directory name of myapp. Here is how this directory structure looks like:

/myapp

 /images

 /WEB-INF

 /classes

 /lib

The WEB-INF subdirectory contains the application's deployment descriptor, named

web.xml. All the HTML files should be kept in the top-level directory which is myapp. For

admin user, you would find ROOT directory as parent directory.

Creating Servlets in Packages

The WEB-INF/classes directory contains all the servlet classes and other class files, in a

structure that matches their package name. For example, If you have a fully qualified

class name of com.myorg.MyServlet, then this servlet class must be located in the

following directory:

/myapp/WEB-INF/classes/com/myorg/MyServlet.class

Following is the example to create MyServlet class with a package name com.myorg

// Name your package

package com.myorg;

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

 private String message;

 public void init() throws ServletException

20. Servlets – Packaging

Preview from Notesale.co.uk

Page 111 of 132

Java Servlets

109

very similar to how applets are debugged. The difference is that with applets, the actual

program being debugged is sun.applet.AppletViewer.

Most debuggers hide this detail by automatically knowing how to debug applets. Until

they do the same for servlets, you have to help your debugger by doing the following:

 Set your debugger's classpath so that it can find sun.servlet.http.Http-Server and

associated classes.

 Set your debugger's classpath so that it can also find your servlets and support

classes, typically server_root/servlets and server_root/classes.

You normally wouldn't want server_root/servlets in your classpath because it disables

servlet reloading. This inclusion, however, is useful for debugging. It allows your

debugger to set breakpoints in a servlet before the custom servlet loader in HttpServer

loads the servlet.

Once you have set the proper classpath, start debugging sun.servlet.http.HttpServer.

You can set breakpoints in whatever servlet you're interested in debugging, then use a

web browser to make a request to the HttpServer for the given servlet

(http://localhost:8080/servlet/ServletToDebug). You should see execution being stopped

at your breakpoints.

Using Comments

Comments in your code can help the debugging process in various ways. Comments can

be used in lots of other ways in the debugging process.

The Servlet uses Java comments and single line (// ...) and multiple line (/* ... */)

comments can be used to temporarily remove parts of your Java code. If the bug

disappears, take a closer look at the code you just commented and find out the problem.

Client and Server Headers

Sometimes when a servlet doesn't behave as expected, it's useful to look at the raw

HTTP request and response. If you're familiar with the structure of HTTP, you can read

the request and response and see exactly what exactly is going with those headers.

Important Debugging Tips

Here is a list of some more debugging tips on servlet debugging:

 Remember that server_root/classes doesn't reload and that server_root/servlets

probably does.

 Ask a browser to show the raw content of the page it is displaying. This can help

identify formatting problems. It's usually an option under the View menu.

 Make sure the browser isn't caching a previous request's output by forcing a full

reload of the page. With Netscape Navigator, use Shift-Reload; with Internet

Explorer use Shift-Refresh.

Preview from Notesale.co.uk

Page 116 of 132

Java Servlets

113

Languages Setting

A servlet can output a page written in a Western European language such as English,

Spanish, German, French, Italian, Dutch etc. Here it is important to set Content-

Language header to display all the characters properly.

Second point is to display all the special characters using HTML entities. For example,

"ñ" represents "ñ", and "¡" represents "¡" as follows:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.Locale;

public class DisplaySpanish extends HttpServlet{

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 // Set response content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Set spanish language code.

 response.setHeader("Content-Language", "es");

 String title = "En Español";

 String docType =

 "<!doctype html public \"-//w3c//dtd html 4.0 " +

 "transitional//en\">\n";

 out.println(docType +

 "<html>\n" +

 "<head><title>" + title + "</title></head>\n" +

 "<body bgcolor=\"#f0f0f0\">\n" +

 "<h1>" + "En Español:" + "</h1>\n" +

 "<h1>" + "¡Hola Mundo!" + "</h1>\n" +

 "</body></html>");

 }

Preview from Notesale.co.uk

Page 120 of 132

Java Servlets

122

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebInitParam;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(value = "/Simple", initParams = {

 @WebInitParam(name="foo", value="Hello "),

 @WebInitParam(name="bar", value=" World!")

 })

public class Simple extends HttpServlet {

 private static final long serialVersionUID = 1L;

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 out.print("<html><body>");

 out.print("<h3>Hello Servlet</h3>");

 out.println(getInitParameter("foo"));

 out.println(getInitParameter("bar"));

 out.print("</body></html>");

 }

}

Compile Simple.java in the usual way and put your class file in <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/classes.

Now try to call any servlet by just running http://localhost:8080/Simple. You will see the

following output on the web page.

Hello Servlet

Hello World!

Preview from Notesale.co.uk

Page 129 of 132

Java Servlets

123

@Webfilter

This is the annotation used to declare a servlet filter. It is processed by the container at

deployment time, and the corresponding filter applied to the specified URL patterns,

servlets, and dispatcher types.

The @WebFilter annotation defines a filter in a web application. This annotation is

specified on a class and contains metadata about the filter being declared. The

annotated filter must specify at least one URL pattern. The following table lists the

attributes used for WebFilter annotation.

Attribute Name Description

String filterName Name of the filter

String[] value

Or

String[] urlPatterns

Provides array of values or urlPatterns to which the

filter applies

DispatcherType[]

dispatcherTypes

Specifies the types of dispatcher

(Request/Response) to which the filter applies

String[] servletNames Provides an array of servlet names

String displayName Name of the filter

String description Description of the filter

WebInitParam[] initParams Array of initialization parameters for this filter

Boolean asyncSupported Asynchronous operation supported by this filter

String smallIcon Small icon for this filter, if present

String largeIcon Large icon for this filter, if present

Example

The following example describes how to use @WebFilter annotation. It is a simple

LogFilter that displays the value of Init-param test-param and the current time

timestamp on the console. That means, the filter works like an interface layer between

the request and the response. Here we use "/*" for urlPattern. It means, this filter is

applicable for all the servlets.

import java.io.IOException;

import javax.servlet.annotation.WebFilter;

import javax.servlet.annotation.WebInitParam;

import javax.servlet.*;

import java.util.*;

// Implements Filter class

Preview from Notesale.co.uk

Page 130 of 132

