FP2 Revision Notes

Inequalities

Key Words: sketch, positive

- \geq Use a sketch to best evaluate points of intersection
- \geq Only multiply by POSITIVE values

Series

Key Words: method of differences, partial fractions, sigma notation rules

- When evaluating $\sum_{n=1}^{n} f(r)$ consider r=1, r=2, r=3 ... then sum and terms will cancel! ۶
- If the general term $u_r = f(r) f(r+1)$ then $\sum_{1}^{n} u_r = \sum_{1}^{n} f(r) f(r+1)$ ۶

 Key Words: modulus-argument form, principal argument, complex exponential form, de Moir Surger, binomial expansion, locus of points: circle; perpendicular bisector,

 >
 If z = x + iy then the complex number can be written as $z = r(cor\theta - istn\theta)$

 >
 Principal argument: $-\pi < \theta < \pi$

- If z = x + iy then the complex number can be written as $\pi r(cor\theta)$ Principal argument: $-\pi < \theta \le \pi$
- $e^{i\theta} = \cos\theta + i\sin\theta$ (can be proved **mile M** cl in expansion of sinx, a sx a
- Thus a complex number of the agin, man complex exponen ≻
- $\cos(x) = \cos(x) \sin(x) = \sin(-x)$ ≻
- For $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2 (\cos \theta_1 + i \sin \theta_1)$
 - $\circ \quad z_1 z_2 = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right)$
 - $z_1/z_2 = r_1/r_2(cos(\theta_1 \theta_2) + isin(\theta_1 \theta_2))$
 - Can be proved using trig identities
- Modulus operation acts like a power thus $|z_1z_2| = |z_1||z_2|$ and $\left|\frac{z_1}{z_1}\right| = \frac{|z_1|}{|z_1|}$ ۶
- ۶ Argument operation acts like a logarithm thus $arg(z_1z_2) = arg(z_1) + arg(z_2)$
- $z^n = r(\cos\theta + i\sin\theta) = r^n(\cos n\theta + i\sin n\theta)$ (can be proved using induction) ≻
- ≻ Remember the following identities

$$contend to z + \frac{1}{z} = 2\cos\theta$$

$$z^n + \frac{1}{z^n} = 2cosn\theta$$

$$\circ z - \frac{1}{z} = 2i \sin\theta$$

- $z^n \frac{1}{n} = 2isinn\theta$
- Can be proved using $z = r(\cos\theta + i\sin\theta)$
- ≻ $z = r(\cos\theta + i\sin\theta) = r(\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi))$
- \geq To remove a modulus (using Pythagoras' theorem):
 - $\circ |z| = k$
 - \circ \therefore |x + iy| = k
 - $\circ \quad \therefore x^2 + y^2 = k^2$
- To remove an argument: \geq
 - \circ arg(z) = θ
 - $arg(x+iy) = \theta$ 0
 - $\frac{y}{r} = tan \theta$ (adjust accordingly depending on quadrant)
- ۶ For a complex number w, w = u + iv
- For a transformation T from the z-plane to the w-plane:
 - w = z + a + ib is a translation $\binom{a}{b}$
 - w = kz is an enlargement scale factor k centre (0,0) 0
 - w = Kz + a + ib is an enlargement scale factor k centre (0,0) followed by translation $\binom{a}{b}$

First order differential equations

Key Words: family of solution curves, separating the variables, integrating factor, transformations

- > $lf \frac{dy}{dx} = f(x)g(y)$, then $\int \frac{1}{g(y)} dy = \int f(x) dx + c$
- For a 1st order D.E. in the form $\frac{dy}{dx} + Py = Q$ where P and Q are functions of x, multiply through by the integrating factor to obtain general solution
- When using substitutions get y and $\frac{dy}{dx}$ in terms of other variables and it should drop out!

econd or der differential equations

Key Words: auxiliary quadratic, general solution, complementary function, particular integral

For 2nd order D.E.
$$a \frac{d^{2y}}{dx^2} + b \frac{dy}{dx} + cy = 0$$
 aux equation is $am^2 + bm + c = 0$

- For roots to the aux equation, the general solution to the 2nd order D.E. is...
 - $\circ \qquad y = Ae^{\alpha x} + Be^{\beta x} \text{ (distinct roots } \alpha \text{ and } \beta)$
 - $\circ \qquad y = (A + Bx)e^{\alpha x} \text{ (repeated root } \alpha)$
 - $y = Acos\omega x + Bsin\omega x$ (imaginary roots $\pm i\omega$)
 - $y = e^{px}(Acosqx + Bsinqx)$ (complex roots $p \pm iq$) 0
- For $a \frac{d^{2y}}{dx^2} + b \frac{dy}{dx} + cy = f(x)$
 - Solve for complementary function $\frac{d^{2y}}{dx^{2}} + b \frac{dy}{dx} + cy = 0$
 - Then solve for particular integral
 - If f(x) is in the form... then try...
 - $k \rightarrow a$
 - $kx \rightarrow ax + b$
 - $kx^2 \rightarrow ax^2 + bx + c$
 - $ke^{px} \rightarrow Ae^{px}$
 - $mcos\omega x \rightarrow acos\omega x + bsin\omega x$
 - $msin\omega x \rightarrow acos\omega x + bsin\omega x$
 - $mcos\omega x + nsin\omega x \rightarrow acos\omega x + bsin\omega x$

• General solution is y = C.F.+P.I.

When using substitutions get y, $\frac{dy}{dx}$ and $\frac{d^{2y}}{dx^2}$ in terms of other variables and it should drop out! ۶

Maclaurin and Taylor Series

Key Words: look at formula booklet

Polar coordinates

Key Words: polar, Cartesian, converting

- $rcos\theta = x$
- $rsin\theta = v$
- $x^2 + y^2 = r^2$
- $\theta = \arctan \frac{y}{2}$
- Area = $\frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta$
- For tangents parallel to initial line $\frac{d}{d\theta}(rsin\theta) = 0$
- For tangents perpendicular to initial line $\frac{d}{d\theta}(r\cos\theta) = 0$
- For $r = p + q\cos\theta$: conditions for a 'dimple' $q \le p < 2q$