FP3 Revision Notes

Hyperbolic Functions

Key Words: sinh, cosh, Osborn's rule

- $\sinh x = \frac{e^{x} e^{-x}}{2}, \ \cosh x = \frac{e^{x} + e^{-x}}{2}$ ۶
- ≻ Osborn's rule (all trig identities go to hyperbolic except...) \circ $sin^2 A \rightarrow -sinh^2 A$

Further Coordinate Systems

Key Words: USE FORAMULA BOOKELT !! Ellipse, major/minor axis, hyperbola, eccentricity, parabola, focus, Directrix, locus

- Ellipse: $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$, $x = a\cos t$ and $y = b\sin t$ ۶ Hyperbola: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, $x = a \cosh t$ and $y = b \sinh t$, $x = a \sec \theta$ and $y = b \sinh t$. \geq btan θ
 - Asymptotes at $y = \pm \frac{b}{2}x$
- tion formula-≻ Eccentricity, e, describes the ratio of the shortest distance of a general point P from the Focus to the Directrix $e = \frac{FP}{FD}$
 - 0 If 0 < e < 1 = ellipse
 - If e = 1 = parabola
 - 0
- ≻ Each curve has its own definitie

Integration

Key Words: learn results, integration by parts x1 trick, reduction formulae, arc length, surface area of revolution

- \succ For an integral involving...use...
 - $\sqrt{1-x^2}x = \sin u$ 0
 - $1 + x^2 x = tan u$ 0
 - $\sqrt{1+x^2}x = \sinh u$ 0
 - $\sqrt{x^2 1} x = \cosh u$ 0
- Arc Length between $A(x_a, y_a)$ and $B(x_b, y_b)$

$$\circ \qquad \int_{x_a}^{x_b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \text{ or } \int_{y_a}^{y_b} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy \text{ or } \int_{t_a}^{t_b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dx$$

Þ Surface Area between $A(x_a, y_a)$ and $B(x_b, y_b)$

$$\circ \qquad x - Axis: 2\pi \int_{x_a}^{x_b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \text{ or } 2\pi \int_{t_a}^{t_b} y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \\ y - Axis: 2\pi \int_{y_a}^{y_b} x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy \text{ or } 2\pi \int_{x_a}^{x_b} x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \text{ or } 2\pi \int_{t_a}^{t_b} x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Vectors

Key Words: vector, cross, applications, determinant, alternating signs, triple scalar, planes, line, parallel, normal, angles, distances,

- $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$ \geq
- ۶ Scalar Product (dot product): $a \cdot b = |a||b| \cos \theta$
- \triangleright Vector Product (cross product)
 - 0 Use: to find a vector normal to a plane
 - $a \times b = |a||b| \sin \theta \hat{n}$ (angle between a and b, unit vector, perpendicular to a and b)

$$\circ \qquad a \times b = \begin{vmatrix} i & j & \kappa \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = i \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - j \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + k \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

The vector product of any 2 parallel vectors is zero 0

• The vector product is anti-commutative as
$$a \times b = -b \times a$$

- Applications of the Vector Product Þ
 - Area of Parallelogram $ABCD = |\overrightarrow{AB} \times \overrightarrow{AC}|$ 0

• Area of Triangle ABC =
$$\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

Triple Scalar Product

- $a \cdot (b \times c) = (a_1i + a_2j + a_3k) \cdot \begin{vmatrix} i & j & k \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ 0
- Volme of Parallelepiped = $|a \cdot (b \times c)|$ 0
- Volme of Tetrahedron = $\frac{1}{c} |a \cdot (b \times c)|$ 0
- Vector equation of a Line 0
 - $r = a + \mu(b a)$ Alternative form: $(r - a) \times d = 0$ $\therefore r \times d = a \times d$
 - Cartesian equation: $\mu = \frac{x-a_1}{d_1} = \frac{y-a_2}{d_2} = \frac{z-a_3}{d_2}$

or equation of a Plane

0

0

0

0

0

 $r = r_p + \mu d_1 + \gamma d_2$

If n is a vector normal to the plane then
$$(r - r_p) \cdot n = 0$$
 $\therefore r \cdot n = p$

- 0 *Cartesian equation:* $n_1x + n_2y + n_3z = p$
- Intersections (no intersection if parallel or skew)
 - Intersecting lines have a common point 0
 - 0 Intersecting planes have a commons line
 - An intersecting plane with a line has a common point 0
 - Angles (if >90 subtract from 180)

Angle between 2 lines:
$$cos\theta = \left| \frac{a \cdot b}{|a||b|} \right|$$

Angle between 2 planes: $\cos\theta = \left|\frac{n \cdot m}{\ln \ln m}\right|$ (*n* and *m* are normal directions vectors to planes) 0

[a b c] = [b c a] = [c a b]

• [a b c] = -[b a c]

 [kā b̄ c̄] = k[ā b̄ c̄] • $[\overline{a} + \overline{b} \ \overline{c} \ \overline{d}] = [\overline{a} \ \overline{c} \ \overline{d}] + [\overline{b} \ \overline{c} \ \overline{d}]$

- Angle between a line and a plane: $\sin\theta = \left|\frac{n \cdot d}{|n||d|}\right|$
- ۶ Distances
 - Shortest distance from point (α, β, γ) to a plane (ax + by + cz = d): $\frac{|a\alpha+b\beta+c\gamma-d|}{\sqrt{a^2+b^2+c^2}}$ 0
 - Shortest distance between skew lines: $\frac{(a-a_1)\cdot(d\times d_1)}{|d\times d_1|}$

Further Matrix Algebra

 \geq

Key Words: Transpose identity and zero matrix, non-singular, inverse, matrix of minors, E-values and vectors, orthogonal, diagonal

- A^{T} = Transpose of matrix A (obtained by switching rows and columns)
 - If $A = A^T$ then A is symmetric
- If A and B have dimensions $(m \times p \text{ and } p \times n)$ then $(AB)^T = B^T A^T$
- If A is non-singular then $AA^{-1} = A^{-1}A = I$
 - To find the inverse of a matric A
 - 0 Find det(A)
 - Form M: the matric of the minors of A 0
 - Form C: by changing signs of elements of M according to the rule of alternating signs 0

$$\circ \qquad A^{-1} = \frac{1}{\det(A)}C^{2}$$

- If A and B are non-singular then $(AB)^{-1} = B^{-1}A^{-1}$
- A transformation UT before A represents a transformation of T then a transformation of U on A
- Characteristic equation of A is $det(A \lambda I) = 0$ solve this to find Eigenvalues of A (remember normalising)
- For a Matrix A, a valid eigenvector x satisfies Ax = kx (where k is a scalar constant)
- If M is square and $MM^T = I$ then M is orthogonal
 - If orthogonal then $M^{-1} = M^T$ 0
 - If orthogonal then with normalised column vectors (x_1, x_2, x_3) then: $x_1, x_2 = x_3, x_2 = x_1, x_3 = 0$ 0
- A diagonal Matrix is $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ and $\begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix}$
- To reduce a symmetric matrix A to a diagonal matrix D
 - 0 Normalise eigenvectors of A
 - For an orthogonal matrix P with columns consisting of the normalised eigenvectors of A 0
 - $D = P^T A P$ 0
 - When symmetric matrix A is reduced to a diagonal matrix D, the elements on the diagonal are the 0 eigenvalues of A

