Covalent vs. ionic character

Is OH⁻ or S²⁻ more likely to form insoluble salts with +3 transition metal ions? Which is more likely to form insoluble salts with +2 transition metal ions?

Because S^{2-} is soft and OH^{-} is hard, OH^{-} is more likely to form insoluble salts with +3 transition metal ions (hard) and S^{2-} is more likely to form insoluble salts with +2 transition metal ions (borderline or soft).

Hardness and softness

Use acid-base concepts to domment of the fact that the only important ore of mercury is cinnabal. HgS, whereas zinc occurs in nature as sulfides, silicates, carbonates, and oxides. P 39

Mercury(II) is a soft Lewis acid, and so it is found in nature only combined with soft Lewis bases, the most common of which is S^{2–}.

Identifying Lewis acids and bases Identify the Lewis acids and bases in the reactions: (a) $BrF_3 + F^{\Box} \rightarrow BrD^{O}$ (b) (b) KIP+IP₂O \rightarrow KOHP F2.9

We need to identify the electron pair acceptor (the acid) and the electron pair donor (the base). (a) The acid BrF_3 accepts a pair of electrons from the base F^- . Therefore BrF_3 is a Lewis acid and F^- is a Lewis base. (b) The ionic hydride complex KH provides H^- , which displaces H^+ from water to give H_2 and OH^- .

The net reaction is:

 $\mathrm{H}^{-} + \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{H}_{2} + \mathrm{O}\mathrm{H}^{-}$

If we think of this reaction as:

 $\mathrm{H^-} + \mathrm{H^+}:\mathrm{OH^-} \rightarrow \mathrm{HH} + :\mathrm{OH^-}$

we see that H provides a lone pair and is therefore a Lewis base. It reacts with H_2O to drive out OH^- , another Lewis base.