Definition: A model M of basic modal logic is specified by three things:

- 1. A set W, whose elements are called worlds;
- 2. A relation R on W (R \subseteq W × W), called the accessibility relation;
- 3. A function $L: W \rightarrow P(Atoms)$, called the labelling function.

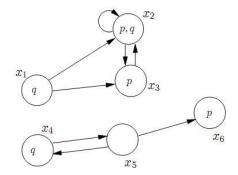
We write R(x, y) to denote that (x, y) is in R.

These models are often called Kripke models. Intuitively, $w \in W$ stands for a possible world and R(w,w') means that w' is a world accessible from world w. Suppose W equals $\{x_1,x_2,x_3,x_4,x_5,x_6\}$ and the relation R is given as follows:

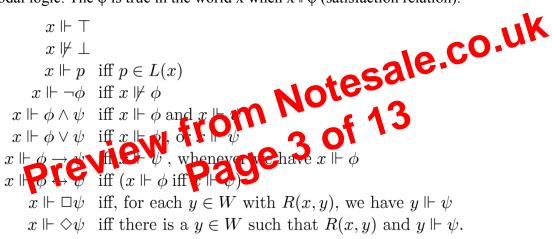
 $R(x_1,x_2)$, $R(x_1,x_3)$, $R(x_2,x_2)$, $R(x_2,x_3)$, $R(x_3,x_2)$, $R(x_4,x_5)$, $R(x_5,x_4)$, $R(x_5,x_6)$ Suppose further that the labelling function behaves as follows:

x	x_1	x_2	x_3	x_4	x_5	x_6
L(x)	$\{q\}$	$\{p,q\}$	$\{p\}$	$\{q\}$	Ø	<i>{p}</i>

Then, the Kripke model is illustrated in Figure given below:



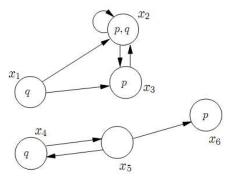
Definition: Let M=(W, R, L)bea model of basic modal logic. Suppose $x \in W$ and φ is a formula of modal logic. The φ is true in the world x when $x \Vdash \varphi$ (satisfaction relation).



For $\Box \phi$ to be true at x, we require that ϕ be true in all the worlds accessible by R from x. For $\Diamond \phi$, it is required that there is at least one accessible world in which ϕ is true. The meaning of $\phi_1 \leftrightarrow \phi_2$ coincides with that of $(\phi_1 \rightarrow \phi_2) \land (\phi_2 \rightarrow \phi_1)$.

Definition: A model M=(W, R, L) of basic modal logic is said to satisfy a formula if every state in the model satisfies it. Thus, we write M $\models \phi$ iff, for each $x \in W$, $x \models \phi$.

Example: Consider the diagram given below:



Logic Engineering

The readings of \Diamond corresponding to each reading of \Box are given as follow:

$\Box \phi$	$\Diamond \phi$		
It is necessarily true that ϕ	It is possibly true that ϕ		
It will always be true that ϕ	Sometime in the future ϕ		
It ought to be that ϕ	It is permitted to be that ϕ		
Agent Q believes that ϕ	ϕ is consistent with Q's beliefs		
Agent Q knows that ϕ	For all Q knows, ϕ		
After any execution of program P, ϕ holds	After some execution of P, ϕ holds		

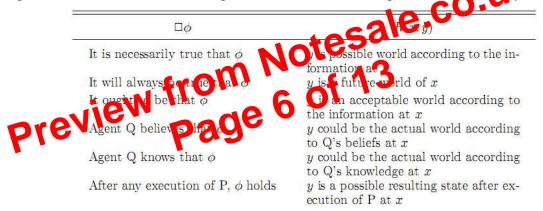
Part of the job of logic engineering is to determine what formula schemes should be valid. The readings related to \Box are given below:

- Necessity
- Always in future
- Ought
- Belief
- Knowledge
- Execution of programs

We canalso engineer logics at the level of Kripke models. For each of our six readings of \Box , there is a corresponding reading of the accessibility relation R which will then suggest that R enjoys certain properties such as reflexivity or transitivity. Let us start with necessity. The clauses

 $x \Vdash \Box \psi$ iff for each $y \in W$ with R(x, y) we have $y \Vdash \psi$ $x \Vdash \Diamond \psi$ iff there is a $y \in W$ such that R(x, y) and $y \Vdash \psi$

It tells us that φ is necessarily true at x if φ is true in all worlds y accessible from x in a certain way. The meaning of R for each of the six readings of \Box is shown in Table given below:



A given binary relation R may be:

- reflexive: if, for every $x \in W$, we have R(x, x);
- symmetric: if, for every $x, y \in W$, we have R(x, y) implies R(y, x);
- *serial*: if, for every x there is a y such that R(x, y);
- transitive: if, for every $x, y, z \in W$, we have R(x, y) and R(y, z) imply R(x, z);
- Euclidean: if, for every $x, y, z \in W$ with R(x, y) and R(x, z), we have R(y, z);
- functional: if, for each x there is a unique y such that R(x, y);
- *linear*: if, for every $x, y, z \in W$, we have that R(x, y) and R(x, z) together imply that R(y, z), or y equals z, or R(z, y);
- total: if for every $x, y \in W$ we have R(x, y) or R(y, x); and
 - an equivalence relation: if it is reflexive, symmetric and transitive.

Correspondence Theory

Definition: A frame F = (W, R) is a set W of worlds and a binary relation R on W.

A frame is like a Kripke model, except that it has no labelling function. From any model we can extract a frame, by just forgetting about the labelling function as shown below: