Given	Reason	Statement	
<c <a="" and="" are="" vertical<br="">angles</c>	Definition of Linear Pair	<a <c="" a="" and="" form="" linear<br="">pair <b <c="" a="" and="" form="" linear<br="">pair	
<1 and <2 form a linear pair	Linear Pair Postulate	M<1 and m<2 are supplementary	
<a <b="" and="" are<br="">supplementary <c <b="" and="" are<br="">supplementary</c>	If two angles are supplementary to the same angle then they are congruent	$< A \cong < C$	
<a <b="" and="" are<br="">supplementary <c <d="" and="" are<br="">supplementary <b <d<="" th="" ≅=""><th>Supplement Theorem</th><th>< A ≅< C</th><th></th></c>	Supplement Theorem	< A ≅< C	
<zxw <zxy="" and="" are="" right<br="">angles</zxw>	Any two right angles are congruent	<zxw <zxy<="" th="" ≅=""><th>ur</th></zxw>	ur
m <a=m<b< th=""><th>Definition of Congruent Angles</th><th>tesair</th><th></th></a=m<b<>	Definition of Congruent Angles	tesair	
<a <b="" and="" are="" vertical<br="">angles	Vertical An It Theorem	A ≅ <b< th=""><th></th></b<>	
m<1 + m<2 = 90 m 2 + m 2 = 00	Transitive proce P of	m<1 + m<2 = m<2 + m<3	
<a <b<br="" a="" complement="" is="" of=""><c <b<="" a="" complement="" is="" of="" th=""><th>If two angles are complementary of the same angle then they are congruent</th><th><a <c<="" th="" ≅=""><th></th></th></c>	If two angles are complementary of the same angle then they are congruent	<a <c<="" th="" ≅=""><th></th>	
AB=CD	Definition of Congruent Segments	$AB \cong CD$	
ΔDEF=ΔGHI	CPCTC or Corresponding parts of Congruent Triangles are Congruent	Other parts are congruent	
	Definition of Perpendicular	<dba <dbc="" and="" are="" right<br="">angles</dba>	
<1 and <2 are right angles	Right Angle Theorem	<1 ≅ <2	
A is between B and C	Definition of Between	BA+AC=BC	
D is the midpoint of AB	Definition of Midpoint	$AD \cong BD$	
MY AE	Parallel Alternate Interior Angle Postulate	<y <e<="" th="" ≅=""><th></th></y>	