1. Charles Law $\underline{V}_1 = \underline{V}_2$ or P/T (vol inc as temp inc, constant pressure)

- Use syringe
- buret as monometer \rightarrow get approximate pressure
- directly from graduated cylinder
- Water will be driven off when the test tube's heated
- this volume of air is saturated with water vapor that contributes to the total pressure in the flask
- -y = 0 (volume)

2. Freezing point Depression (add solute)

- freezing point directly proportional to conc. of particles dissolved in it

- solute reduces mole fraction, decrease tendency of molecules to escape from solvent phase - solute added \rightarrow lowers temp, lowers tendency of molecules to escape
- -solidify = reached freezing point

-freezing point \rightarrow where lines intersect

- get molecular weight. $\Delta T = K_f m$ (Kf = (4.6°C-kg/mol) (ΔT =diff of Freezing pts.)

 $\Delta T = 54.5749 - 53.7889 = 0.786$

0.786 = (4.6)mm = 0.1709

= molality = moles of solute = (0.4998g/MM) = 0.1709 \rightarrow MM= 650.0195 g/mole kg of solvent 0.0045 kg

3.Potentiometric Acid-Base Titrations

-inflection points give pKa value

- for characterizing acid; measured across analyte (not use indicator)

-identify unknown where pH changes are great

-convert vol of NaOH to moles acid (divide weight of unknown acid)

-pH from graph (x=vol NaOH)

- vol of NaOH \rightarrow from graph using [(-b+ $\sqrt{b^2-4ac}$)÷2a], ave of 2 points

-theoretical curve by getting 1/4, 1/2, 3/4, 5/4, 3/2 of the volume at equivalence point and equi at

- multiplied by molarity of NaOH to get moles \rightarrow values used to get pH or pK tesale".

pKa = pH - log [A][HA]

4. Rate of Reactions

- how rate is affected by conc and temp (make timenits plot)
 oxidation of sodium thiosulfate into surfur, real with HCI (time in become S)
- -positive slope (conc and tempine hate mc; time dec

-cloudiness = start of reaction

- method of initial rates = measuring rates at short times before changes in conc occur

- under this cuz initial conc are known
- initial rate and subsequent rates obtained as conc decreased
- more conc, quicker reaction (more collisions)

(Ea = activation energy (J/mol) A = pre-exponential constant) $K = A(Ea \div RT)$

 $m = Ea \div R$ (to get Ea) (m from graph (x))

- Activation energy = minimum energy to start reaction
- lowering it accelerates the rate by inc conc
- Ln k uses energy/mole while In 1/t uses energy directly
- 1/t equals rate of reaction as temp inc.
- conc is directly proportional to 1/t

6. Ksp, G, H of Ca(OH)₂ for the dissolution of Ca(OH)₂ in Water

- to get apparent equilibrium constant of Ca(OH)₂
- solubility of hydroxides is determined by titration

 $M_{HCI}V_{HCI} = M_{OH}V_{OH}$ Ksp = [Ca][OH] $\Delta G = -RTInK (R=8.314)$ $\Delta G = \Delta H - T\Delta S$

- molar solubility of [Ca] is $\frac{1}{2}$ of the molarity of $[OH^-] \rightarrow 2$ moles OH for every mole Ca(OH)₂ dissociated
- if actual > theoretical \rightarrow still excess Ca(OH)₂ in sol after titration
 - \rightarrow increase HCI, thus increase H ions
- solubility of Ca(OH)₂ varies with temp
- CO₂ can increase its solubility
- Adding acid to the solution with a solid base will inc the solubility of the base
- no solid base should be present when titrating remaining colide won't affect Ken -> acidity of colution affects Ken