Ariana Dubelko 4

Electrochemical gradient = Concentration gradients - dif in concentration of a chemical between 2 regions; Electrical gradients - dif in electrical charges between 2 regions

- o Help move substances across plasma membrane
- Down concentration gradient = passive process
 - **Facilitated diffusion** = passive; carrier moves solute down its concentration gradient across plasma membrane, no energy required
- Active process = cellular energy is used to drive substance against its concentration gradient

Active Transport

- o Primary active transport: energy derived from hydrolysis of ATP changes shape of a carrier protein, which pumps a substance across plasma membrane
 - Ex. Sodium-potassium pump → expels 3 Na+, brings in 2 K+
- Secondary active transport: the energy stored in a Na+ or H+ concentration gradient is used to drive other substances across the membrane against their own concentration gradients
 - Symporters = transporters moving two substances in the same direction; ex.
 Sodium-glucose symporter
 - Antiporters = moving two substances in opposite directions across membrane; ex.
 Sodium-Calcium antiporter

Organelles

- Mitochondria powerhouse of the cell, generate ATP through aerobic respiration, large number in muscles and liver
- Nucleus controls cellular structure, directs cellular activités, produces ribosomes, contains cells genes which are located on chronoscente.
- o Ribosomes sites of protein synthes on treattached to ER
- Endoplasmic Reticulum petropi of membranes in the form of flattened sacs
 - Smooth does not be veribosomes or outside surface, contains enzymes that synthesis lefatty acids and sterolog, help detoxify liver
 Lough covered with filtrames, processes and sorts ribosomes

Lysosomes – membrang enclosed vesicles that form **Golgi complex**; can engulf other organelles, digest it, and return the digested components to cytosol; clean out the cell

Chapter 4: Tissue Organization

- o Intracellular junctions:
 - 1. Tight junctions weblike strands of transmembrane proteins that fuse together the outer surfaces of adjacent plasma membranes to seal off passageways between adjacent cells → stomach or bladder
 - 2. Adherens junctions contain plaque, cadherins join cells, contain adhesion belts \rightarrow intestines
 - 3. Desmosomes contain plaque and cadherins, weld-like junctions that prevent cells from separating under tension and contraction → epidermis and cardiac muscle cells
 - 4. Hemidesmosomes anchors cells to each other but not to basement membrane \rightarrow
 - 5. Gap junctions membrane proteins called connexins form fluid filled tunnels that connect neighboring cells; plasma membranes of gap junctions are not fused together; ions and small molecules can diffuse from one cell to another; allow cells to communicate with one another → nervous system, cardiac muscles, cornea of eye

o Epithelial Cells

- Apical surface = free surface, may contain scilia / microvilli
- Lateral surface = face adjacent cells on either side, may contain junctions
- o Basal surface = adhere to extracellular materials (basement membrane)
- Basement membrane = thin extracellular layer formed by:
 - Basal lamina = closer to and secreted by epithelial cells

Ariana Dubelko 15

- Sympathetic: fight or flight
 - Preganglionic neurons leave from thorocolumbar area of spinal cord
 - Preganglionic fibers synapse far from end organ; may synapse with 20 or more postganglionic neurons
 - Postganglionic axons terminate in multiple end organs = widespread effects
 - Enzymes that degrade NE are slow so effects last longer
- Parasympathetic: rest and digest
 - Preganglionic neurons leave from craniosacral areas of spinal cord
 - Preganglionic neuron usually synapses with 4-5 postsynaptic neurons
 - Postganglionic neurons supply single visceral effector = specific effects
 - Enzyme degrades ACh quickly for short effects
- o Structural Classification of Neurons
 - Multipolar several dendrites and one axon; most brain and spinal cord neurons
 - Bipolar one main dendrite and one main axon; special sensory receptors found in retina of eye, inner ear, olfactory area of brain
 - Unipolar dendrites and one axon that are fused together; cell body is to the side; sensory neurons touch and pain ex. Corpuscle of touch in epidermis
- Functional Classifications of Neurons
 - Sensory (afferent) stimulus activates, sends AP to CNS
 - Motor (efferent) convey AP from CNS to effectors
 - o Interneurons CNS between sensory and motor neurons; process incoming in from sensory neurons and illicit motor response (multipolar)
- Neuroglia in CNS
 - o Astrocytes protect capillaries, form blood by a protect, maintain chemical environment
 - Oligodendrocytes processes make in the heath of CNS
 - Microglial cells remove cellular cebris; phagocy es
 - o Ependymal cell aline ventificles, production of minitor cerebrospinal fluid
- o Neuroglia in PN🚺 🧲
 - School Cells mak nye i
 - Satellite cells structural support and regulation of materials between neuronal cell bodies and interstitial fluid
- o Gray matter neuronal cell bodies, dendrites, unmyelinated axons, neuroglia
- White matter myelinated axons
- o Ganglion groups of cell bodies
- o Tract = in CNS
- Nerve = in PNS
- Resting membrane potential of nerve = -70mV
 - 3 factors that maintin:
 - Unequal distribution of ions in ICF and ECF
 - Most anions cannot leave the cell
 - Na+/K+ pump \rightarrow 3 sodium out, 2 potassium in
- o Graded potential used to depolarize cell to threshold before AP can be generated
- o **Inhibitory postsynaptic potential**: Hyperpolarizing postsynaptic potential opens ligand-gated Clor K+ channels; postsynaptic cell is less likely to reach threshold
- Excitatory postsynaptic potential: depolarizing postsynaptic potential opens ligand-gated Na+ or Ca2+ channels; postsynaptic cell is more likely to reach threshold
- O Summation: several presynaptic end bulbs release their NT near the same time, combined effect may generate nerve impulse
 - o Spatial: summation of effects of NT released from several end bulbs onto one neuron
 - Temporal: summation of effect of NT released from 2 or more firings of the same end bulb in rapid succession onto neuron