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by Dom(g(f)) = {z € Dom(f) : f(z) € Dom(g)}. We now let a be a limit point of
)

Dom(g(f)) and consider two situations. First, if b is a number such that
lim f(z) =0, and lim g(y) = ¢g(b), (1.8)
T—a y—b
then we have the composition limit rule:
lim g(/(2)) = 9 im () = 9(0). (19)
Second, if
lim f(z) = f(a), (1.10)

T—a

and f is either increasing or decreasing over an open interval containing a, then we have
the change of variable limit rule:

yil?(l )g(y) = lim g(f(z)) . (1.11)

Such a simple rules do not generally hold for one-sided limits.

1.4: Continuity. A function f is said to be continuous at\ é) r@@ D%I)Il( f) if either

a is not a limit point of Dom(f) or &?
9]

(1.12)

Here (1.12) is assgrti ﬁ&@ﬁ O
e lige 2

You should know examples of functions that fail to be continuous at a point in its domain
both where the limit on the left of (1.12) fails to exist and where the limit exists but does
not equal f(a). You should be able to tell by looking at the graph of a function where it
is continuous.

It follows from the sum, product and quotient limit rules (1.7) that if f and g are
functions that are both continuous at the point a then the functions f + g and fg will
be continuous at the point a, as will the function f/g provided g(a) # 0. Moreover, the
composition limit rule (1.9) shows that if f continuous at the point a while g is continuous
at the point f(a) then the composition g(f) is continuous at the point a.

A function that is continuous at every point in an interval is said to be continuous
over that interval. Roughly speaking, when drawing the graph of such a function f over
such an interval, one need not lift the pen or pencil from the paper. This is because (1.12)
states that as the pen moves along the graph (z, f(z)) it will approach the point (a, f(a))
as x tends to a. The graph of f will consequently have no breaks, jumps, or holes over the
interval.

A function that is continuous at every point in its domain is said to be continuous.
Every elementary function is continuous.
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2.4: Basic Derivatives from the Definition. There are a few basic functions whose
derivative formulas you should be able to derive directly from the definition (2.7). These
include

d d n __ n—1

e 1=0, dz T =nr )

d d 1

e = —1 = —

. e’ =e€", dx n(z) 7’

d d 1 1

d 4 z 4, _ - 2.11
dz a 111((1)(1 s dr Oga(aj) ln(a) T ’ ( )
d . .

e sin(z) = cos(z), o cos(z) = —sin(z),

d . d

o sinh(z) = cosh(z), - cosh(z) = sinh(z) ,

and any simple variants thereof. The top two are straightforward. The first is trivial,
and when n is an integer the second only requires simple algebraic manipulation of the
difference quotient before passing to the limit. For example, when n is a W@ integer
you have to expand (xz + h)™ by the binomial formula. You shoug co table with
cases in which n is a positive or negative integer Whose a L@v e 1s not too large.

The formulas for the expontentlal and {o 1vatives are derived using the
fact, which you should know that is glve? the limit
e = hm@ Q}" (2.12)

Given@ix t you should ?«J taln the derivative formulas for logarithms. You
should®also be able to use (2.12) and the change of variable limit rule (1.10) with s = a® —1

to derive the limit

a —1

i =1 . 2.1
lim n(a) (2.13)

From this you should be able to obtain derivative formulas for the exponentials.

The formulas for the sine and cosine derivatives are obtained through the appropriate
trigonometric addition formulas and the limits

. 1
I sin(h) _1, lim cos(h)

h—0 h h—0 h =0 (2.14)

The first limit was argued in class by comparing the area of a pizza pie slice of angle h
with that of a larger and a smaller triangle. This led us to the inequalities

cos(h) < sin(h)

<1 for every |h| < 5. (2.15)
Given this inequality, it is easy to obtain the first limit. Given the first limit, you should
be able to obtain the second limit. Given both limits, you should be able to derive the
sine and cosine derivative formulas.
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minus the top times the derivative of the bottom, all over the bottom squared”, or more
poetically, “bottom-dee-top minus top-dee-bottom over bottom squared”. While it is very
helpful to have this rule memorized, it is not critical. In every instance that the quotient
rule can be applied, the quotient can be recast as a product to which the product rule
(3.4) can be applied. That is after all how the quotient rule was derived above.

If the general Leibnitz rule (3.5) is specialized to the case where all the functions uy
are the same function u then it reduces to the monomial power rule:

%u" = nu"_lj—z . (3.8)
The monomial power rule was derived above for positive integers n. When it is combined
with the reciprocal rule (3.6), one sees that it extends to negative integers n. This rule can
be extended further. Namely, given any differentiable function v and any rational number
p for which u? is defined, the function u? is differentiable wherever uP~! is defined and its
derivative is given by the rational power rule: u\(

(3.9)

Wherever u # 0 this rule can be der ecau rational it can be expressed
as p = m/n where m and and n > 1@% onomial power rule (3.8) is

then applied to eac@w tlty ne finds that
preN P@Q U s

dz

which is equivalent to the rational power rule wherever u # 0. Points where ©v = 0 and
p > 1 can be treated directly from the definition of the derivative.

3.3: Rules for Compositions of Functions. Given two differentiable functions v and
u, the derivative of their composition v(u) is given by the chain rule:

d ;. du
%v(u) =v'(u) e (3.10)

This is also tricky to express in words, but may be rendered as “the derivative of a com-
position is the derivative of the outer, evaluated at the inner, times the derivative of
the inner”. You could also say “the derivative of a composition is the product of the
derivatives”, provided you realize that this leaves a lot unsaid about the arguments of the
derivatives involved. If the functions u and v relate the variables z, y, and z by z = v(y)
and y = u(x), then (3.10) may be expressed as

dz  dzdy

—_— = 11
de dydzx (3.11)



