- 1) Na Meshé Al forageant metallic lattice with metallic bonds. From Na to Al, the number of delocalised electrons available for metallic bonding increases, thereby increasing the strength of metallic bond.
- 2) Si has the highest melting point as large amount of energy is needed to break the strong, extensive covalent bonds between Si atoms in the giant molecular structure.
- 3) P, S and CI form simple molecular structures with weak Van der Waals' forces of attraction between the molecules. Thus, they have very low melting points..

Reactions of the elements with chlorine Notesale.co.th chlorine preview from Notesale.co.th chlorine

Oxidation number uk

Elements	Oxides of the elected entry		Chlorides of the elements	
	re Frie Ma fr	O nit ation OP Number	Formula	Oxidation Number
Na	Na ₂ O	+1	NaCl	+1
Mg	MgO	+2	MgCl ₂	+2
AI	Al ₂ O ₃	+3	Al_2Cl_6 (AICl ₃)	+3
Si	SiO ₂	+4	SiCl ₄	+4
Р	P ₄ O ₆ P ₄ O ₁₀	+3 +5	PCI ₃ PCI ₅	+3 +5
S	SO ₂ SO ₃	+4 +6	-	

Acid-Base Nature of Not and Mg with oxygen - metapatent loses page electrons to oxygen atom to form metal ions

- - & basic oxide ions (O^{2-}). Hence, oxides of Na and Mg are ionic and basic.
- 4) Small electronegativity difference of Si, P and S with oxygen
 - non-metal atom tends to share electrons with oxygen atom to form covalent bond. Hence, oxides of Si, P and S are covalent and acidic.
- 5) Large electronegativity difference of AI with oxygen
 - makes AI_2O_3 an ionic compound. However, it has significant covalent character as electron cloud of O²⁻ ions is distorted towards Al³⁺ due to its high charge density. Hence, AI_2O_3 is ionic with partial covalent character and amphoteric (has both acidic and basic properties).

Structure, bonding and molting points Notesale 1) Chlorides of the and Material giant ionic lattice structures

- large amount of energy is needed to overcome the strong electrostatic forces of attraction between the metal ions and Cl⁻ ions and thus they have high melting points.

2) Chlorides of AI, Si and P form simple molecular structures

- small amount of energy is needed to overcome the weak Van der Waals' forces of attraction between the molecules and thus they have low melting points.

3) Gaseous AlCl₃ is a covalent chloride

- electron cloud of CI^{-} ions is distorted towards AI^{3+} due to its high charge density. Hence, covalent character dominates in AICI₃ gaseous molecules.

Consecutive elements **X**, **Y**, **Z** are in period 3 of the Periodic

Table. Element Y has the highest first ionization energy and the Iowest melting point. What could be the identities of X, Y and Z? A. Sodium, magnesium, aluminium

- B. Magnesium, aluminium, silicon
- C. Aluminium, silicon, phosphorus
- D. Silicon, phosphorus, sulphur
- [AS Nov 2005 Paper | Q14]

Which pairs of compounds contain one that is giant ionic and one 1. Al_2O_3 and Al_2O_4 from Notesale.co.uk 2. SiO_2 and $SiCl_4$ Page 47 of 51 3. P \cap

- 3. P_4O_{10} and PCI_3
- [AS June 2004 Paper | Q34]