
The value of 0μ is exactly 74 10π −×  H/m 
  
Electromagnetic forces between more generally shaped current carrying wires and magnets are governed 
by a complex set of equations.  A full discussion of these physical laws is beyond the scope of this course, 
and will be covered in EN51.   
 
Applications of electromagnetic forces 
 
Electromagnetic forces are widely exploited in the design of electric motors; force actuators; solenoids; 
and electromagnets.  All these applications are based upon the principle that a current-carrying wire in a 
magnetic field is subject to a force.  The magnetic field can either be induced by a permanent magnet (as 
in a DC motor); or can be induced by passing a current through a second wire (used in some DC motors, 
and all AC motors).  The general trends of forces in electric motors follow Ampere’s law: the force 
exerted by the motor increases linearly with electric current in the armature; increases roughly in 
proportion to the length of wire used to wind the armature, and depends on the geometry of the motor.  
 

          
Two examples of DC motors – the picture on the right is cut open to show the windings.  You can find 

more information on motors at http://my.execpc.com/~rhoadley/magmotor.htm 
 
 
 
Hydrostatic and buoyancy forces 
 
When an object is immersed in a stationary fluid, its surface 
is subjected to a pressure.  The pressure is actually induced 
in the fluid by gravity: the pressure at any depth is 
effectively supporting the weight of fluid above that depth. 
 
A pressure is a distributed force.   If a pressure p acts on a 
surface, a small piece of the surface with area dA  is 
subjected to a force 

d p dA= −F n  
where n is a unit vector perpendicular to the surface. The total force on a surface must be calculated by 
integration.  We will show how this is done shortly. 
 
The pressure in a stationary fluid varies linearly with depth below the fluid surface 

ap p gdρ= +  
where ap  is atmospheric pressure (often neglected as it’s generally small compared with the second 
term); ρ  is the fluid density; g is the acceleration due to gravity; and d is depth below the fluid surface. 

pa

p = pa + ρgd

HMS Bounty

d
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The wing area WA cL=  where c is the chord of the wing (see the picture) and L is its length, is used in 
defining both the lift and drag coefficient. 
 
The variation of  LC  and DC  with angle of attack α  are crucial in the design of aircraft.  For reasonable 
values of α  (below stall - say less than 10 degrees) the behavior can be approximated by  

2
L L

D Dp DI

C k

C k k

α

α

=

= +
 

where Lk , Dpk  and DIk  are more or less constant for any given airfoil shape, for practical ranges of 

Reynolds number.  The first term in the drag coefficient, Dpk , represents parasite drag – due to viscous 

drag and some pressure drag.  The second term 2
DIk α  is called induced drag, and is an undesirable by-

product of lift.  
 
The graphs on the right, (taken from `Aerodynamics 
for Naval Aviators, H.H. Hurt, U.S. Naval Air 
Systems Command reprint’) shows some 
experimental data for lift coefficient LC as a function 
of AOA (that’s angle of attack, but you’re engineers 
now so you have to talk in code to maximize your 
nerd factor.  That’s NF).  The data suggest that 

10.1degLk −≈ , and in fact a simple model known as 
`thin airfoil theory’ predicts that lift coefficient 
should vary by 2π  per radian (that works out as 
0.1096/degree) 
 

 
 

The induced drag coefficient DIk  can be estimated from the formula 
2 2

L
DI

W

c kk
eAπ

=  

where 10.1degLk −≈  ,  L is the length of the wing and c is its width; while e is a constant known as the 
`Oswald efficiency factor.’  The constant e is always less than 1 and is of order 0.9 for a high performance 
wing (eg a jet aircraft or glider) and of order 0.7 for el cheapo wings. 
 
The parasite drag coefficient Dpk  is of order 0.05 for the wing of a small general aviation aircraft, and of 
order 0.005 or lower for a commercial airliner. 
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Interatomic forces 
 
Engineers working in the fields of nanotechnology, materials design, and bio/chemical engineering are 
often interested in calculating the motion of molecules or atoms in a system. 
 
They do this using `Molecular Dynamics,’ which is a computer method for integrating the equations of 
motion for every atom in the solid.  The equations of motion are just Newton’s law – F=ma for each atom 
– but for the method to work, it is necessary to calculate the forces acting on the atoms.  Specifying these 
forces is usually the most difficult part of the calculation. 
 
The forces are computed using empirical force laws, which are either 
determined experimentally, or (more often) by means of quantum-
mechanical calculations.  In the simplest models, the atoms are assumed to 
interact through pair forces.   In this case  

• The forces exerted by two interacting atoms depends only on their 
relative positions, and is independent on the position of other 
atoms in the solid 

• The forces act along the line connecting the atoms.  
• The magnitude of the force is a function of the distance between 

them.  The function is chosen so that (i) the force is repulsive when 
the atoms are close together; (ii) the force is zero at the equilibrium 
interatomic spacing; (iii) there is some critical distance where the 
attractive force has its maximum value (see the figure) and (iv) the force drops to zero when the 
atoms are far apart. 

 
Various functions are used to specify the detailed shape of the force-separation law.  A common one is 
the so-called ‘Lennard Jones’ function, which gives the force acting on atom (1) as 
 

13 7
(1)

1212 a aE
r r

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

F e  

Here a is the equilibrium separation between the atoms, and E is the total bond energy – the amount of 
work required to separate the bond by stretching it from initial length a to infinity. 
 
This function was originally intended to model the atoms in a Noble gas – like He or Ar, etc.  It is 
sometimes used in simple models of liquids and glasses.  It would not be a good model of a metal, or 
covalently bonded solids.  In fact, for these materials pair potentials don’t work well, because the force 
exerted between two atoms depends not just on the relative positions of the two atoms themselves, but 
also on the positions of other nearby atoms.  More complicated functions exist that can account for this 
kind of behavior, but there is still a great deal of uncertainty in the choice of function for a particular 
material.  
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(1) Does the connection allow the two connected solids move relative to each other?  If so, what 
is the direction of motion? There can be no component of reaction force along the direction of 
relative motion. 

(2) Does the connection allow the two connected solids rotate relative to each other?  If so, what 
is the axis of relative rotation?   There can be no component of reaction moment parallel to 
the axis of relative rotation. 

(3) For certain types of joint, a more appropriate question may be ‘Is it really healthy/legal for 
me to smoke this?’   

 
 
2.4.3 Drawing free body diagrams with constraint forces 
 
When we solve problems with constraints, we are nearly always interested in analyzing forces in a 
structure containing many parts, or the motion of a machine with a number of separate moving 
components.   Solving this kind of problem is not difficult – but it is very complicated because of the 
large number of forces involved and the large number of equations that must be solved to determine them.  
To avoid making mistakes, it is critical to use a systematic, and logical, procedure for drawing free body 
diagrams and labeling forces. 
 
The procedure is best illustrated by means of some simple Mickey Mouse examples.  When drawing free 
body diagrams yourself, you will find it helpful to consult Section 4.3.4 for the nature of reaction forces 
associated with various constraints. 
 
2D Mickey-mouse problem 1. The figure shows Mickey 
Mouse standing on a beam supported by a pin joint at one end 
and a slider joint at the other.  

 
We consider Mickey and the floor together as the system of 
interest.  We draw a picture of the system, isolated from its 
surroundings (disconnect all the joints, remove contacts, etc).  In 
the picture, all the joints and connections are replaced by forces, 
following the rules outlined in the preceding section.   

 
Notice how we’ve introduced variables to denote the unknown 
force components.  It is sensible to use a convention that allows 
you to quickly identify both the position and direction associated 
with each variable.  It is a good idea to use double subscripts – 
the first subscript shows where the force acts, the second shows its direction.  Forces are always taken to 
be positive if they act along the positive x, y and z directions. 
 
We’ve used the fact that A is a pin joint, and therefore exerts both vertical and horizontal forces; while B 
is a roller joint, and exerts only a vertical force.  Note that we always, always draw all admissible forces 
on the FBD, even if we suspect that some components may turn out later to be zero.  For example, it’s 
fairly clear that 0AxR =  in this example, but it would be incorrect to leave off this force.  This is 
especially important in dynamics problems where your intuition regarding forces is very often incorrect. 
 
 

L/3 2L/3

Pin joint Slider joint

j
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The forces and moments shown are the only nonzero components of reaction force.   
 
The missing force and moment components can be shown to be zero by considering force and moment 
balance for the wheel.  The details are left as an exercise. 
  
 
Finally, a word of caution.  
 
 You can only use these shortcuts if: 

1. The wheel’s weight in negligible; 
2. The wheel rotates freely (no bearing friction, and nothing driving the wheel); 
3. There is only one contact point on the wheel. 

 
If any of these conditions are violated you must solve the problem by applying all the proper reaction 
forces at contacts and bearings, and drawing a separate free body diagram for the wheel. 
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2.5 Friction Forces 
 
Friction forces act wherever two solids touch.  It is a type of contact force – but rather more complicated 
than the contact forces we’ve dealt with so far. 
 
It’s worth reviewing our earlier discussion of contact forces.  When we first introduced contact forces, we 
said that the nature of the forces acting at a contact depends on three things: 

(4) Whether the contact is lubricated, i.e. whether friction acts at the contact 
(5) Whether there is significant rolling resistance at the contact 
(6) Whether the contact is conformal, or nonconformal. 

 
We have so far only discussed two types of contact (a) fully lubricated (frictionless) contacts; and (b) 
ideally rough (infinite friction) contacts.  
 
Remember that for a frictionless contact, only one component of force acts on the two contacting solids, 
as shown in the picture on the left below.  In contrast, for an ideally rough (infinite friction) contact, three 
components of force are present as indicated on the figure on the right. 

                  
 

(a) Reaction forces at a frictionless contact           (b) Reaction forces at an ideally rough contact 
 

All real surfaces lie somewhere between these two extremes.  The contacting surfaces will experience 
both a normal and tangential force.  The normal force must be repulsive, but can have an arbitrary 
magnitude.  The tangential forces can act in any direction, but their magnitude is limited.  If the tangential 
forces get too large, the two contacting surfaces will slip relative to 
each other.   
 
This is why it’s easy to walk up a dry, rough slope, but very difficult to 
walk up an icy slope.  The picture below helps understand how friction 
forces work. The picture shows the big MM walking up a slope with 
angleθ , and shows the forces acting on M and the slope.  We can 
relate the normal and tangential forces acting at the contact to 
Mickey’s weight and the angleθ  by doing a force balance 

 
Omitting the tedious details, we find that 

sin
cos

A M

A M

T W
N W

θ
θ

=
=

 

Note that a tangential force sinA MT W θ=  must act at the contact.  If 
the tangential force gets too large, then Mickey will start to slip down 
the slope. 
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2.5.3 Experimental values for friction coefficient 
 
The table below (taken from `Engineering Materials’ by Ashby and Jones, Pergammon, 1980) lists rough 
values for friction coefficients for various material pairs.   
 

Material Approx friction coefficient
Clean metals in air 0.8-2 
Clean metals in wet air 0.5-1.5 
Steel on soft metal (lead, bronze, etc) 0.1-0.5 
Steel on ceramics (sapphire, diamond, ice) 0.1-0.5 
Ceramics on ceramics (eg carbides on carbides) 0.05-0.5 
Polymers on polymers 0.05-1.0 
Metals and ceramics on polymers (PE, PTFE, PVC) 0.04-0.5 
Boundary lubricated metals (thin layer of grease) 0.05-0.2 
High temperature lubricants (eg graphite) 0.05-0.2 
Hydrodynamically lubricated surfaces (full oil film) 0.0001-0.0005 

 
These are rough guides only – friction coefficients for a given material 
can by highly variable.  For example, Lim and Ashby (Cambridge 
University Internal Report CUED/C-mat./TR.123 January 1986) have 
catalogued a large number of experimental measurements of friction 
coefficient for steel on steel, and present the data graphically as shown 
below.   You can see that friction coefficient for steel on steel varies 
anywhere between 0.0001 to 3.   

 
Friction coefficient can even vary significantly during a measurement.  
For example, the picture below (from Lim and Ashby, Acta Met 37 3 
(1989) p 767) shows the time variation of friction coefficient during a 
pin-on-disk experiment. 
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2.5.4 Static and kinetic friction 
 
Many introductory statics textbooks define two different friction coefficients.  One value, known as the 
coefficient of static friction and denoted by sμ , is used to model static friction in the equation giving the 
condition necessary to initiate slip at a contact 

sT Nμ<  

A second value, known as the coefficient of kinetic friction, and denoted by kμ , is used in the equation 
for the force required to maintain steady sliding between two surfaces 

kT Nμ= ±  
 

I don’t like to do this (I’m such a rebel).  It is true that for some materials the static friction force can be a 
bit higher than the kinetic friction force, but this behavior is by no means universal, and in any case the 
difference between kμ  and sμ  is very small (of the order of 0.05).  We’ve already seen that μ  can vary 
far more than this for a given material pair, so it doesn’t make much sense to quibble about such a small 
difference. 
 
The real reason to distinguish between static and kinetic friction coefficient is to provide a simple 
explanation for slip-stick oscillations between two contacting surfaces.  Slip-stick oscillations often occur 
when we try to do the simple friction experiment shown below.  
 

 
 
 
If the end of the spring is moved steadily to the right, the block sticks for a while until the force in the 
spring gets large enough to overcome friction.  At this point, the block jumps to the right and then sticks 
again, instead of smoothly following the spring.   If μ  were constant, then this behavior would be 
impossible.  By using s kμ μ> , we can explain it.  But if we’re not trying to model slip-stick oscillations, 
it’s much more sensible to work with just one value of μ . 
 
In any case, there’s a much better way to model slip-stick oscillations, by making μ  depend on the 
velocity of sliding.   Most sophisticated models of slip-stick oscillations (e.g. models of earthquakes at 
faults) do this. 
 
 
12.6 The microscopic origin of friction forces 
 
Friction is weird.  In particular, we need to explain  

(i) why friction forces are independent of the contact area 
(ii) why friction forces are proportional to the normal force. 

 
Coulomb grappled with these problems and came up with an incorrect explanation.  A truly satisfactory 
explanation for these observations was only found 20 years or so ago. 
 
To understand friction, we must take a close look at the nature of surfaces.  Coulomb/Amonton friction 
laws are due to two properties of surfaces: 
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At present, there is no way to measure or calculate the contact C accurately. 
 
This is true for all materials (except for rubbers, which are so compliant that the true contact area is close 
to the nominal contact area), and is just a consequence of the statistical properties of surface roughness.  
The reason that the true contact area increases in proportion to the load is that as the surfaces are pushed 
into contact, the number of asperity contacts increases, but the average size of the contacts remains the 
same, because of the fractal self-similarity of the two surfaces. 
 
Finally, to understand the cause of the Coulomb/Amonton friction law, we need to visualize what happens 
when two rough surfaces slide against each other.   
 

Surface film, 
shear strengthτ0

 
 
Each asperity tip is covered with a thin layer of oxide, adsorbed water, or grease.  It’s possible to remove 
this film in a lab experiment – in which case friction behavior changes dramatically and no longer follows 
Coulomb/Amonton law – but for real engineering surfaces it’s always present. 
 
The film usually has a low mechanical strength.  It will start to deform, and so allow the two asperities to 
slide past each other, when the tangential force per unit area acting on the film reaches the shear strength 
of the film 0τ . 
 
The tangential friction force due to shearing the film on the surface of all the contacting asperities is 
therefore 

0 trueT Aτ=  
 
Combining this with the earlier result for the true contact area gives 

0

0

T CN
C

τ
μ τ

=
⇒ =

 

 
Thus, the friction force is proportional to the normal force.  This simple argument also explains why 
friction force is independent of contact area; why it is so sensitive to surface films, and why it can be 
influenced (albeit only slightly) by surface roughness.   
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