

Resonance

- Resonance is the transfer of energy between two bodies of the same natural frequency
- Body
 - Particular natural frequency • Contact
 - Another body
 - Same natural frequency
 - Energy transfer
- Experiments
 - Stretched string Tuning fork
 - Same frequency as string
 - String vibrates

Speed of sound

- Air
- 330m/s Faster liquids
- Fastest in solids
- Waves
 - Speed related to frequency and wavelength
 - Expression
 - Compare
 - Wavelength
 - Frequency
 - Speed
 - Between medium
- Equipment Sound
 - Different speed in different media
 - Reflected off surfaces
 - Helps
 - □ Sonar
 - Ultrasounds
 - Used when x-rays dangerous

Sound intensity

- Measured
- Wm⁻²
- Sound intensity level
 - Measured
 - Decibels
- Losses sound intensity level
 3 dB
 Frequency limits of audibility
 Highest and lowest sound detectable both average hernairear
 Lower limit
 20 Hz
 Upper limit
 Pitch/frequency
 Higher
 ay
 pitch/frequency • Frequency limits of audibility
- · unit 20 Hz Upper limi Upper limi Opper effect Sour

 - Sound approaching

 - Away
 - Pitch/ frequency Lower
 - Applies
 - All waves
 - Waves spread out
 - Stationary object
 - Circle around stationary point
 - Moves constantly from that point • Moving source
 - Circles emitted in lines
 - Constantly growing
 - Each circle
 - Different centre Waves
 - Bunch
 - Front
 - Pass quicker
 - Higher frequency/pitch Spread

Movement

- ♦ Lower frequency
- Behind
 Pass slower

- A listener here will hear

a low frequency

A listener here will hear a high frequency

- 3. Start with a small for I and slow increase it, until the paper rider moves, indicating that the string is vibrating.
- 4. Record I and f.
- 5. Repeat for various tuning forks, and record the measurements in a table.
- 6. Plot a graph of frequency f against the inverse length: 1/l.

Conclusion

A straight line graph through the origin will verify that frequency f is proportional to 1/l.

Accuracy

- It is difficult to determine when the strings vibrations are at their greatest, the paper rider helps with this.
- Tuning forks are easily damaged and may not vibrate at the labelled frequency.

Method

- 1. Set up the apparatus as shown in the diagram.
- 2. Select a wire length I (e.g. 30cm) by suitable placement of the bridges. Keep this length fixed throughout the experiment.
- 3. Striker a tuning fork and place it on the sonometer. Start at low tension and slow begin to increase it until the string begins to vibrate. Record f and T.
- 4. Repeat the procedure several times with different tunign forks.
- 5. Plot a graph of frequency f against the square root of tension: \sqrt{T} .

Conclusion

A straight line through the origin verifies that f is proportional to \sqrt{T} .