- $\frac{f'}{\lambda_1} > 0$: Γ est vide; $\frac{f'}{\lambda_1} = 0$: Γ est la droite (O', v);
- $\frac{f'}{\lambda_1} < 0$: Γ est la réunion des droites parallèles $x'' = \sqrt{-\frac{f'}{\lambda_1}}, \ x'' = -\sqrt{-\frac{f'}{\lambda_1}}$.

Remarques

1) Centres de symétrie de Γ .

Si $\Gamma = \emptyset$ alors tout point de E est un centre de symétrie. Sinon, l'étude précédente a montré différentes possibilités.

- Γ possède un unique centre de symétrie si et seulement si $ac-b^2 \neq 0$. La courbe Γ est
 - une ellipse ou un point si $ac b^2 > 0$. Cette ellipse est un cercle si a = c et b = 0.
 - une hyperbole ou la réunion de deux droites concourantes si $ac b^2 < 0$.

On dit dans ce cas que la courbe Γ est une conique à centre.

 \bullet Γ ne possède aucun centre de symètrie ou une infinité de centres de symetrie alignés si et seulement si $ac - b^2 = 0$. Lorsque Γ n'a aucun centre de symétrie, cette courbe est une parabole et, dans l'autre cas, Γ est une droite ou la réunion de deux droites parallèles.

Un point Ω de coordonnées (x_0, y_0) est un centre de symétrie de Γ de tentanent si $(\Gamma \neq \emptyset !)$ le changement de variables $x' = x - x_0$, $y' = y - y_0$ éliminales tentes du premier degré dans P(x, y). On vérifie facilement que cette dernière to al fide est réalisée si et seulement si (x_0, y_0) est solution du système de deux équations lineaux.

est solution du système de deux équations lineares
$$\left\{\frac{1}{2}P_x(x,y)=ax+by+1=0\right\}$$

Ce système a pour déterminant $ac - b^2$ et sa résolution permet de retrouver les différentes possibilités d'existence d'un centre de symétrie.

Le système d'équations ci-dessus peut aussi être obtenu l'aide de la formule de Taylor.

Si l'on n'est pas certain que Γ soit non vide alors la méthode précédente ne donne pas toujours tous les centres de symétrie (penser à $P(x,y) = x^2 + y^2 + 1$).

2) Axes de symétrie de Γ

Lorsque $\Gamma = \emptyset$ toute droite est un axe de symétrie. Supposons $\Gamma \neq \emptyset$. Les directions des axes de symétrie de Γ sont liées aux vecteurs propres de la matrice symétrique $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

• Si cette matrice possède deux valeurs propres non nulles alors $ac-b^2 \neq 0$ et Γ possède un unique centre de symétrie O'. Les droites (O', w), où w est un vecteur propre quelconque de A, sont des axes de symétrie de Γ et ce sont les seuls si Γ n'est pas réduit à un point ou si Γ n'est pas la réunion de deux droites orthogonales (la figure formée par deux droites orthogonales possède quatre axes de symétries). Dans le cas où Γ est une hyperbole ou une ellipse (qui n'est pas un cercle) alors Γ possède exactement