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Trigonometric: Found using the definition of derivative and the Squeeze Theorem. If you
know the derivatives of sinx and cosx, you can find all the rest using the definitions of
the trigonometric functions and the quotient rule.  

d(sinx)
dx

= cosx
d(cosx)

dx
= − sinx

d(tanx)
dx

= sec2 x
d(cotx)

dx
= − csc2 x

d(secx)
dx

= secx tanx
d(cscx)

dx
= − cscx cotx

Inverse Trigonometric: A pain. Found by implicit differentiation.

d(sin−1 x)
dx

=
1√

1 − x2

d(cos−1 x)
dx

= − 1√
1 − x2

d(tan−1 x)
dx

=
1

1 + x2

d(cot−1 x)
dx

= − 1
1 + x2

d(sec−1 x)
dx

=
1

x
√

x2 − 1
d(csc−1 x)

dx
= − 1

x
√

x2 − 1

THE EPSILON–DELTA (ε − δ ) DEFINITIONS OF LIMITS AND CONTINUITY

Limits: limx→a f(x) = L if and only if for every  ε > 0, there exists some δ > 0 such that
whenever x is within δ of a, f(x) is within ε of L (that is, |x − a| < δ implies that
|f(x) − L| < ε). 
Continuity: Function f(x) is said to be continuous at x = a if and only if for every ε > 0,
there exists some δ > 0 such that whenever x0 is within δ of a, f(x0) is within ε of f(a)
(that is, |x0 − a| < δ implies that |f(x0) − f(a)| < ε).
Equivalently, f(x) is continuous at x = a if limx→a f(x) exists and is equal to f(a).
LIMIT LAWS 

Suppose f(x) and g(x) are two functions, a is a point (possibly ±∞) near which both
f(x) and g(x) are defined. (These are only true if both limx→a f(x) and limx→a g(x) exist
and at least one of them is finite!)

Sum: lim
x→a

�
f(x) ± g(x)

�
= lim

x→a
f(x) ± lim

x→a
g(x)

Scalar multiple: lim
x→a

�
cf(x)

�
= c lim

x→a
f(x) Here, c is any real.

Product: lim
x→a

f(x)g(x) =
�

lim
x→a

f(x)
��

lim
x→a

g(x)
�

Quotient: If lim
x→a

g(x) �= 0, then lim
x→a

f(x)
g(x)

=
limx→a f(x)
limx→a g(x)

.

The Squeeze Theorem:
If f(x) ≤ g(x) ≤ h(x) near x = a, and  lim

x→a
f(x) = lim

x→a
h(x) = L,

then lim
x→a

g(x) exists and is equal to L.

The classic application of this theorem establishes that limx→0
sin x

x = 1.

Frequently-encountered limits:

lim
x→0

sin x
x = 1

lim
x→0

cos x−1
x = 0

lim
x→∞

xne−x = 0 for all n

INTUITION

If a and b are two points in the domain of f(x) then the average rate of change of f(x)
on the interval [a, b] is 

f(b)−f(a)
b−a , a measure of how fast f(x) has increased or decreased

over the interval. This is also the slope of the line through the points 
�
a, f(a)

�
and�

b, f(b)
�

on the graph of f(x). 

The derivative of f(x) at a point x = a is the instantaneous rate of change, a measure
of how fast f(x) is increasing or decreasing at a. Equivalently, the derivative is the slope
of the tangent line to the graph of f(x) at the point x = a—the unique line through the
point 

�
a, f(a)

�
that touches the graph at only that point near x = a.

We compute the derivative f �(a) by looking at the average rate of change of f(x) on the
interval [a, a + h] and taking the limit as h goes to 0. Equivalently, f �(a) is the limit as
h → 0 of the slope of the line through 

�
a, f(a)

�
and 

�
a + h, f(a + h)

�
.

DEFINITION

If the limit limh→0
f(a+h)−f(a)

h exists, we say that f(x) is differentiable at x = a and

the limit is the derivative of f(x) at x = a, denoted by f �(a).

The function f �(x) = limh→0
f(x+h)−f(x)

h is the derivative function of f(x). If it is
defined whenever f(x) is defined, then f(x) is called differentiable.

If f(x) is differentiable at x = a, then f(x) is continuous at a. The converse is not true:
a function can be continuous but not differentiable. There are two cases where this occurs:

1. No tangent: Ex: f(x) = |x|. The
function is continuous at x = 0 since
limx→0+ |x| = limx→0− |x| = 0,
but the derivative f �(0) is undefined
since the left-hand slope limit,
limh→0−

|h|
h = −1, does not equal

the right-hand slope limit,
limh→0+

|h|
h = 1.

2. Vertical tangent: The slope of a
vertical line is “undefined.” If f(x)
has a vertical tangent at x = a, then
the derivative f �(a) is undefined and
the graph of f �(x) will have a verti-
cal asymptote at x = a. Ex:
f(x) = 3

√
x has a vertical tangent at

the point (0, 0). The derivative func-
tion, f �(x) = 1

3
3√

x2
, goes to infinity

at 0.

NOTATION

Different notations for the derivative function are useful in different contexts. The most

common notations in calculus are f �(x), y�,, d
dxf(x), and dy

dx . The last two are in Leibniz
notation; dy

dx evolved from �y
�x = change in y

change in x , or slope. The expressions dy and dx rep-

resent infinitesmal changes in y and x.
• Higher-order derivatives can be written in “prime” notation: f �(x), f ��(x), f ���(x),
f (4)(x), or in Leibniz notation: dy

dx , d2y
dx2 , d3y

dx3 , d4y
dx4 . 

• The derivative at a particular point a is most often expressed as f �(a) or dy
dx

���
x=a

.

METHODS AND TRICKS 

Assume that f(x) and g(x) are two differentiable functions.

Sum and Difference:
d

dx

�
f(x) ± g(x)

�
= f �(x) ± g�(x)

Scalar Multiple: 
d

dx

�
cf(x)

�
= cf �(x)

Product:
d

dx

�
f(x)g(x)

�
= f �(x)g(x) + f(x)g�(x)

MNEMONIC: If f is “hi” and g is “ho,” then the product rule is “ho d hi plus hi d ho.”

Quotient:
d

dx

�
f(x)
g(x)

�
=

f �(x)g(x) − f(x)g�(x)
g2(x)

MNEMONIC: “Ho d hi minus hi d ho over ho ho.”

The Chain Rule takes the derivative of composite functions. Here are two ways of writing it:
1. (f ◦ g)� (x) = f � (g(x)) g�(x).
2. If u = g(x) and y = f(u) = f

�
g(x)

�
, then 

dy

dx
=

dy

du

du

dx
.

IMPLICIT DIFFERENTIATION

Implicit differentiation uses the product and chain rules to find slopes of curves when it is
difficult or impossible to express y as a function of x. Leibniz notation may be easiest
when differentiating implicitly. Take the derivative of each term in the equation with
respect to x. Then rewrite dy

dx = y� and dx
dx = 1 and solve for y�.

Ex 1: x2 + y2 = 1
Implicitly differentiating with respect to x gives the expression 2xdx

dx + 2y dy
dx = 0, which

simplifies to 2x + 2yy� = 0 or y� = −x
y . The derivative can now be found for any point on

the curve, even though it is not actually a function. You will get the same result if you first solve
for y = ±

√
1 − x2 and keep track of the ± signs in different quadrants. 

Ex  2: x cos y − y2 = 3x
Differentiate to obtain first dx

dx cos y + xd(cos y)
dx − 2y dy

dx = 3dx
dx , and then

cos y − x sin yy� − 2yy� = 3. Finally, solve for y� = cos y−3
x sin y+2y .

DERIVATIVES OF BASIC FUNCTIONS

Constants:
d(c)
dx

= 0 A constant function is always flat. 

Linear:
d(mx + b)

dx
= m The line y = mx + b has slope m.

Powers:
d(xn)
dx

= nxn−1 True for all real n �= 0.

Polynomial:
d(anxn + · · · + a2x

2 + a1x + a0)
dx

= nanxn−1 + · · · + 2a2x + a1

Exponential:
d(ex)
dx

= ex This is why e is called the “natural” 
logarithm base: Aex are the only func-
tions that are their own derivatives.

d(ax)
dx

= ax ln a When in doubt, convert ax to ex ln a.

Logarithmic:
d(lnx)

dx
=

1
x

Found using implicit differentiation. 

When in doubt, convert  
d(loga x)

dx
=

1
x ln a

loga x to ln x
ln a .

LIMITS AND CONTINUITY (CONTINUED)

TAKING DERIVATIVES

TAKING DERIVATIVES (CONTINUED)

THE TANGENT LINE: APPROXIMATING f(x) NEAR x = a

The tangent line to a curve y = f(x) at the point�
a, f(a)

�
is given by the equation 

y = f(a) + f �(a)(x − a).

The tangent line gives a (very) crude approximation to
f(x): If h is small, then f(a + h) ≈ f �(a)h + f(a).
Useful when f �(a) is known and f(x) is hard to compute. 

DISPLACEMENT, VELOCITY, ACCELERATION: 
MOTION IN ONE DIMENSION

Suppose a particle’s position on a line in meters at time t
seconds is determined by the function s(t).
• The first derivative s�(t) of the position function gives the
instantaneous rate of change of motion; in other words, the
particle’s instantaneous velocity v(t) = s�(t). The units
for the first derivative are “meters per second,” m/s.
• The first derivative v�(t) of the velocity function will give
the instantaneous rate of change of velocity, or accelera-
tion: a(t) = v�(t) = s��(t). The units for acceleration are
“meters per second per second,” m/s2.

MAXIMA AND MINIMA  

A local minimum (or maximum) is a
point 

�
c, f(c)

�
such that f(c) is the

least (or greatest) value of the func-
tion in some interval around c. A local
minimum or maximum is also called
a  relative minimum or maximum.

The global minimum (or maximum) is the point where
f(x) assumes its least (or greatest) value in the domain
considered. The global minimum or maximum is also called
the absolute minimum or maximum.

If the domain is a closed interval (an interval that
includes its endpoints), then a continuous function will
always have global minimum and maximum points,
possibly at one of the endpoints. (This is the Extreme
Value Theorem.) 

The word extremum can be used to mean either minimum
or maximum. The plural of extremum is extrema. 

Critical points are points where f �(x) is zero or undefined.
All extrema—that is, all minima and maxima—happen
either at endpoints or at critical points. 

How to find extremum points:
1. Check critical points where f(x) exists but f �(x) is not
defined. Such a point may be a local extremum, as in
f(x) = |x| at x = 0. It may be a point of discontinuity. Or
it may be neither.
2. Check critical points where f �(x) = 0. If f �(a) = 0,
then often, but not always, the function will have a local
extremum at x = a.

• If the sign of f �(x) switches from + to − at x = a,
then f(a) is a local maximum. 
• If the sign of f �(x) switches from − to + at x = a,
then f(a) is a local minimum. 
• If the sign of f �(x) does not switch around x = a,
then f(a) is neither a maximum nor a minimum. 

Alternatively, you can use the second derivative test:
• If f ��(a) < 0, then f(a) is a local maximum.
• If f ��(a) > 0, then f(a) is a local minimum. 
• If f ��(a) = 0, then you must check whether f �(x)
switches sign around x = a.

TIP: Often, but not always, f ��(a) = 0 means that f(a) is
neither a minimum nor a maximum. Counterexample:
f(x) = x4 has f �(0) = f ��(0) = 0. The second derivative
test tells you nothing, but the changing sign of the first deriva-
tive indicates that f(0) = 0 is a local minimum.

3. Check endpoints: If the domain is a closed interval [a, b],
always check f(a) and f(b) when looking for extrema. Also
check any boundary points that are included in the domain.

TIP: Non-included boundary points (including points where
f(x) is not defined, especially at vertical asymptotes) and
behavior at ±∞ (including horizontal asymptotes) may affect
existence of global extrema. Ex: f(x) = (x2 + 1)e−x2

,
graphed under “Maxima and Minima”, has a local minimum at
x = 0 but no global minimum, though f(x) > 0 for all real x.

SKETCHING GRAPHS: SUMMARY

1. Endpoints: If the domain is an interval, evaluate the
function at the endpoints. If the domain is the whole real
line, establish what happens at ±∞. Horizontal asymp-
totes will appear if limx→±∞ f(x) is finite. Evaluate f(0)
to find the y-intercept.  
2. Gaps: Find all isolated points x = a where f(a) is not
defined. For each point a, look at limx→a± f(x). A verti-
cal asymptote will appear if limx→a± f(x) = ±∞. A
removable discontinuity (hole in the graph) will appear if
limx→a f(x)exists and is finite. 
3. x-intercepts: If it is easy to determine when f(x) = 0,
do so. If not, evaluating the function at the critical points
and the endpoints will
indicate where to look for
zeroes. 
4. Rise and fall: Determine
the intervals where the
function is increasing and
decreasing by looking at
the sign of f �(x). If
f �(x) > 0, then f(x) is
increasing. If f �(x) < 0,
then f(x) is decreasing. 
5. Local extrema: Find all
local extrema by looking at
the critical points where
f �(x) = 0 or where f �(x) is not defined. 
6. Concavity: Determine when the function cups up or
down by looking at the sign of f ��(x). If f ��(x) > 0, the
function is concave up; if f ��(x) < 0, then f(x) is concave
down. If f ��(a) = 0, then the function is temporarily not
curving at x = a; if f ��(x) is changing sign near x = a,
then this is a point of inflection (change in concavity).

THEOREM HIGHLIGHTS

Intermediate Value Theorem: If f(x) is continuous in an inter-
val [a, b], then somewhere on the interval it will achieve every
value between f(a) and f(b): if f(a) ≤ M ≤ f(b), then
there exists some c in the interval [a, b] (notation: c ∈ [a, b])
such that f(c) = M. This is a completely intuitive statement!

Rolle’s Theorem: If f(x) is continuous on the closed interval
[a, b], differentiable on the open interval (a, b), and satisfies
f(a) = f(b), then for some c in the interval  (a, b), we have
f �(c) = 0.

Mean Value Theorem (MVT):
A generalization of Rolle’s
Theorem. If f(x) is continu-
ous on the closed interval
[a, b] and differentiable on
the open interval (a, b),
then there exists a point
c ∈ (a, b) such that the
slope of the tangent to f(x)
at x = c is the same as the
slope of the secant line
through the two points�
a, f(a)

�
and 

�
b, f(b)

�
: that is, f �(c) = f(b)−f(a)

b−a .

Two functions having the same derivative differ by a con-
stant: If f �(x) = g�(x), then f(x) = g(x) + C, for some
real C . Equivalently, a function has only one family of
antiderivatives. This theorem follows from the MVT. See
the Calculus II SparkChart for more on antiderivatives.

Extreme Value Theorem: A function f(x) continuous on
the closed inteval [a, b] will assume a global maximum and
a global minimum somewhere on [a, b].

L’HÔPITAL’S RULE 

Used to evaluate indeterminate form limits: 0
0 and ±∞

±∞ .
Suppose both f(x) and g(x) are differentiable around a
and g�(x) �= 0 on an interval near a (except perhaps at a).

If lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0
OR

If lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞ ,

then  limx→a
f(x)
g(x) = limx→a

f �(x)
g�(x) .

• L’Hôpital’s Rule can also be applied if the limit is one-
sided (x → a±).
• L’Hôpital’s Rule can also be applied if the limit is taken as
x approaches infinity (x → ±∞). 
• If f �(x) and g�(x) also satisfy the conditions for
L’Hôpital’s Rule, higher derivatives can be taken until the
limit is well-defined. 
• L’Hôpital’s Rule cannot be applied to a fraction if the top
limit is infinite and the bottom limit is zero, or vice versa.  

Ex: lim
x→1

ln x
x−1 . Since lim

x→1
lnx = 0 and lim

x→1
x − 1 = 0, use

L’Hôpital’s Rule:

lim
x−1

ln x
x−1 = lim

x→1

d(ln x)
dx

d(x−1)
dx

= lim
x−1

1/x
1 = 1.

• L’Hôpital’s Rule can be used to evaluate other indetermi-
nate forms, such as ±∞ · 0. The key is to convert the
expression to 00 or ±∞

±∞ .

Ex: limx→−∞ xex. Convert to the expression limx→−∞
x

e−x ,
which is an indeterminate form −∞

∞ . Applying L’Hôpital’s Rule,
convert to limx→−∞

1
−e−x = 0.

SKETCH OF A FUNCTION AND TWO OF ITS DERIVATIVES

USING DERIVATIVES
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No tangent at x = 0 Vertical tangent at x = 0

f �(0) undefined

Approximating f(x) near a: For small h,

f(a + h) ≈ f �(a)h + f(a)

MVT: f �(c) = f(b)−f(a)
b−a

Horizontal asymptote: y = 1
2

Vertical asymptote: x = −1 and x = 2
Removable discontinuity at x = 1

No global minumum

A: Vertical tangent
B: Local minimum
C: Point of Inflection
D: Point of Inflection
E: Point of Inflection
F: Local maximum
• The function is decreasing
from the y-axis to B,
increasing from B to F, and
then decreasing from F on.
• The function is concave
down from the y-axis to A,
concave up from A to C,
concave down from C to D,
concave up from D to E,
concave down from E to G,
and not curving from G on.

f �(0) undefined
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