
- Earthworms, nematodes, springtails, woodlice
 - >200/m²
 120 million nematodes per metre²
- Contribute 10% to soil respiration Mainly physical effects

 - Increase surface area for attack
 Mix materials
- Regulate microbial activity (grazing)

Preview from Notesale.co.uk Page 8 of 30

• Can they go extinct?

- No true species
- $\circ~$ Can occupy tiny microhabitats
- Extremely adaptable

Increase SA

- Dorsal blood vessel
 - Heart
- Collection of ganglia in cephalon
 - Brain
 - Near sensory organs
 - Ventral nerve cord
 - Ganglia per segment
- Genal caecae
 - Fine vessels just beneath exoskeleton
 - Respiration?

Eves

- 3 types
- Some had none
- Holocroal
 - Most common
 - Biconvex
 - Continuous cornea across all lenses
 - Ancestral form
- <u>Schizocroal</u>
 - Fewer, larger lenses
 - Individual cornea
 - Separated by sclera
 - Paedomorphy of holocroal developmental form
- <u>Abathocroal</u>
 - Rarest
 - Lenses separated by shallow sclera
 - Largest lenses
 - Cornea each
- Variation by habitat
 - Stalks
 - Massive
 - Reduced
 - Lost

Ecdysis - Moulting

- Exoskeleton
 - Must shed in order to grow
- Claidion events around
 Glaciation events around
 Final extinction Permian-Trias
 96% of marine lie Append
 Utrated b
 Steroid
 Volcanic activity
 Atmospheric change
 Sea level fluctuations · Facial sutures split allowing the animal to crawl out

- -----Spines
- □ Defence
- Soft sediment stabilisation (filter feeders)
- □ Swimming
- Miniaturation
 - Fewer segments
 - Decreased size
 - Adaptation to new niche
 - Consequence of early development
 - Paedomorphosis
 - Early sexual maturity
- Pelagic adaptation
 - Large eyes
 - □ Streamlining
- Spines
- Olenimorph More thoracic segments
 - Flatter

 - \Box Benthic, low O₂?
 - More segments = more legs = more gills
- Pitted cephalon fringe
 - Perforated, wide fringe
 - Stabilisation
 - Water can pass through
 - Filter feeding

Extinction

- Declined from late Cambrian
- New forms evolving, but slower than extinctions
- Reasons:
 - Changes in sea level
 - Oceanic temperatures
 - Competition
 - Molluscs
 - Echinoderms (starfish)
 - Glaciation events around Gordwana margins at end of Ordovician
- Final extinction Permian-Triastic tinction (252mya)

Mass Extinctions

04 December 2014 13:30

Ediacaran Period • Last period of proterozoic

- 635-542mya
- All continents pushed together Pannotia
- Varangian glaciation
- Ended 595mva Allowed radiation of multicellular animal life

- O Allowed radiation of multicellular anima
 Fauna
 <u>Vendezoa</u>
 Quilted surface
 Lacked gut
 Fractal organisation
 May have been ancestors of animals
 O May have been evolutionary dead end
- Mass extinction
- 2 major groups
- Soft-bodied vendians
 Calcareous doudinids
- Calcareous doudinids
 Disappear from fossil record
 Increase in black shale
 Anoxia

- Survivors
 Cydomedusa
 Similar to jellyfish
 Lack tentacles and radial symmetry
 referana

 - Ancestral worm/trilobite? Neither?

Cambrian Period 542mya-488mya
 Pannotia broke up

 Gondwana formed
 Smaller tropical continental blocks

 More warm, shallow seas
Allowed life to proliferate Cambrian Explosion ebrates Invert Radiation Hard- and soft-bodied
 Trilobite and brachiopod ancestors Trilobite and brachiopod ancestor
 Many evolutionary dead-ends

 Vertebrates
 Eritst chordates
 Early, jawless vertebrates
 Pikoia
 Lancelets
 Non-vertebrate chordates
 Notachord
 No true brain or skull
cian Period Ordovician Period 488-443mya Rapid plate movement and volcanism Extensive shallow seas Barren land masses
 Sea level rises Erosion and deposition of sediment Fauna o Invertebrate Diversi Invertebrate
 Diversity tripled
 New ecosystems
 Vertebrates
 Jawless fish Jawiess IIsti
 Bones, teeth, scales
 Lampreys
 Most life in shallow seas
 acc extinction Mass extinction

- 2nd largest
 Eliminated 60% of all terrestrial and marine
- genera B Brachiopods, bivalves, echinoderms, bryozoans, corals Glaciation
- Glaciation
 CO₂ levels fell due to erosion
 Gamma-ray burst?
 Hypernova
 Ozone stripped
 Little evidence

Silurian Period • 443.7-416mya

Palaeozoic 542-251mya

- Northern continents
- Ocean basins narr Ice melted
- Seas rose
- Shallow seas expanded
 - <u>Life</u>
 Plants
 - Invaded freshwater and land Invaded fresh
 Invertebrates
 Invaded land
 Extension region

- Invad Exten: Vertebrates Vertebrates Vertebrates Vertebrates Vertebrates Vertebrates Vertebrates Vertebrates Nad Exten: Vertebrates Vertebrates Nad Exten: Vertebrates Nad Nad Vertebrates Nad Nad Vertebrates Nad placoderms
 - ars

 - Northern continents divide
 - Tropics
 - Dry land Arid and humid
 - Warm shallow seas
 - Seas
 Geochemistry changes
 - Periods of hypoxia
 - <u>Life</u> Plants
 - More land plants
 - Evolve adaptation to keep water
 Roots, seeds, transport systems, woody
 - tissues Trees
 - Cause creation of soils
 - Invertebrates
 Arthropods colonise land
 - Arthropods coloni
 Massive reefs
 Vertebrates
 Freshwater fish
 Placoderms
 Sarcopterygians
 Sharks
 Aquatic tetrapods
 lass extinctions
 - <u>Mass extinctions</u>
 O Multiple events
 - Over a large period
 - 22% marine animals Black shale
 - Lack of oxygen in seas Glaciation
 - Plants removing CO₂ Weath
 - Weathering
 Plants
 Nutrient input to seas leading to stagnation
 Carbon sinks
 Kellwasser Event
 Warm, shallow water
 Marine jowertabrates

 - - Marine invertebrates
 - Marine invercentes
 Eliminated reef builders

 Brachiopods, ammonites

 - Survivors
 Evolved smaller eyes and larger
 Control surfaces respiratory surfaces

 Poor visibility and low O₂

 - Hangenberg Event
 Sea and freshwater
 Ammonites, trilobites, placoderms,
 - sarcopterygians, tetrapods
 Living relative

Biosphere Page 29

Mesozoic 251-65.5mya

- Triassic

 • Recovery period
 •

 • From end-Permian mass extinction
 •

 • model high temperatures
 •
 Extremely high temperatures
 O Ice-free poles
 - Humid and arid regions Supercontinent Pangaea Persisted for most of the period
 - Began to disintegrate in late triassic
 - Life
 Plants
 Radiation of seed plants
 of ferns

 - - Radiation of seed plants
 Radiation of ferns
 Stromatolites
 Re-emerged in early triassic
 Few grazing invertebrates
 - Marine invertebrates

 Bivalves replaced extinct brachiopods as dominant
 - filter feeders True corals
 Ammonoids recovered
 Trobrates
 - - Terrestrial vertebrates
 Many radiations
 Archosaurs
 Dinos
 "
 - Mammal-like reptiles flourished. Walrus-like reptiles, placodonts, appeared in the shallow seas"
 Icthyosaurs
 Icthyosaurs
 Frogs
 Marine recovery
 Living relatives
 Norfot¹⁻

<u>Cenozoic</u> 65.5mya - 0

Palaeogene period

Climate cooled

• <u>Life</u> • Plants

Pangaea continued to break up
 Oceans widened
 Established oceanic currents

Invertebrates True coral reefs Diversification of gastropods, bivalves, echinoids (urchin), crustaceans Diversification of pollinating insects Vertebrates Diversification of birds Massive adaptive radiation of mammals DEVENDENT Control Control Control Control Control Diversification of birds

Evolution of large specialised teeth and limbs
 Large carnivores and herbivores

Evolution of bats
 Evolution of whales

Temperature cycled

- Similar to triassic conifers
- Tuatara Only 2 species remain
 Resembles triassic sphenodontians
 Large, diverse group

More successful predator
 Vertebrates

Living relatives

Selaginella

Horsetails

Ginaka

<u>Cretaceous</u> • Pangaea continued to disintegrate • High CO₂ levels

Huge, shallow seas

Evolution of flowering plants

Diversified through the cretaceous

Invertebrates
 Evolution of pollinators
 Marine invertebrates
 Radiation of bivalves, ammonites, snails
 Vertebrates
 Radiation of dinosaurs, birds, sharks, bony fish
 Linker entative:

Hot climate
 High sea levels

Invertebrates

Living relatives 0

Plants Magnolia Water ferns

QuillwortDipteris

Redwoods Thorny oysterSlender roughy

Gar pikes Duck billed platypus

. Monkey puzzle Welwitschia mirabilis

• <u>Life</u> • Plants

ertebrates Radiation of dinosaurs Theropods, sauropods, Ornithischians Massive and majestic Radiation of crocodylomorphs Only surviving crurotarsans Radiation of large marine reptiles Evolution of birds vior relatives

Moss-like
 Little change since Jurassic

Only one remaining species

Only One remaining species
 Widespread and diverse in Jurassic
 Giant dragonfly
 Petalura gigantea
 Similar to Jurassic libellulium

Widespread
 Larger in Jurassic

