

• Density is important for buoyancy

Viscosity

Resistance to flow •

- Lower velocity with increased depth
- **Dynamic viscosity** •

- Inertia
- Faster
- Bigger
- Drag an issue
- Changes through life cycle

Preview from Notesale.co.uk Page 14 of 101

Wind

- Mixing of epilimnion •
- Density gradient in metalimnion prevents mixing • • High Richardson's Number (R_i)
- Autumn less solar energy, more wind
- Summer stratified
 Spring 1 Surface waves - piles and thickens epilimnion on leeward shore •
- Subsurface waves
- Standing waves when wind stops

Mixing •

- L TP i d i d • Winter stratified

 - Spring and autumn more wind, overturning
- Warm monomictic
 - Common in UK
 - Stratified in summer
 - Mixed all winter no ice
 - Temperate maritime
- Cold monomictic
 - Inverse stratification most of year
 - No summer stratification
 - High altitude/latitude
- Polymictic
 - Frequent/daily mixing
 - Too shallow to stratify
- Discontinuous polymictic
 - Frequent mixing
 - Stratify for parts of year
 - Typically deeper

Oxygen

- Eutrophic
 - Less CO₂ at top photic zone

Limnic Eruptions

- Rare
- CO₂ build up
- Mass casualties Lake Nyos, Cameroon
- Stratification with cool lower layer
- Disturbance to boundary
- High input of C rich sediment

Humic Substances

- High molecular weight
 Decomposition of organic matter, especially ter estimates
 Lack chemical definition
 Humic and fulvic acids

 40-60% to p
 Yelponto black

 Stong UV absorbance
 Humics and Lake Function

 Hugh humic • Hugh humics ---> low diversity and productivity
 - Low light levels
 - Acidic
 - \circ Low O₂
 - C not available to plants
 - Is available to bacteria buffer against anthropogenic interference

Light and Organics

- Recent studies show <10-25%
- Closely linked with phytoplankton productivity
 - In photic ~20%
 - Below photic zone is linked to C content of sediment
- Bacterial productivity is higher in eutrophic lakes

Out of Control Bacteria

- Cyanobacteria
- Cyanotoxins
- Efficient light harvesting
- High CO₂, low pH
- Resistant to radiation
- Extreme temperatures
- Some fix N, can grow in low nutrient conditions
- Buoyancy mechanisms
- Resistant to removal by filter feeding zooplankton

Phytoplankton and Bacteria

- Antagonistic interaction
 - Phytoplankton
 - Production of acrylic acid
 - Antibiotic production
 - Bacteria
 - Algal lysing by antimicrobial compounds
 - Parasitic/predators
 - Bacterial competition is most limiting when nutrients are limited, Ot S not
 Allochthonous
- Bacteria breakdown DOM, make N and P available
- Phytoplankton increase DOC available to back
- Cooperation?
 - both Epiphyte interaction hay be benefig 0

Planktonic Cladocera

- Characteristics
 - 0.2-2mm
 - Bivalved carapace
 - Compound eye and ocellus
 - Enclosed thoracic limbs
 - Abdomen with hook
 - Broad pouch

- Water drawn between valves
- Particles collected on setae
 - 1-50mm
- $\circ \ \ \, \text{Some predatory}$
 - Leptodora
- Locomotion
 - 2nd antennae

Brooks & Dodson, Science, Vol. 150, No. 3692 (1965), pp. 28-35

- Size efficiency hypothesis
 - Brooks and Dodson
 - Large grazers outcompete small
 - Food particle size range
 - Collection efficiency
 - Metabolic efficiency
 - Vertebrate predators size selective
 - Detection
 - Energy return

Control of open water communities

- Clearance rates to100% d⁻¹ Trophic cascade?
- •

Lake Macroinvertebrates

01 March 2016 10:39

• Benthic environment is variable

Exposure

- Eroding
 - Rock/coarse substrate
 - No macrophytes
- Depositing
 - Mud/silt
 - Macrophyte beds
- Conditions depend upon
 - Catchment
 - Lake dimension (fetch)
 - Orientation to prevailing wind

Zonation

• Variation of benthic conditions with depth

- Poorly mixed
- Isolated during stratification
- Little temporal variation in T low
- O₂ may vary strongly in eutrophic lakes
 - Severely hypoxic (bacterial respiration)

Benthic Diversity

- Species diversity declines with depth
 - Habitat diversity
 - Need for surface access
 - Emergence
 - Respiration
 - Environmental rigour

Benthic Abundance

- Declines with depth
- Increases with productivity

important link between phyto/zooplankton and many predatory fish species

Brönmark & Hansson, The Biology of Lakes & Ponds, 2005

Benthic Grazers

• High abundance of crayfish grazers can reduce macrophyte biomass

Detritivores

- High input of nutrients is often detrimental to macroinvertebrates • Switched lakes from clear to turbid
- Particulate organic matter from outside the lake can provide a lot of food •

Invertebrates as Prey

- Control with predators
- Test without predators
- Breakdown of relationship

Tri-Trophic Interactions

• Risky conditions significantly altered habitat use and periphyton diversity

Freshwater Biology Page 60

Stream Communities

08 March 2016 11:34

Spatial pattern

Compared across stream orders (1-9) in Quebecoise systems 0

- Follows predictions of River Continuum Concept
- Low order streams autochthonous
- RCC predicts highest diversity in 4-6 order streams max habitat diversity

- No particular pattern
- Most genera in 2nd order
- Small scale variables count
 - Pools and riffles
 - Patterns differ by stream order pools and riffles give more different

The impact of dipper, Cinclus mexicanus, predation on stream benthos

Bret C. Harvey and Carl D. Marti

- Steep 2nd order stream
- 3.5m wide
- 615m reach
- Trout only, low density
- 3x3 treatments
 - Dipper enclosure 15x8
 - Exclosure control roof no sides
 - Open flagging tape
- Dippers reduced density of large preferred prey -
- Small Baetis mayflies less abundant at depth, Heptas more abundant
- Disturbance
 - Are communities controlled by biotic or abiotic factors?
 - Harsh benign spectrum
 - Harsh (extreme variation in temp., flow, O₂)
 - Densities periodically reduces abiotic dominated
 - Benign (relatively constant conditions)
 - Competition and predation control
 - Patch dynamics view
 - Shifting mosaic of conditions
 - Dispersal of benthic organisms between patches
 - Local variation but predictability at larger scales

- 0
- Area 50/100
 - Frequency 1/2 per week
 - Disturbance reduced invertebrate abundance at high and low frequency
 - Disturbance increases invertebrate diversity at high and low frequency

Disturbance REDUCES invertebrates abundance at HIGH 🕅 and

Stream-Terrestrial Linkages

• Environmental harshness ad stream order effects on species diversity (Wooton, 1998)

- □ Some very narrow (salmon)
- □ Some very tolerant (bream, eels)

Longitudinal Zonation of Fish Assemblages in Temperate Rivers

• Huet 1949 - topology of piscicultural zones as functions of slope and width

Freshwater Biology Page 79

Threats to Freshwaters

14 April 2016 11:39

- Freshwaters under greatest threat high human activity, relatively low area
 - Living Planet Index shows 76% decline in FW populations of birds, fish, and amphibians 39% in terrestrial and marine
- Ecology warning for European water
 - 70% of UK waters "less than good"

Pollution

- Man-made harmful addition of substances or energy
- Most uses alter water quality
- Removal and alteration an also be a problem e.g. deforestation, changes to course
- Acidification
 - Source: acid rain from sulphur and nitrogen oxides from burning fossil fuel, run-off from mines
 - Effect: acidified freshwater, leaches ions from soils
- Thermal pollution
 - Source: slowing water flow via damming, release of warm water from power plants
 - Effects: lowered oxygen, increased decomposition of organic matter
- Silt
 - Source: agricultural run-off, deforestation, construction, concrete/smooth surfaces
 - Effect: reduce light penetration, disrupt feeding, may bury spawning grounds
- <u>Salinisation</u>
 - Source: leached from alkaline soils by over-irrigation
- le.co. Chupts osmotic balance Effect: many species are intolerant of saline conditional (stenohaline (cannot control) or high n gy c
- Nutrients (N+P)
 - Source: primarily from ag

- Effect: ent Ohitation, excessive algorith bacterial growth , lowers oxygen levels
- us 11 ic Sat
 - Source: sewage, rug-off, incustrial waste, farming
 - Effect: increased decomposition and bacterial growth lowers oxygen, increased turbidity
- Metals
 - Source: mining, industry
 - Effect: toxic, persistent, bioaccumulation
- Organic toxins
 - Source: industrial, sewage, farming etc.
 - Effect: varied, including pesticides, endocrine disruptors, pharmaceuticals, anti-fouling agents
- <u>Radioactivity</u>
 - Source: nuclear power and weapons
 - Effect: toxicity (chromosome damage), chronic toxicity (cancer, genetic abnormalities)
- <u>Oil</u>
 - Source: oil spills, industry leakage, motor vehicles
 - Effect: physical (suffocation, blocking light, clogged limbs), water soluble components toxic

Changes To River Courses

- Longitudinal fragmentation (dams)
- Lateral fragmentation (connection with surrounding flood plain)
- Changes to riparian zone
- Flow modification

Tackling

- Catchments important
- Land use strongly influences lakes and river
- Very interconnected
 - Pollution from factory in one area will prevent salmon spawning upriver, less nutrient input from salmon corpses
- Human population increasing, land use will change
- Policy for Protection: The Water Framework Directive101 1992
 - Natura 2000 meeting
 - \circ Habitats maintained or, where appropriate, restored at a favourable conservation status
 - $\circ \quad \text{Maintenance of biodiversity} \\$
 - \circ "water is not a commercial product, ... but a heritage which must be protected"
 - Delivered at water body scale
 - Coherent subunit
 - The "good status" challenge
 - Good surface water chemical status meet environmental objectives
 - Ecological status expression of quality and functioning of aquatic ecosystem
 - \circ "One out all out"
 - Lowest classified element = final classification
 - ~1000 surface water bodies in Wales
 - 67% below "good status"
 - Reasons: rural agriculture, barriers, mining, forestry, pH, sewage, reservoirs

Preview from Notesale.co.uk page 90 of 101

FIGURE 3. Model of deficiency and oversupply of a) essential and b) non-essential metals (after Förstner & Wittmann, 1981).

- Optimal range of light metals
 - Up to toxic down to deficit
- Heavy metals tolerable ٠
 - Toxic
 - o Lethal at highest

Measuring

- LC₅₀
 - Lethal concentration
 - o 50% dead within time
 - LT₅₀
 - Lethal time
 - 50% dead at concentration
 - EC₅₀
 - Sub-lethal effect seen
 - HC₅₀

Factors

- •
- Population variability (Auptation)
- •
- •
- •
- •

Notesale.co.uk Notesale.co.uk Notesale.co.uk Notesale.co.uk Size (SA: // au de commental stage Elemonment (temp., pH, (a)./g) Bioaccumulation (life history and longer Bioconcentration/biomagn¹⁶ Impact on Upland Streams in Wales and Cornwall Hirst et al. 2002

- · Water hardness effecs toxicity and bioavailability of some metals
 - Criteria for Ce, Cu, Pb, Zn modified