Practical - Welsh Onion

03 October 2014 17:50

Allum Fistulosium

- Mitotic cell cycle
 - Sequence of steps between 1 division and the next
 - All cell multiplication
 - Phases
 - Interphase
 - 🗆 G1
 - □ S
 - □ G2
 - M phase
 - □ Mitosis
 - Prophase
 - Metaphase
 - Anaphase
 - Telophase
 - □ Cytokinesis
 - Continuous
 - Divided for convenience

<u>Aim</u>

Look at mitotic cell cycle in root tip

Preparation

- Germinated, 1-2cm roots
- Seedlings fixed in 3:1 ethanol:acetic
- Hydrolysed in 1M HCl for 10 minutes at 60°C
- DNA stained red/violet in Feulgen stain
- 1. Remove 1 seedling
- 2. Cut off stained tip
- 3. Drop of aceto-carmine stain
- 4. Apply cover slip
- 5. X10 then x40

C-Metaphase

- 0.2% colchicine
- erupts metaph Autors metaph Preview from A of 37 Page 4 of 37 Disrupts metaph set

- Small, low lying
- 30 survivors of 1780s typhoon
 - Bottleneck
- One survivor carried rare allele for total colour blindness
 - Sampling error
- 10% of population now carries that allele
 - Allele frequency of 0.32
 - Genetic drift

Assortative mating

- Preference towards a similar genotype when mating
- E.g. Pigeons
 - Assortative mating with regard to size
 - Dissortative mating with regard to colour
 - Prefer differently coloured pigeons

Natural selection

- Some genotypes are fitter than others
- Fitter individuals produce more offspring during their lifetimes
- This may be because they
 - Live longer
 - Produce more offspring
- Directional selection
 - One allele decreases, one increases
 - 1 will go extinct, the other fixated
 - E.g. Peppered moths
- Balancing selection
 - Heterozygotes favoured over homozygotes
 - Preserves genetic diversity
 - E.g. Sickle-cell anaemia in malarial regions
- Diversifying selection
 - Homozygotes favoured
 - r **N** Very few homozygot
 - E.g. 3 spine still back
- m Notesale.co.uk 14 of 37 torige near bottom or subre of lakes
 - Size difference
 - Differences in courtship
 - Hybrid disadvantage
- Net mutation
 - Mutations occur continuously
 - Rate of forward mutations may exceed reverse mutations

- Particularly when mutations cause loss of function
 - Loss of function is more likely than gain
 - Mutation/selection balance often restores frequencies
- E.g. Albinism
 - Mutation from wild type to albino
 - More frequent than the reverse mutation
 - More likely to be predated
 - Mutation/selection balance

• Importance

- If heritability is high
 - Trait can be modified by breeding
- O If heritability is low
 - Trait can be modified most successfully by changing the environment

Additive genetic variation

- Several genes contribute to same trait
- E.g. two genes influence coat colour
 - O Alleles A and B code for pigment
 - Alleles a and b code for no pigment
 - ADD PICTURE
- As the number of genes for the trait increases
 - Number of genotypes increases
 - With n genes there are 3n genotypes
 - O Distribution of trait values approaches normal distribution

Quantitative trait loci (QTL)

- QTL mapping •
 - O Score members of population for trait
 - Determine genotype with respect to a marker gene
 - Look for association between genotype and trait
 - O This shows that the marker is linked to a QTL
 - This doesn't necessarily mean that the marker is the period of the period O Make linkage map to see how close the marker of the

Selection on Quantitative Traits

- Evolutionary biologists often assume genetic variation
 - Assume the genes influence a mit
 - O A. The that genes op no duitively
- Selection
 - O Acts upon the mean and variance of a trait
 - O It is implied that this action reflects changes in the frequency of alleles
 - O Directional, stabilising and diversifying selection
 - O E.g. Peacocks
 - Long tail
 - □ More mates
 - Directional selection
 - Too long
 - □ Easy prey
 - □ Stabilising selection

- - Loop displaced from unbroken molecule
 - Pairs with non-invading strand of broken molecule
 - Template for DNA synthesis
- 2 Holliday junctions form between the DNA molecules
- Cross over.
- Holliday junction

- Migrates along chromosome
- \circ Rotates
- Forms cross-shaped Holliday intermediate
- Cleaved in vertical or horizontal plane

- Homologous chromosome used as template for repair
- Potentially the origin of crossing over

Recombination and evolution

- Shuffles alleles at different loci
- Genotypic diversity
 - Adaptive response to environmental change
- Decouple beneficial alleles from harmless ones

Mutation

25 November 2014 12:48

- An hereditary change in
 - DNA sequence
 - Gene mutation
 - Chromosome number, form, or structure
 - (DNA & Chromosomes)
 - Caused by
 - Errors in replication
 - Spontaneous damage
 - Radiation
 - Chemicals

Genetic diversity

- Polymorphic DNA
- Several different alleles present at the same time
- Increased by
 - Mutation
 - Immigration
- Reduced by
 - Natural selection
 - Genetic drift

Types of gene mutation

- Substitution
 - Substitutes 1 nucleotide for another
 - Transition
 - A <--> G
 - C <--> T
 - Transversion
 - A <-> C, A <-> T, G <-> C, G <-> T
 - More possible transversions
 - But transitions more likely
 - Molecular mechanisms make them more likely to occur More likely to persist

←AAT

←AAA

Less likely to change any amino acids

The genetic code

- DNA to mRNA to protein
- Codon

0

- 3 base pairs
- 1 amino acid
- Sequence 🧉
 - Reading fra
 - Describes how continuous DNA is divided to codons 6 frames

 $TGA \rightarrow$ $ATTG \rightarrow$

 $GAC \rightarrow$

- 5'-ATGACGAGAGAGCAGCCATTTTAG-3'
- 3'-TACTGCTCTCTCGTCGGTAAAATC-5' $\leftarrow ATC$

The six reading

- frames of DNA
- Frameshift mutation Substitution
 - Can change 1 codon
 - Amino acid changes
 - Slightly different protein
 - □ Stop codon
 - Truncated protein
 - TAC to TAA, TGC to TGA
 - Insertion or deletion
 - □ In multiple of 3 base pairs
 - Loss or gain of amino acid
 - □ Not in multiple of 3
 - Knock on effect down entire protein
 - Radical effect

- from a 2 0 · Lasse f nutation 32 0 · Lasse f nutation · Lasse f nutation · Lasse f nutation Random changes unlikely to make improvements • Constantly fixed into genome by directional selection

 - Lost through genetic drift in small population
 - Rarely polymorphic
 - Pushed straight to fixation
 - 0 E.g. deer mouse
 - Dark soil = dark fur. Most common
 - Sand Hills Tan fur.
 - Mutation occurred 4000 years ago
 - Deleterious
 - Reduce fitness
 - Frequent
 - Random changes much more likely to cause damage Constantly removed
 - Purifying selection
 - Mutation/selection balance
 - Usually polymorphic and rare
 - But can be fixed into genome by drift in small populations
 - Pingalap atoll
 - Often recessive
 - Not exposed to purifying selection in heterozygotes
 - Lurks in heterozygotes
 - □ Isn't expressed
 - □ Isn't selected against
 - If dominant normally selected against
 - Unless presented in old age $\circ~$ E.g. Over 4000 human diseases caused by single gene mutation
 - <u>Neutral</u>
 - Occur frequently
 - Non-coding mutation
 - In untranslated DNA
 - □ Introns
 - Intergentic regions