- **<u>RIG-like receptors</u>** 
  - Cytoplasmic
  - MDA-5 recognises double stranded RNA (dsRNA) from viruses
  - Similar to TLR redundancy
  - African Horse Sickness
    - dsRNA virus
    - Infection increases mDA5 pathway signalling
- PPRs very important
  - Recognse conserved PAMPs
- Different PPRs = different responses (different PAMPs)

# **Cells with PRR**

- Dendritic
- Macrophages
- Neutrophils
- Eosinophils
- Basophils
- Mast cells
- Natural Killer Cells
- PPRs also on non-immune cells
- o Dendritic cells and macrophages are in tissyes
  - "sentinel cells" skin, liver, gut, lungs, etc.
  - Range of PPRs to detect pathogens
- Dendritic cells
  - Langerhans in skin
  - Range of PPRs
  - Activation leads to inflammation
- Notesale.co.uk Release of immune molecules
  - Cytokines
  - iey
- e.g. interleu in solution
  Binc Bind to specify receptors on immune cells
- prev □ Chemokines
  - Specialised cytokines chemoattractant
  - Attracts immune cells to tissues or within tissues
  - Mediate immune responses
  - Does not kill pathogens
  - Takes in and presents pathogenic antigens
  - Attract other immune cells
  - Macrophages
    - Range of PRR
    - Phagocytosis after PRR activation
    - Can kill pathogens
    - Critical for adaptive response

# Killing

- 1. PRR and other receptors bind micropathogen
- 2. Transported by phagosome into cell
- 3. Fuse with lysosomes
- 4. Pathogen destroyed
- Acification, oxygen derive toxins, antimicrobial peptides (defensins etc.), enzymes, competitors (lactoferrin sequesters iron)
- Immune evasion
  - Deliberate modulation of host immune system
  - Capsules to prevent phagocytosis



- □ 1° lymphoid follicle B cells
- Paracortical area T cells
- □ Medullary cortex macrophages
- Naïve lymphocytes constantly circulating
- Antigens and APCs move from infected tissues to lymph nodes
- Spleen
  - Filter microbes, antigens from blood <u>only</u>
  - APCs and lymphocytes
  - Same activation role as lymph nodes
  - Red pulp
    - □ RBC destruction and storage non-immune
  - White pulp
- Le. CO. UK Mature DCs and macrophages migra
  - Reside in marginal tote
- Interact with lymph of ytes in spleen
- MALT Mucosa Associate U/mphoid Tissues
  - Gut Cool ared Lymphoid Tissues () AL
  - asal Associate Toruph in Nosues NALT
    - Bronchus Associated Lymphoid Tissues BALT
    - Skin Associated Lymphoid Tissues SALT
    - Different environments
    - Most exposure to pathogens at mucosal surfaces
    - Higher lymphocytes concentration than the rest of the body
    - Specialised lymphocytes
    - Lots of IgA antibodies
      - □ Protected from mucosal proteases



- GALT
  - □ Peyers patches Scattered lymphold cells -

- Phagocytosis triggered
- 3. Antibody-dependent cell-mediated cytotoxicity
  - $\circ$  ADCC
  - Antibodies bind non-self antigens on the host cell
  - Immune cell Fc receptors bind antibodies
    - Host cell apoptosis triggered
    - Perforins etc.
  - Neutrophils, macrophages, eosinophils, NK cells
- 4. Activation of Complement
  - $\circ~$  Antibodies 1 way of activating the complement cascade
  - Complement is a series of proteins in serum
  - Part of innate immune response
  - 3 pathways



<u>Classical Pathway</u>

- Antibody-antigen complexes and some non-specific reacting
- Initiated by C1q
- Binds antibodies or pathogen surface
- o Lectin Pathway
  - Lectin (PRR) molecules (not antibodies) bind pathogen surfaces
  - Initiated by mannose binding lectin or ficolins
    - Bind carbohydrates on pathogen surface
    - □ Mannose PAMPs on salmonella, fungi
- o Alternative Pathway
  - Spontaneous reactivity at pathogen surfaces
  - Initiated by C3
  - Blocked on host cells by multiple proteins
    - 🗆 e.g. CD59
- Complement functions
  - Destruction
    - Polymerisation of terminal proteins to form Membrane Attack Complexes
    - □ MACs form pores in cell membranes
    - Cell lysis
  - Opsonisation
    - □ C3b and C5a proteins induce phagocytosis
  - Inflammation



#### **Regulation of Cytokines**

- Non-specific function must be prevented
  - Transient function



• Ex-vivo application of IL-2 to lymphocytes

•

• Stimulated and activated anti-tumour response

- Repeated subpassage mutations accumulate
- Test for paralytic activity
- **Clinical trials** .
- Mutations sequenced



- Immune response
  - Strong, appropriate response
  - Cellular immunity
  - Humoral immunity (including secretory IgA)
  - Long-lasting memory
- Advantages
  - Multiple antigens
  - Few immunisations
  - Easy to produce without genome
  - May not require adjuvant (modifier)
- Issues
- otesale.co.uk
  - Reversion to wild type (volid 2 and 3) Persistent infection waricella-zoster chick pox, shingles etc.)
  - Severed ease if immunocompromised (measles)
  - ypersensitivity of etga tigens (mumps)
- 2. Kled vaccine
  - Killed by heat can denature too many protein antigens
  - Killed by chemical formaldehyde (Salk polio)
  - e.g. yearly flu vaccination, hepatitis A
  - Immune response
    - Weaker response than live vaccines
    - Good serum antibody response, little secretory IgA
    - Poor cell-mediated immunity
    - Booster shots usually required
  - Advantages
    - Multiple antigens
    - Stable
    - Safer than live vaccine
    - No refrigeration (attenuated can need this)
  - Issues
    - Vaccines not always killed (polio)
    - Lack of understanding about why it protects
    - Contamination with animal viruses (polio)
    - Initial preparation requires working with pathogen
- 3. Subunit and Toxoid Vaccines
  - Specific, purified pathogen subunit/molecule
  - Toxoid vaccines induce antibodies against the exotoxins
    - Exotoxins cause major symptoms

- e.g. tetanus, diphtheria
- o E.g. strep. Pneumoniae, hepatitis B
- o Immune response
  - Weak immune response
  - Good serum antibody response
  - No cell-mediated immunity
  - Booster shots usually required
- Advantages
  - Limited antigens less chance of cross-reactivity
  - Higher levels of specificity and reproducibility
  - Safe than live no chance of accidental infection
  - No need for refrigeration
- $\circ$  lssues
  - Toxoid vaccine
    - Limited to few bacterial diseases
  - Limited number of antigenic targets evolution
  - Difficult to develop
  - Ajuvant required

Preview from Notesale.co.uk Page 46 of 71



**Resolving Inflammation** 

- Malnutrition
- Cancer
- Drug treatment
- Organ removal
- Infection
- Stress
- Age
- Primary = absences, secondary = reduced
  - Low T cell count
  - Lower B cell proliferation
- Malnutrition
  - Different nutritional deficiencies --> different immunodeficiencies
  - Obesity also associated with cancer, inflammation, autoimmune diseases (rheumatoid arthritis)
  - Zinc critical in T cell activation
    - Pigs with Zinc deficiency: decreased T<sub>c</sub> activity, B cell activity, NK activity, phagocytic activity
  - Copper deficiency also has impact
  - Vitamin A



immune responses

- Major infections are viral
  - 1. <u>HIV</u>
    - Mainly sexual transmission
    - ~30 million infected
    - Infects CD4 T<sub>h</sub> cells
    - Also dendritic and macrophages
    - GP120 binds CD4, then CCR5 or CXCR4 (chemotaxis receptor)

# Pregnancy and Newborn Immunity

18 April 2016 10:57

## **Reproduction and the Immune System**

- The mammalian immune system will reject non-identical tissues/cells of the same species
- Allograft rejection
- Blood transfusion
- Haemolytic disease of the newborn
- Every foetus is at least 50% maternal derived
  - Up to 50% non-self
- 3 main challenges
  - 1. Survival of male gametes in the reproductive system
  - 2. Implantation and development of the foetus
  - 3. Survival of the newborn after birth

## Sperm and the Immune System

- Non-self
- Female reproductive tract is site of infection
- Not all survive
- 2-3% of women develop anti-sperm antibodies associated with subfertility or infertility
  - Hypersensitivity even rarer
- Various mechanisms that reduce the immune response
  - Seminal plasma
    - High TGFβ (T<sub>reg</sub>), IL7 (immunoregulatory), IL8 (chemotaxis and regolized only regulatory
       Regulatory
    - Regulatory prostaglandins
    - al plasma become tolerised, less Lenicov et al 2012 - DCs cultiva inflammatory response
- Sperm also provide protective mechanism
  - No MHC1 so should be NK target
  - Pang et al 2007
    - Sperm coated with glycans that reduce NK cell cytotoxicity
    - Also present on some cancer
    - Related to interactions of HIV

## Foetus and the Immune System

- Implantation and development
- 1/2 chromosomes from father
- Specifically paternal MHC molecule
- Graft experiments show that uterus can reject non-self tissue
- Placental development linked to immune response
- Various mechanisms to reduce response
  - Not known if they're present in all mammals
    - Likely to be differences
    - Human and mouse studies predominate
    - T<sub>reg</sub> cells
    - Uterine NK cells

- Passive immunity
- Haemochorial humans, rabbits, rats, mice
  - 3 layers, embryo derived
  - Full antibody transfer
- Endochorial cats, dogs
  - 4 layers, 1 maternal derived, 3 embryonic
  - 6-10% IgG transfer
- Epitheliochorial ruminants, horses, whales
  - 6 layers, 3 maternal, 3 embryonic
  - No antibody transfer
- Different levels in colostrum and milk



- Chicken passive immunity
  - IgY (ancestral E, G), IgM, IgA in serum
    - Hen sera --> egg yolk (IgY)
- Protects 10-20 days
  Maternal Abs impact vaccination of early animals 1/2 life 5-10 tage, CO, UK
  Inhibits newborn ability to respond
  No maternal Ab in calves 1 week to tak (Abs)
  Maternal Ab in calves 1

  - Maternal Ab in calves 1 week to make Abs
     Maternal Ab in calves 4 weeks to make Abs
     Cats and dog vaccinated alter 8 weeks

