
Allen B. Downey and Chris Mayfield

Think Java
How to Think Like a Computer Scientist

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.it-ebooks.info

Preview from Notesale.co.uk

Page 3 of 251

6. Value Methods. 71
Return Values 71
Writing Methods 73
Method Composition 75
Overloading 76
Boolean Methods 77
Javadoc Tags 78
More Recursion 79
Leap of Faith 81
One More Example 82
Vocabulary 82
Exercises 83

7. Loops. 89
The while Statement 89
Generating Tables 90
Encapsulation and Generalization 92
More Generalization 94
The for Statement 96
The do-while Loop 97
break and continue 98
Vocabulary 99
Exercises 99

8. Arrays. 103
Creating Arrays 103
Accessing Elements 104
Displaying Arrays 105
Copying Arrays 106
Array Length 107
Array Traversal 107
Random Numbers 108
Traverse and Count 109
Building a Histogram 110
The Enhanced for Loop 111
Vocabulary 112
Exercises 113

9. Strings and Things. 117
Characters 117
Strings Are Immutable 118
String Traversal 119

Table of Contents | v

www.it-ebooks.info

Preview from Notesale.co.uk

Page 7 of 251

• Program development. There are many strategies for writing programs, including
bottom-up, top-down, and others. We demonstrate multiple program develop‐
ment techniques, allowing readers to choose methods that work best for them.

• Multiple learning curves. To write a program, you have to understand the algo‐
rithm, know the programming language, and be able to debug errors. We discuss
these and other aspects throughout the book, and include an appendix that sum‐
marizes our advice.

Object-Oriented Programming
Some Java books introduce classes and objects immediately; others begin with proce‐
dural programming and transition to object-oriented more gradually.

Many of Java’s object-oriented features are motivated by problems with previous lan‐
guages, and their implementations are influenced by this history. Some of these fea‐
tures are hard to explain when people aren’t familiar with the problems they solve.

We get to object-oriented programming as quickly as possible, limited by the require‐
ment that we introduce concepts one at a time, as clearly as possible, in a way that
allows readers to practice each idea in isolation before moving on. So it takes some
time to get there.

But you can’t write Java programs (even hello world) without encountering object-
oriented features. In some cases we explain a feature briefly when it first appears, and
then explain it more deeply later on.

This book is well suited to prepare students for the AP Computer Science A exam,
which includes object-oriented design and implementation. (AP is a registered trade‐
mark of the College Board.) We introduce nearly every topic in the “AP Java subset”
with a few exceptions. A mapping of Think Java section numbers to the current AP
course description is available on our website: http://thinkjava.org.

Appendixes
The chapters of this book are meant to be read in order, because each one builds on
the previous one. We also include three appendixes with material that can be read at
any time:

Appendix A, Development Tools
The steps for compiling, running, and debugging Java code depend on the details
of the development environment and operating system. We avoided putting these
details in the main text, because they can be distracting. Instead, we provide this
appendix with a brief introduction to DrJava—an interactive development envi‐

x | Preface

www.it-ebooks.info

Preview from Notesale.co.uk

Page 12 of 251

CHAPTER 1

The Way of the Program

The goal of this book is to teach you to think like a computer scientist. This way of
thinking combines some of the best features of mathematics, engineering, and natural
science. Like mathematicians, computer scientists use formal languages to denote
ideas, specifically computations. Like engineers, they design things, assembling com‐
ponents into systems and evaluating trade-offs among alternatives. And like scien‐
tists, they observe the behavior of complex systems, form hypotheses, and test
predictions.

The single most important skill for a computer scientist is problem solving. It
involves the ability to formulate problems, think creatively about solutions, and
express solutions clearly and accurately. As it turns out, the process of learning to
program is an excellent opportunity to develop problem solving skills. That’s why this
chapter is called, “The way of the program”.

On one level you will be learning to program, a useful skill by itself. But on another
level you will use programming as a means to an end. As we go along, that end will
become clearer.

What Is Programming?
A program is a sequence of instructions that specifies how to perform a computation.
The computation might be something mathematical, like solving a system of equa‐
tions or finding the roots of a polynomial. It can also be a symbolic computation, like
searching and replacing text in a document or (strangely enough) compiling a pro‐
gram. The details look different in different languages, but a few basic instructions
appear in just about every language.

1

www.it-ebooks.info

Preview from Notesale.co.uk

Page 17 of 251

that led to the results you see. Thinking about how to correct programs and improve
their performance sometimes even leads to the discovery of new algorithms.

Programming Languages
The programming language you will learn is Java, which is a high-level language.
Other high-level languages you may have heard of include Python, C and C++, Ruby,
and JavaScript.

Before they can run, programs in high-level languages have to be translated into a
low-level language, also called “machine language”. This translation takes some time,
which is a small disadvantage of high-level languages. But high-level languages have
two advantages:

• It is much easier to program in a high-level language. Programs take less time to
write, they are shorter and easier to read, and they are more likely to be correct.

• High-level languages are portable, meaning they can run on different kinds of
computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Two kinds of programs translate high-level languages into low-level languages: inter‐
preters and compilers. An interpreter reads a high-level program and executes it,
meaning that it does what the program says. It processes the program a little at a time,
alternately reading lines and performing computations. Figure 1-1 shows the struc‐
ture of an interpreter.

Figure 1-1. How interpreted languages are executed.

In contrast, a compiler reads the entire program and translates it completely before
the program starts running. In this context, the high-level program is called the
source code, and the translated program is called the object code or the executable.
Once a program is compiled, you can execute it repeatedly without further transla‐
tion. As a result, compiled programs often run faster than interpreted programs.

Java is both compiled and interpreted. Instead of translating programs directly into
machine language, the Java compiler generates byte code. Similar to machine lan‐
guage, byte code is easy and fast to interpret. But it is also portable, so it is possible to
compile a Java program on one machine, transfer the byte code to another machine,

Programming Languages | 3

www.it-ebooks.info

Preview from Notesale.co.uk

Page 19 of 251

Table 1-1. Common escape sequences

\n newline

\t tab

\" double quote

\\ backslash

Formatting Code
In Java programs, some spaces are required. For example, you need at least one space
between words, so this program is not legal:

publicclassGoodbye{

 publicstaticvoidmain(String[] args) {
 System.out.print("Goodbye, ");
 System.out.println("cruel world");
 }
}

But most other spaces are optional. For example, this program is legal:

public class Goodbye {
public static void main(String[] args) {
System.out.print("Goodbye, ");
System.out.println("cruel world");
}
}

The newlines are optional, too. So we could just write:

public class Goodbye { public static void main(String[] args)
{ System.out.print("Goodbye, "); System.out.println
("cruel world");}}

It still works, but the program is getting harder and harder to read. Newlines and
spaces are important for organizing your program visually, making it easier to under‐
stand the program and find errors when they occur.

Many editors will automatically format source code with consistent indenting and
line breaks. For example, in DrJava (see Appendix A) you can indent the code by
selecting all text (Ctrl+A) and pressing the Tab key.

Organizations that do a lot of software development usually have strict guidelines on
how to format source code. For example, Google publishes its Java coding standards
for use in open-source projects: http://google.github.io/styleguide/javaguide.html.

Formatting Code | 7

www.it-ebooks.info

Preview from Notesale.co.uk

Page 23 of 251

If you spend some time learning this vocabulary, you will have an easier time reading
the following chapters.

problem solving:
The process of formulating a problem, finding a solution, and expressing the sol‐
ution.

program:
A sequence of instructions that specifies how to perform tasks on a computer.

programming:
The application of problem solving to creating executable computer programs.

computer science:
The scientific and practical approach to computation and its applications.

algorithm:
A procedure or formula for solving a problem, with or without a computer.

bug:
An error in a program.

debugging:
The process of finding and removing errors.

high-level language:
A programming language that is designed to be easy for humans to read and
write.

low-level language:
A programming language that is designed to be easy for a computer to run. Also
called “machine language” or “assembly language”.

portable:
The ability of a program to run on more than one kind of computer.

interpret:
To run a program in a high-level language by translating it one line at a time and
immediately executing the corresponding instructions.

compile:
To translate a program in a high-level language into a low-level language, all at
once, in preparation for later execution.

source code:
A program in a high-level language, before being compiled.

Vocabulary | 9

www.it-ebooks.info

Preview from Notesale.co.uk

Page 25 of 251

String firstName;
String lastName;
int hour, minute;

This example declares two variables with type String and two with type int. When a
variable name contains more than one word, like firstName, it is conventional to
capitalize the first letter of each word except the first. Variable names are case-
sensitive, so firstName is not the same as firstname or FirstName.

This example also demonstrates the syntax for declaring multiple variables with the
same type on one line: hour and minute are both integers. Note that each declaration
statement ends with a semicolon.

You can use any name you want for a variable. But there are about 50 reserved words,
called keywords, that you are not allowed to use as variable names. These words
include public, class, static, void, and int, which are used by the compiler to ana‐
lyze the structure of the program.

You can find the complete list of keywords at http://docs.oracle.com/javase/tutorial/
java/nutsandbolts/_keywords.html, but you don’t have to memorize them. Most pro‐
gramming editors provide “syntax highlighting”, which makes different parts of the
program appear in different colors.

Assignment
Now that we have declared variables, we want to use them to store values. We do that
with an assignment statement.

message = "Hello!"; // give message the value "Hello!"
hour = 11; // assign the value 11 to hour
minute = 59; // set minute to 59

This example shows three assignments, and the comments illustrate different ways
people sometimes talk about assignment statements. The vocabulary can be confus‐
ing here, but the idea is straightforward:

• When you declare a variable, you create a named storage location.
• When you make an assignment to a variable, you update its value.

As a general rule, a variable has to have the same type as the value you assign to it.
For example, you cannot store a string in minute or an integer in message. We will see
some examples that seem to break this rule, but we’ll get to that later.

A common source of confusion is that some strings look like integers, but they are
not. For example, message can contain the string "123", which is made up of the
characters '1', '2', and '3'. But that is not the same thing as the integer 123.

14 | Chapter 2: Variables and Operators

www.it-ebooks.info

Preview from Notesale.co.uk

Page 30 of 251

Rounding Errors
Most floating-point numbers are only approximately correct. Some numbers, like
reasonably-sized integers, can be represented exactly. But repeating fractions, like
1/3, and irrational numbers, like π, cannot. To represent these numbers, computers
have to round off to the nearest floating-point number.

The difference between the number we want and the floating-point number we get is
called rounding error. For example, the following two statements should be equiva‐
lent:

System.out.println(0.1 * 10);
System.out.println(0.1 + 0.1 + 0.1 + 0.1 + 0.1
 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1);

But on many machines, the output is:

1.0
0.9999999999999999

The problem is that 0.1, which is a terminating fraction in base 10, is a repeating
fraction in base 2. So its floating-point representation is only approximate. When we
add up the approximations, the rounding errors accumulate.

For many applications, like computer graphics, encryption, statistical analysis, and
multimedia rendering, floating-point arithmetic has benefits that outweigh the costs.
But if you need absolute precision, use integers instead. For example, consider a bank
account with a balance of $123.45:

double balance = 123.45; // potential rounding error

In this example, balances will become inaccurate over time as the variable is used in
arithmetic operations like deposits and withdrawals. The result would be angry cus‐
tomers and potential lawsuits. You can avoid the problem by representing the balance
as an integer:

int balance = 12345; // total number of cents

This solution works as long as the number of cents doesn’t exceed the largest integer,
which is about 2 billion.

Operators for Strings
In general, you cannot perform mathematical operations on strings, even if the
strings look like numbers. The following expressions are illegal:

"Hello" - 1 "World" / 123 "Hello" * "World"

Rounding Errors | 19

www.it-ebooks.info

Preview from Notesale.co.uk

Page 35 of 251

cm = inch * 2.54;
System.out.print(inch + " in = ");
System.out.println(cm + " cm");

This code works correctly, but it has a minor problem. If another programmer reads
this code, they might wonder where 2.54 comes from. For the benefit of others (and
yourself in the future), it would be better to assign this value to a variable with a
meaningful name. We’ll demonstrate in the next section.

Literals and Constants
A value that appears in a program, like 2.54 (or " in ="), is called a literal. In gen‐
eral, there’s nothing wrong with literals. But when numbers like 2.54 appear in an
expression with no explanation, they make code hard to read. And if the same value
appears many times, and might have to change in the future, it makes code hard to
maintain.

Values like that are sometimes called magic numbers (with the implication that being
“magic” is not a good thing). A good practice is to assign magic numbers to variables
with meaningful names, like this:

double cmPerInch = 2.54;
cm = inch * cmPerInch;

This version is easier to read and less error-prone, but it still has a problem. Variables
can vary, but the number of centimeters in an inch does not. Once we assign a value
to cmPerInch, it should never change. Java provides a language feature that enforces
that rule, the keyword final.

final double CM_PER_INCH = 2.54;

Declaring that a variable is final means that it cannot be reassigned once it has been
initialized. If you try, the compiler reports an error. Variables declared as final are
called constants. By convention, names for constants are all uppercase, with the
underscore character (_) between words.

Formatting Output
When you output a double using print or println, it displays up to 16 decimal
places:

System.out.print(4.0 / 3.0);

The result is:

1.3333333333333333

Literals and Constants | 33

www.it-ebooks.info

Preview from Notesale.co.uk

Page 49 of 251

Using division and modulus, we can convert to feet and inches like this:

quotient = 76 / 12; // division
remainder = 76 % 12; // modulus

The first line yields 6. The second line, which is pronounced “76 mod 12”, yields 4. So
76 inches is 6 feet, 4 inches.

The modulus operator looks like a percent sign, but you might find it helpful to think
of it as a division sign (÷) rotated to the left.

The modulus operator turns out to be surprisingly useful. For example, you can
check whether one number is divisible by another: if x \% y is zero, then x is divisible
by y. You can use modulus to “extract” digits from a number: x \% 10 yields the
rightmost digit of x, and x \% 100 yields the last two digits. Also, many encryption
algorithms use the modulus operator extensively.

Putting It All Together
At this point, you have seen enough Java to write useful programs that solve everyday
problems. You can (1) import Java library classes, (2) create a Scanner, (3) get input
from the keyboard, (4) format output with printf, and (5) divide and mod integers.
Now we will put everything together in a complete program:

import java.util.Scanner;

/**
 * Converts centimeters to feet and inches.
 */
public class Convert {

 public static void main(String[] args) {
 double cm;
 int feet, inches, remainder;
 final double CM_PER_INCH = 2.54;
 final int IN_PER_FOOT = 12;
 Scanner in = new Scanner(System.in);

 // prompt the user and get the value
 System.out.print("Exactly how many cm? ");
 cm = in.nextDouble();

 // convert and output the result
 inches = (int) (cm / CM_PER_INCH);
 feet = inches / IN_PER_FOOT;
 remainder = inches % IN_PER_FOOT;
 System.out.printf("%.2f cm = %d ft, %d in\n",
 cm, feet, remainder);
 }
}

36 | Chapter 3: Input and Output

www.it-ebooks.info

Preview from Notesale.co.uk

Page 52 of 251

veniently, the Math class provides a constant double named PI that contains an
approximation of π:

double degrees = 90;
double angle = degrees / 180.0 * Math.PI;

Notice that PI is in capital letters. Java does not recognize Pi, pi, or pie. Also, PI is
the name of a variable, not a method, so it doesn’t have parentheses. The same is true
for the constant Math.E, which approximates Euler’s number.

Converting to and from radians is a common operation, so the Math class provides
methods that do it for you.

double radians = Math.toRadians(180.0);
double degrees = Math.toDegrees(Math.PI);

Another useful method is round, which rounds a floating-point value to the nearest
integer and returns a long. A long is like an int, but bigger. More specifically, an int
uses 32 bits; the largest value it can hold is 231 − 1, which is about 2 billion. A long
uses 64 bits, so the largest value is 263 − 1, which is about 9 quintillion.

long x = Math.round(Math.PI * 20.0);

The result is 63 (rounded up from 62.8319).

Take a minute to read the documentation for these and other methods in the Math
class. The easiest way to find documentation for Java classes is to do a web search for
“Java” and the name of the class.

Composition Revisited
Just as with mathematical functions, Java methods can be composed. That means you
can use one expression as part of another. For example, you can use any expression as
an argument to a method:

double x = Math.cos(angle + Math.PI / 2.0);

This statement divides Math.PI by two, adds the result to angle, and computes the
cosine of the sum. You can also take the result of one method and pass it as an argu‐
ment to another:

double x = Math.exp(Math.log(10.0));

In Java, the log method always uses base e. So this statement finds the log base e of
10, and then raises e to that power. The result gets assigned to x.

Some math methods take more than one argument. For example, Math.pow takes two
arguments and raises the first to the power of the second. This line of code assigns the
value 1024.0 to the variable x:

44 | Chapter 4: Void Methods

www.it-ebooks.info

Preview from Notesale.co.uk

Page 60 of 251

double x = Math.pow(2.0, 10.0);

When using Math methods, it is a common error to forget the Math. For example, if
you try to invoke pow(2.0, 10.0), you get an error message like:

File: Test.java [line: 5]
Error: cannot find symbol
 symbol: method pow(double,double)
 location: class Test

The message “cannot find symbol” is confusing, but the last line provides a useful
hint. The compiler is looking for pow in the same class where it is used, which is Test.
If you don’t specify a class name, the compiler looks in the current class.

Adding New Methods
You have probably guessed by now that you can define more than one method in a
class. Here’s an example:

public class NewLine {

 public static void newLine() {
 System.out.println();
 }

 public static void main(String[] args) {
 System.out.println("First line.");
 newLine();
 System.out.println("Second line.");
 }
}

The name of the class is NewLine. By convention, class names begin with a capital let‐
ter. NewLine contains two methods, newLine and main. Remember that Java is case-
sensitive, so NewLine and newLine are not the same.

Method names should begin with a lowercase letter and use “camel case”, which is a
cute name for jammingWordsTogetherLikeThis. You can use any name you want for
methods, except main or any of the Java keywords.

newLine and main are public, which means they can be invoked from other classes.
They are both static, but we can’t explain what that means yet. And they are both
void, which means that they don’t yield a result (unlike the Math methods, for exam‐
ple).

The parentheses after the method name contain a list of variables, called parameters,
where the method stores its arguments. main has a single parameter, called args,
which has type String[]. That means that whoever invokes main must provide an
array of strings (we’ll get to arrays in a later chapter).

Adding New Methods | 45

www.it-ebooks.info

Preview from Notesale.co.uk

Page 61 of 251

File: Test.java [line: 10]
Error: method printTwice in class Test cannot be applied
 to given types;
 required: java.lang.String
 found: int
 reason: actual argument int cannot be converted to
 java.lang.String by method invocation conversion

Sometimes Java can convert an argument from one type to another automatically. For
example, Math.sqrt requires a double, but if you invoke Math.sqrt(25), the integer
value 25 is automatically converted to the floating-point value 25.0. But in the case of
printTwice, Java can’t (or won’t) convert the integer 17 to a String.

Parameters and other variables only exist inside their own methods. Inside main,
there is no such thing as s. If you try to use it there, you’ll get a compiler error. Simi‐
larly, inside printTwice there is no such thing as argument. That variable belongs to
main.

Because variables only exist inside the methods where they are defined, they are often
called local variables.

Multiple Parameters
Here is an example of a method that takes two parameters:

public static void printTime(int hour, int minute) {
 System.out.print(hour);
 System.out.print(":");
 System.out.println(minute);
}

In the parameter list, it may be tempting to write:

public static void printTime(int hour, minute) {
 ...

But that format (without the second int) is only legal for variable declarations. In
parameter lists, you need to specify the type of each variable separately.

To invoke this method, we have to provide two integers as arguments:

int hour = 11;
int minute = 59;
printTime(hour, minute);

A common error is to declare the types of the arguments, like this:

int hour = 11;
int minute = 59;
printTime(int hour, int minute); // syntax error

Multiple Parameters | 49

www.it-ebooks.info

Preview from Notesale.co.uk

Page 65 of 251

The class comment explains the purpose of the class. The method comment explains
what the method does.

Notice that this example also includes an inline comment, beginning with //. In gen‐
eral, inline comments are short phrases that help explain complex parts of a program.
They are intended for other programmers reading and maintaining the source code.

In contrast, Javadoc comments are longer, usually complete sentences. They explain
what each method does, but they omit details about how the method works. And they
are intended for people who will use the methods without looking at the source code.

Appropriate comments and documentation are essential for making source code
readable. And remember that the person most likely to read your code in the future,
and appreciate good documentation, is you.

Vocabulary
argument:

A value that you provide when you invoke a method. This value must have the
same type as the corresponding parameter.

invoke:
To cause a method to execute. Also known as “calling” a method.

parameter:
A piece of information that a method requires before it can run. Parameters are
variables: they contain values and have types.

flow of execution:
The order in which Java executes methods and statements. It may not necessarily
be from top to bottom, left to right.

parameter passing:
The process of assigning an argument value to a parameter variable.

local variable:
A variable declared inside a method. Local variables cannot be accessed from
outside their method.

stack diagram:
A graphical representation of the variables belonging to each method. The
method calls are “stacked” from top to bottom, in the flow of execution.

frame:
In a stack diagram, a representation of the variables and parameters for a
method, along with their current values.

54 | Chapter 4: Void Methods

www.it-ebooks.info

Preview from Notesale.co.uk

Page 70 of 251

if (x > 0)
 System.out.println("x is positive");
 System.out.println("x is not zero");

This code is misleading because it’s not indented correctly. Since there are no braces,
only the first println is part of the if statement. Here is what the compiler actually
sees:

if (x > 0) {
 System.out.println("x is positive");
}
 System.out.println("x is not zero");

As a result, the second println runs no matter what. Even experienced programmers
make this mistake; search the web for Apple’s “goto fail” bug.

Chaining and Nesting
Sometimes you want to check related conditions and choose one of several actions.
One way to do this is by chaining a series of if and else statements:

if (x > 0) {
 System.out.println("x is positive");
} else if (x < 0) {
 System.out.println("x is negative");
} else {
 System.out.println("x is zero");
}

These chains can be as long as you want, although they can be difficult to read if they
get out of hand. One way to make them easier to read is to use standard indentation,
as demonstrated in these examples. If you keep all the statements and braces lined up,
you are less likely to make syntax errors.

In addition to chaining, you can also make complex decisions by nesting one condi‐
tional statement inside another. We could have written the previous example as:

if (x == 0) {
 System.out.println("x is zero");
} else {
 if (x > 0) {
 System.out.println("x is positive");
 } else {
 System.out.println("x is negative");
 }
}

The outer conditional has two branches. The first branch contains a print statement,
and the second branch contains another conditional statement, which has two
branches of its own. These two branches are also print statements, but they could
have been conditional statements as well.

60 | Chapter 5: Conditionals and Logic

www.it-ebooks.info

Preview from Notesale.co.uk

Page 76 of 251

There are four frames for countdown, each with a different value for the parameter n.
The last frame, with n == 0, is called the base case. It does not make a recursive call,
so there are no more frames below it.

If there is no base case in a recursive method, or if the base case is never reached, the
stack would grow forever, at least in theory. In practice, the size of the stack is limited;
if you exceed the limit, you get a StackOverflowError.

For example, here is a recursive method without a base case:

public static void forever(String s) {
 System.out.println(s);
 forever(s);
}

This method displays the string until the stack overflows, at which point it throws an
exception.

Binary Numbers
The countdown example has three parts: (1) it checks the base case, (2) displays some‐
thing, and (3) makes a recursive call. What do you think happens if you reverse steps
2 and 3, making the recursive call before displaying?

public static void countup(int n) {
 if (n == 0) {
 System.out.println("Blastoff!");
 } else {
 countup(n - 1);
 System.out.println(n);
 }
}

The stack diagram is the same as before, and the method is still called n times. But
now the System.out.println happens just before each recursive call returns. As a
result, it counts up instead of down:

Blastoff!
1
2
3

This behavior comes in handy when it is easier to compute results in reverse order.
For example, to convert a decimal integer into its binary representation, you repeat‐
edly divide the number by two:

23 / 2 is 11 remainder 1
11 / 2 is 5 remainder 1
 5 / 2 is 2 remainder 1
 2 / 2 is 1 remainder 0
 1 / 2 is 0 remainder 1

Binary Numbers | 65

www.it-ebooks.info

Preview from Notesale.co.uk

Page 81 of 251

Compared to void methods, value methods differ in two ways:

• They declare the type of the return value (the return type);
• They use at least one return statement to provide a return value.

Here’s an example: calculateArea takes a double as a parameter and returns the area
of a circle with that radius:

public static double calculateArea(double radius) {
 double result = Math.PI * radius * radius;
 return result;
}

As usual, this method is public and static. But in the place where we are used to
seeing void, we see double, which means that the return value from this method is a
double.

The last line is a new form of the return statement that includes a return value. This
statement means, “return immediately from this method and use the following
expression as the return value.” The expression you provide can be arbitrarily com‐
plex, so we could have written this method more concisely:

public static double calculateArea(double radius) {
 return Math.PI * radius * radius;
}

On the other hand, temporary variables like result often make debugging easier,
especially when you are stepping through code using an interactive debugger (see
“Tracing with a Debugger” on page 207).

The type of the expression in the return statement must match the return type of the
method. When you declare that the return type is double, you are making a promise
that this method will eventually produce a double value. If you try to return with no
expression, or an expression with the wrong type, the compiler will generate an error.

Sometimes it is useful to have multiple return statements, for example, one in each
branch of a conditional:

public static double absoluteValue(double x) {
 if (x < 0) {
 return -x;
 } else {
 return x;
 }
}

Since these return statements are in a conditional statement, only one will be exe‐
cuted. As soon as either of them executes, the method terminates without executing
any more statements.

72 | Chapter 6: Value Methods

www.it-ebooks.info

Preview from Notesale.co.uk

Page 88 of 251

As an example, suppose you want to find the distance between two points, given by
the coordinates x1, y1 and x2, y2 . By the usual definition:

distance = x2 − x1
2 + y2 − y1

2

The first step is to consider what a distance method should look like in Java. In other
words, what are the inputs (parameters) and what is the output (return value)? In this
case, the two points are the parameters, and it is natural to represent them using four
double values. The return value is the distance, which should also have type double.

Already we can write an outline for the method, which is sometimes called a stub.
The stub includes the method signature and a return statement:

public static double distance
 (double x1, double y1, double x2, double y2) {
 return 0.0;
}

The return statement is a placeholder that is necessary for the program to compile. At
this stage the program doesn’t do anything useful, but it is good to compile it so we
can find any syntax errors before we add more code.

It’s usually a good idea to think about testing before you develop new methods; doing
so can help you figure out how to implement them. To test the method, we can
invoke it from main using sample values:

double dist = distance(1.0, 2.0, 4.0, 6.0);

With these values, the horizontal distance is 3.0 and the vertical distance is 4.0. So the
result should be 5.0, the hypotenuse of a 3-4-5 triangle. When you are testing a
method, it is helpful to know the right answer.

Once we have compiled the stub, we can start adding lines of code one at a time. After
each incremental change, we recompile and run the program. If there is an error at
any point, we have a good idea where to look: the last line we added.

The next step is to find the differences x2 − x1 and y2 − y1. We store those values in
temporary variables named dx and dy.

public static double distance
 (double x1, double y1, double x2, double y2) {
 double dx = x2 - x1;
 double dy = y2 - y1;
 System.out.println("dx is " + dx);
 System.out.println("dy is " + dy);
 return 0.0;
}

74 | Chapter 6: Value Methods

www.it-ebooks.info

Preview from Notesale.co.uk

Page 90 of 251

Conditional statements often invoke boolean methods and use the result as the con‐
dition:

if (isSingleDigit(z)) {
 System.out.println("z is small");
} else {
 System.out.println("z is big");
}

Examples like this one almost read like English: “If is single digit z, print ... else
print ...”.

Javadoc Tags
In “Writing Documentation” on page 53, we discussed how to write documentation
comments using /**. It’s generally a good idea to document each class and method,
so that other programmers can understand what they do without having to read the
code.

To organize the documentation into sections, Javadoc supports optional tags that
begin with the at sign (@). For example, we can use @param and @return to provide
additional information about parameters and return values.

/**
 * Tests whether x is a single digit integer.
 *
 * @param x the integer to test
 * @return true if x has one digit, false otherwise
 */
public static boolean isSingleDigit(int x) {

Figure 6-1 shows part of the resulting HTML page generated by Javadoc. Notice the
relationship between the source code and the documentation.

Figure 6-1. HTML documentation for isSingleDigit.

78 | Chapter 6: Value Methods

www.it-ebooks.info

Preview from Notesale.co.uk

Page 94 of 251

4. Also in main, use multadd to compute the following values:

sin π
4 +

cos π
4

2
log 10 + log 20

5. Write a method called expSum that takes a double as a parameter and that uses
multadd to calculate:

xe−x + 1 − e−x

Hint: The method for raising e to a power is Math.exp.

In the last part of this exercise, you need to write a method that invokes another
method you wrote. Whenever you do that, it is a good idea to test the first method
carefully before working on the second. Otherwise, you might find yourself debug‐
ging two methods at the same time, which can be difficult.

One of the purposes of this exercise is to practice pattern-matching: the ability to rec‐
ognize a specific problem as an instance of a general category of problems.

Exercise 6-5.

What is the output of the following program?

public static void main(String[] args) {
 boolean flag1 = isHoopy(202);
 boolean flag2 = isFrabjuous(202);
 System.out.println(flag1);
 System.out.println(flag2);
 if (flag1 && flag2) {
 System.out.println("ping!");
 }
 if (flag1 || flag2) {
 System.out.println("pong!");
 }
}

public static boolean isHoopy(int x) {
 boolean hoopyFlag;
 if (x % 2 == 0) {
 hoopyFlag = true;
 } else {
 hoopyFlag = false;
 }
 return hoopyFlag;
}

Exercises | 85

www.it-ebooks.info

Preview from Notesale.co.uk

Page 101 of 251

This type of flow is called a loop, because the last step loops back around to the first.

The body of the loop should change the value of one or more variables so that, even‐
tually, the condition becomes false and the loop terminates. Otherwise the loop will
repeat forever, which is called an infinite loop. An endless source of amusement for
computer scientists is the observation that the directions on shampoo, “Lather, rinse,
repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop terminates when n is positive.
But in general, it is not so easy to tell whether a loop terminates. For example, this
loop continues until n is 1 (which makes the condition false):

public static void sequence(int n) {
 while (n != 1) {
 System.out.println(n);
 if (n % 2 == 0) { // n is even
 n = n / 2;
 } else { // n is odd
 n = n * 3 + 1;
 }
 }
}

Each time through the loop, the program displays the value of n and then checks
whether it is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument passed to
sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that
n will ever reach 1 and that the program will ever terminate. For some values of n, we
can prove that it terminates. For example, if the starting value is a power of two, then
the value of n will be even every time through the loop until we get to 1. The previous
example ends with such a sequence, starting when n is 16.

The hard question is whether this program terminates for all values of n. So far, no
one has been able to prove it or disprove it! For more information, see https://en.wiki
pedia.org/wiki/Collatz_conjecture.

Generating Tables
Loops are good for generating and displaying tabular data. Before computers were
readily available, people had to calculate logarithms, sines and cosines, and other
common mathematical functions by hand. To make that easier, there were books of
tables where you could look up values of various functions. Creating these tables by
hand was slow and boring, and the results were often full of errors.

90 | Chapter 7: Loops

www.it-ebooks.info

Preview from Notesale.co.uk

Page 106 of 251

In words, the length of each row is the same as its row number. The result is a trian‐
gular multiplication table.

 1
 2 4
 3 6 9
 4 8 12 16
 5 10 15 20 25
 6 12 18 24 30 36
 7 14 21 28 35 42 49

Generalization makes code more versatile, more likely to be reused, and sometimes
easier to write.

The for Statement
The loops we have written so far have several elements in common. They start by ini‐
tializing a variable, they have a condition that depends on that variable, and inside the
loop they do something to update that variable. This type of loop is so common that
there is another statement, the for loop, that expresses it more concisely.

For example, we could rewrite printTable like this:
public static void printTable(int rows) {
 for (int i = 1; i <= rows; i = i + 1) {
 printRow(i, rows);
 }
}

for loops have three components in parentheses, separated by semicolons: the initial‐
izer, the condition, and the update.

1. The initializer runs once at the very beginning of the loop.
2. The condition is checked each time through the loop. If it is false, the loop ends.

Otherwise, the body of the loop is executed (again).
3. At the end of each iteration, the update runs, and we go back to step 2.

The for loop is often easier to read because it puts all the loop-related statements at
the top of the loop.

There is one difference between for loops and while loops: if you declare a variable
in the initializer, it only exists inside the for loop. For example, here is a version of
printRow that uses a for loop:

public static void printRow(int n, int cols) {
 for (int i = 1; i <= cols; i = i + 1) {
 System.out.printf("%4d", n * i);
 }
 System.out.println(i); // compiler error
}

96 | Chapter 7: Loops

www.it-ebooks.info

Preview from Notesale.co.uk

Page 112 of 251

Although break and continue statements give you more control of the loop execu‐
tion, they can make code difficult to understand and debug. Use them sparingly.

Vocabulary
iteration:

Executing a sequence of statements repeatedly.

loop:
A statement that executes a sequence of statements repeatedly.

loop body:
The statements inside the loop.

infinite loop:
A loop whose condition is always true.

program development:
A process for writing programs. So far we have seen “incremental development”
and “encapsulation and generalization”.

encapsulate:
To wrap a sequence of statements in a method.

generalize:
To replace something unnecessarily specific (like a constant value) with some‐
thing appropriately general (like a variable or parameter).

loop variable:
A variable that is initialized, tested, and updated in order to control a loop.

increment:
Increase the value of a variable.

decrement:
Decrease the value of a variable.

pretest loop:
A loop that tests the condition before each iteration.

posttest loop:
A loop that tests the condition after each iteration.

Exercises
The code for this chapter is in the ch07 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.

Vocabulary | 99

www.it-ebooks.info

Preview from Notesale.co.uk

Page 115 of 251

Exercises
The code for this chapter is in the ch08 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 8-1.

The goal of this exercise is to practice encapsulation with some of the examples in this
chapter.

1. Starting with the code in “Array Traversal” on page 107, write a method called
powArray that takes a double array, a, and returns a new array that contains the
elements of a squared. Generalize it to take a second argument and raise the ele‐
ments of a to the given power.

2. Starting with the code in “The Enhanced for Loop” on page 111, write a method
called histogram that takes an int array of scores from 0 to (but not including)
100, and returns a histogram of 100 counters. Generalize it to take the number of
counters as an argument.

Exercise 8-2.

The purpose of this exercise is to practice reading code and recognizing the traversal
patterns in this chapter. The following methods are hard to read, because instead of
using meaningful names for the variables and methods, they use names of fruit.

public static int banana(int[] a) {
 int kiwi = 1;
 int i = 0;
 while (i < a.length) {
 kiwi = kiwi * a[i];
 i++;
 }
 return kiwi;
}

public static int grapefruit(int[] a, int grape) {
 for (int i = 0; i < a.length; i++) {
 if (a[i] == grape) {
 return i;
 }
 }
 return -1;
}

Exercises | 113

www.it-ebooks.info

Preview from Notesale.co.uk

Page 129 of 251

public static int pineapple(int[] a, int apple) {
 int pear = 0;
 for (int pine: a) {
 if (pine == apple) {
 pear++;
 }
 }
 return pear;
}

For each method, write one sentence that describes what the method does, without
getting into the details of how it works. For each variable, identify the role it plays.

Exercise 8-3.

What is the output of the following program? Draw a stack diagram that shows the
state of the program just before mus returns. Describe in a few words what mus does.

public static int[] make(int n) {
 int[] a = new int[n];
 for (int i = 0; i < n; i++) {
 a[i] = i + 1;
 }
 return a;
}

public static void dub(int[] jub) {
 for (int i = 0; i < jub.length; i++) {
 jub[i] *= 2;
 }
}

public static int mus(int[] zoo) {
 int fus = 0;
 for (int i = 0; i < zoo.length; i++) {
 fus += zoo[i];
 }
 return fus;
}

public static void main(String[] args) {
 int[] bob = make(5);
 dub(bob);
 System.out.println(mus(bob));
}

Exercise 8-4.

Write a method called indexOfMax that takes an array of integers and returns the
index of the largest element. Can you write this method using an enhanced for loop?
Why or why not?

114 | Chapter 8: Arrays

www.it-ebooks.info

Preview from Notesale.co.uk

Page 130 of 251

Figure 10-7. State diagram showing the effect of setting a variable to null.

As your program runs, the system automatically looks for stranded objects and
reclaims them; then the space can be reused for new objects. This process is called
garbage collection.

You don’t have to do anything to make garbage collection happen, and in general
don’t have to be aware of it. But in high-performance applications, you may notice a
slight delay every now and then when Java reclaims space from discarded objects.

Class Diagrams
To summarize what we’ve learned so far, Point and Rectangle objects each have their
own attributes and methods. Attributes are an object’s data, and methods are an
object’s code. An object’s class defines which attributes and methods it will have.

In practice, it’s more convenient to look at high-level pictures than to examine the
source code. Unified Modeling Language (UML) defines a standard way to summa‐
rize the design of a class.

As shown in Figure 10-8, a class diagram is divided into two sections. The top half
lists the attributes, and the bottom half lists the methods. UML uses a language-
independent format, so rather than showing int x, the diagram uses x: int.

Figure 10-8. UML class diagrams for Point and Rectangle.

138 | Chapter 10: Objects

www.it-ebooks.info

Preview from Notesale.co.uk

Page 154 of 251

Now take a look at Rectangle’s grow and translate methods. There is more to them
than you may have realized, but that doesn’t limit your ability to use these methods in
a program.

To summarize the whole chapter, objects encapsulate data and provide methods to
access and modify the data directly. Object-oriented programming makes it possible
to hide messy details so that you can more easily use and understand code that other
people wrote.

Vocabulary
attribute:

One of the named data items that make up an object.

dot notation:
Use of the dot operator (.) to access an object’s attributes or methods.

object-oriented:
A way of organizing code and data into objects, rather than independent meth‐
ods.

garbage collection:
The process of finding objects that have no references and reclaiming their stor‐
age space.

UML:
Unified Modeling Language, a standard way to draw diagrams for software engi‐
neering.

class diagram:
An illustration of the attributes and methods for a class.

Exercises
The code for this chapter is in the ch10 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

140 | Chapter 10: Objects

www.it-ebooks.info

Preview from Notesale.co.uk

Page 156 of 251

CHAPTER 11

Classes

Whenever you define a new class, you also create a new type with the same name. So
way back in “The Hello World Program” on page 4, when we defined the class Hello,
we created a type named Hello. We didn’t declare any variables with type Hello, and
we didn’t use new to create a Hello object. It wouldn’t have done much if we had—but
we could have!

In this chapter, we will define classes that represent useful object types. We will also
clarify the difference between classes and objects. Here are the most important ideas:

• Defining a class creates a new object type with the same name.
• Every object belongs to some object type; that is, it is an instance of some class.
• A class definition is like a template for objects: it specifies what attributes the

objects have and what methods can operate on them.
• Think of a class like a blueprint for a house: you can use the same blueprint to

build any number of houses.
• The methods that operate on an object type are defined in the class for that

object.

The Time Class
One common reason to define a new class is to encapsulate related data in an object
that can be treated as a single unit. That way, we can use objects as parameters and
return values, rather than passing and returning multiple values. This design princi‐
ple is called data encapsulation.

145

www.it-ebooks.info

Preview from Notesale.co.uk

Page 161 of 251

Here is an example constructor for the Time class:

public Time() {
 this.hour = 0;
 this.minute = 0;
 this.second = 0.0;
}

This constructor does not take any arguments. Each line initializes an instance vari‐
able to zero (which in this example means midnight).

The name this is a keyword that refers to the object we are creating. You can use
this the same way you use the name of any other object. For example, you can read
and write the instance variables of this, and you can pass this as an argument to
other methods. But you do not declare this, and you can’t make an assignment to it.

A common error when writing constructors is to put a return statement at the end.
Like void methods, constructors do not return values.

To create a Time object, you must use the new operator:

Time time = new Time();

When you invoke new, Java creates the object and calls your constructor to initialize
the instance variables. When the constructor is done, new returns a reference to the
new object. In this example, the reference gets assigned to the variable time, which
has type Time. Figure 11-1 shows the result.

Figure 11-1. State diagram of a Time object.

Constructors | 147

www.it-ebooks.info

Preview from Notesale.co.uk

Page 163 of 251

By default it simply displays the type of the object and its address, but you can over‐
ride this behavior by providing your own toString method. For example, here is a
toString method for Time:

public String toString() {
 return String.format("%02d:%02d:%04.1f\n",
 this.hour, this.minute, this.second);
}

The definition does not have the keyword static, because it is not a static method. It
is an instance method, so called because when you invoke it, you invoke it on an
instance of the class (Time in this case). Instance methods are sometimes called “non-
static”; you might see this term in an error message.

The body of the method is similar to printTime in the previous section, with two
changes:

• Inside the method, we use this to refer to the current instance; that is, the object
the method is invoked on.

• Instead of printf, it uses String.format, which returns a formatted String
rather than displaying it.

Now you can call toString directly:

Time time = new Time(11, 59, 59.9);
String s = time.toString();

Or you can invoke it indirectly through println:

System.out.println(time);

In this example, this in toString refers to the same object as time. The output is
11:59:59.9.

The equals Method
We have seen two ways to check whether values are equal: the == operator and the
equals method. With objects you can use either one, but they are not the same.

• The == operator checks whether objects are identical; that is, whether they are
the same object.
The equals method checks whether they are equivalent; that is, whether they
have the same value.

The definition of identity is always the same, so the == operator always does the same
thing. But the definition of equivalence is different for different objects, so objects can
define their own equals methods.

152 | Chapter 11: Classes

www.it-ebooks.info

Preview from Notesale.co.uk

Page 168 of 251

CHAPTER 13

Objects of Arrays

In the previous chapter, we defined a class to represent cards and used an array of
Card objects to represent a deck.

In this chapter, we take another step toward object-oriented programming by defin‐
ing a class to represent a deck of cards. And we present algorithms for shuffling and
sorting arrays.

The code for this chapter is in Card.java and Deck.java, which are in the directory
ch13 in the repository for this book. Instructions for downloading this code are in
“Using the Code Examples” on page xi.

The Deck Class
The main idea of this chapter is to create a Deck class that encapsulates an array of
Cards. The initial class definition looks like this:

public class Deck {
 private Card[] cards;

 public Deck(int n) {
 this.cards = new Card[n];
 }
}

The constructor initializes the instance variable with an array of n cards, but it doesn’t
create any card objects. Figure 13-1 shows what a Deck looks like with no cards.

175

www.it-ebooks.info

Preview from Notesale.co.uk

Page 191 of 251

Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 13-1.

You can learn more about the sorting algorithms in this chapter, and others, at http://
www.sorting-algorithms.com/. This site includes explanations of the algorithms, ani‐
mations that show how they work, and analysis of their efficiency.

Exercise 13-2.

The goal of this exercise is to implement the shuffling algorithm from this chapter.

1. In the repository for this book, you should find a file called Deck.java that con‐
tains the code in this chapter. Check that you can compile it in your environ‐
ment.

2. Add a Deck method called randomInt that takes two integers, low and high, and
returns a random integer between low and high, including both. You can use the
nextInt provided by java.util.Random, which we saw in “Random Numbers”
on page 108. But you should avoid creating a Random object every time random
Int is invoked.

3. Write a method called swapCards that takes two indexes and swaps the cards at
the given locations.

4. Write a method called shuffle that uses the algorithm in “Shuffling Decks” on
page 176.

Exercise 13-3.

The goal of this exercise is to implement the sorting algorithms from this chapter. Use
the Deck.java file from the previous exercise (or create a new one from scratch).

1. Write a method called indexLowest that uses the compareCard method to find
the lowest card in a given range of the deck (from lowIndex to highIndex,
including both).

2. Write a method called selectionSort that implements the selection sort algo‐
rithm in “Selection Sort” on page 177.

3. Using the pseudocode in “Merge Sort” on page 178, write the method called
merge. The best way to test it is to build and shuffle a deck. Then use subdeck to
form two small subdecks, and use selection sort to sort them. Then you can pass
the two halves to merge to see if it works.

182 | Chapter 13: Objects of Arrays

www.it-ebooks.info

Preview from Notesale.co.uk

Page 198 of 251

www.it-ebooks.info

Preview from Notesale.co.uk

Page 200 of 251

CHAPTER 14

Objects of Objects

Now that we have classes that represent cards and decks, let’s use them to make a
game! Crazy Eights is a classic card game for two or more players. The main objective
is to be the first player to get rid of all your cards. Here’s how to play:

• Deal five or more cards to each player, and then deal one card face up to create
the “discard pile”. Place the remaining cards face down to create the “draw pile”.

• Each player takes turns placing a single card on the discard pile. The card must
match the rank or suit of the previously played card, or be an eight, which is a
“wild card”.

• When players don’t have a matching card or an eight, they must draw new cards
until they get one.

• If the draw pile ever runs out, the discard pile is shuffled (except the top card)
and becomes the new draw pile.

• As soon as a player has no cards, the game ends and all other players score pen‐
alty points for their remaining cards. Eights are worth 20, face cards are worth
10, and all others are worth their rank.

You can read https://en.wikipedia.org/wiki/Crazy_Eights for more details, but we have
enough to get started.

The code for this chapter is in the directory ch14 in the repository for this book.
Instructions for downloading this code are in “Using the Code Examples” on page xi.

185

www.it-ebooks.info

Preview from Notesale.co.uk

Page 201 of 251

ArrayList provides additional methods we aren’t using here. You can read about
them in the documentation, which you can find by doing a web search for “Java
ArrayList”.

Inheritance
At this point we have a class that represents a collection of cards. Next we’ll use it to
define Deck and Hand. Here is the complete definition of Deck:

public class Deck extends CardCollection {

 public Deck(String label) {
 super(label);

 for (int suit = 0; suit <= 3; suit++) {
 for (int rank = 1; rank <= 13; rank++) {
 cards.add(new Card(rank, suit));
 }
 }
 }
}

The first line uses the keyword extends to indicate that Deck extends the class Card
Collection. That means a Deck object has the same instance variables and methods
as a CardCollection. Another way to say the same thing is that Deck “inherits from”
CardCollection. We could also say that CardCollection is a superclass, and Deck is
one of its subclasses.

In Java, classes may only extend one superclass. Classes that do not specify a super‐
class with extends automatically inherit from java.lang.Object. So in this example,
Deck extends CardCollection, which in turn extends Object. The Object class pro‐
vides the default equals and toString methods, among other things.

Constructors are not inherited, but all other public attributes and methods are. The
only additional method in Deck, at least for now, is a constructor. So you can create a
Deck object like this:

Deck deck = new Deck("Deck");

The first line of the constructor uses something new, super, which is a keyword that
refers to the superclass of the current class. When super is used like a method, as in
this example, it invokes the constructor of the superclass.

So in this case, super invokes the CardCollection constructor, which initializes the
attributes label and cards. When it returns, the Deck constructor resumes and pop‐
ulates the (empty) ArrayList with Card objects.

Inheritance | 189

www.it-ebooks.info

Preview from Notesale.co.uk

Page 205 of 251

Exercise B-3.

In this exercise, you will draw “Moiré patterns” that seem to shift around as you
move. For an explanation of what is going on, see https://en.wikipedia.org/wiki/
Moire_pattern.

1. In the directory app02 in the repository for this book, you’ll find a file named
Moire.java. Open it and read the paint method. Draw a sketch of what you
expect it to do. Now run it. Did you get what you expected?

2. Modify the program so that the space between the circles is larger or smaller. See
what happens to the image.

3. Modify the program so that the circles are drawn in the center of the screen and
concentric, as in Figure B-5 (left). The distance between the circles should be
small enough that the Moiré interference is apparent.

4. Write a method named radial that draws a radial set of line segments as shown
in Figure B-5 (right), but they should be close enough together to create a Moiré
pattern.

5. Just about any kind of graphical pattern can generate Moiré-like interference pat‐
terns. Play around and see what you can create.

Figure B-5. Graphical patterns that can exhibit Moiré interference.

216 | Appendix B: Java 2D Graphics

www.it-ebooks.info

Preview from Notesale.co.uk

Page 232 of 251

APPENDIX C

Debugging

Although there are debugging suggestions throughout the book, we thought it would
be useful to organize them in an appendix. If you are having a hard time debugging,
you might want to review this appendix from time to time.

The best debugging strategy depends on what kind of error you have:

• Compile-time errors indicate that there is something wrong with the syntax of
the program. Example: omitting the semicolon at the end of a statement.

• Run-time errors are produced if something goes wrong while the program is
running. Example: infinite recursion eventually causes a StackOverflowError.

• Logic errors cause the program to do the wrong thing. Example: an expression
may not be evaluated in the order you expect.

The following sections are organized by error type; some techniques are useful for
more than one type.

Compile-Time Errors
The best kind of debugging is the kind you don’t have to do because you avoid mak‐
ing errors in the first place. Incremental development, which we presented in “Writ‐
ing Methods” on page 73, can help. The key is to start with a working program and
add small amounts of code at a time. When there is an error, you will have a pretty
good idea where it is.

Nevertheless, you might find yourself in one of the following situations. For each sit‐
uation, we have some suggestions about how to proceed.

217

www.it-ebooks.info

Preview from Notesale.co.uk

Page 233 of 251

The compiler is spewing error messages.
If the compiler reports 100 error messages, that doesn’t mean there are 100 errors in
your program. When the compiler encounters an error, it often gets thrown off track
for a while. It tries to recover and pick up again after the first error, but sometimes it
reports spurious errors.

Only the first error message is truly reliable. We suggest that you only fix one error at
a time, and then recompile the program. You may find that one semicolon or brace
“fixes” 100 errors.

I’m getting a weird compiler message, and it won’t go away.
First of all, read the error message carefully. It may be written in terse jargon, but
often there is a carefully hidden kernel of information.

If nothing else, the message will tell you where in the program the problem occurred.
Actually, it tells you where the compiler was when it noticed a problem, which is not
necessarily where the error is. Use the information the compiler gives you as a guide‐
line, but if you don’t see an error where the compiler is pointing, broaden the search.

Generally the error will be prior to the location of the error message, but there are
cases where it will be somewhere else entirely. For example, if you get an error mes‐
sage at a method invocation, the actual error may be in the method definition itself.

If you don’t find the error quickly, take a breath and look more broadly at the entire
program. Make sure the program is indented properly; that makes it easier to spot
syntax errors.

Now, start looking for common syntax errors:

1. Check that all parentheses and brackets are balanced and properly nested. All
method definitions should be nested within a class definition. All program state‐
ments should be within a method definition.

2. Remember that uppercase letters are not the same as lowercase letters.
3. Check for semicolons at the end of statements (and no semicolons after squiggly

braces).
4. Make sure that any strings in the code have matching quotation marks. Make

sure that you use double quotes for strings and single quotes for characters.
5. For each assignment statement, make sure that the type on the left is the same as

the type on the right. Make sure that the expression on the left is a variable name
or something else that you can assign a value to (like an element of an array).

218 | Appendix C: Debugging

www.it-ebooks.info

Preview from Notesale.co.uk

Page 234 of 251

method foo”, where foo is the name of the method. Now when you run the program,
it displays a trace of each method as it is invoked.

You can also display the arguments each method receives. When you run the pro‐
gram, check whether the values are reasonable, and check for one of the most com‐
mon errors—providing arguments in the wrong order.

When I run the program I get an exception.
When an exception occurs, Java displays a message that includes the name of the
exception, the line of the program where the exception occurred, and a “stack trace”.
The stack trace includes the method that was running, the method that invoked it, the
method that invoked that one, and so on.

The first step is to examine the place in the program where the error occurred and see
if you can figure out what happened.

NullPointerException:
You tried to access an instance variable or invoke a method on an object that is
currently null. You should figure out which variable is null and then figure out
how it got to be that way.

Remember that when you declare a variable with an array type, its elements are
initially null until you assign a value to them. For example, this code causes a
NullPointerException:

int[] array = new Point[5];
System.out.println(array[0].x);

ArrayIndexOutOfBoundsException:
The index you are using to access an array is either negative or greater than
array.length - 1. If you can find the site where the problem is, add a print
statement immediately before it to display the value of the index and the length
of the array. Is the array the right size? Is the index the right value?

Now work your way backwards through the program and see where the array
and the index come from. Find the nearest assignment statement and see if it is
doing the right thing. If either one is a parameter, go to the place where the
method is invoked and see where the values are coming from.

StackOverflowError:
See “Infinite recursion” on page 221.

FileNotFoundException:
This means Java didn’t find the file it was looking for. If you are using a project-
based development environment like Eclipse, you might have to import the file

222 | Appendix C: Debugging

www.it-ebooks.info

Preview from Notesale.co.uk

Page 238 of 251

www.it-ebooks.info

Preview from Notesale.co.uk

Page 244 of 251

