%
I . O A8}
¥ Professional PALES

‘@) Want to learn more?
)
"’"'Q/ We hope you enjoy this

McGraw-Hill eBook! If
you' d like more information about this book,
its author, or related books and websites,
please click here.

Xxvi Android: A Programmer’s Guide

developed in Java and run on the Linux 2.6 kernel. If you are a quick learner, you may be
able to understand what is going on with just some basic object-oriented programming
(OOP) experience. Chapter 2 explains how to download and install the preferred
integrated development environment, Eclipse. All the code samples and screenshots in
this book are provided using Eclipse (Europa release) and the Android plugin for Eclipse.

Any comments, questions, or suggestions about any of the material in this book can
be forwarded directly to the author at jfdimarzio@jfdimarzio.com.

Chapter 1: What Is Android2 8

Device manufacturers still closely guard the operating systems that run on their
devices. While a few have opened up to the point where they will allow some Java-based
applications to run within a small environment on the phone, many do not allow this.
Even the systems that do allow some Java apps to run do not allow the kind of access
to the “core” system that standard desktop developers are accustomed to having.

Open Handset Alliance and Android

This barrier to application development began to crumble in November of 2007 e@ ‘u\(
Google, under the Open Handset Alliance, released Android. The Ope @t

is a group of hardware and software developers, 1nclud1ng ﬁx oM

Sprint Nextel, and HTC, whose goal is to create a phone earronment

The first product to be released QW the mob1 ting
system, Android. (For m({jﬁ_‘ ‘%&r out th an I—@i& ance, see
WWW. openhan e 0

ﬁ f Andro g‘ available a host of development tools
and tukorials to aid Would be d?e; ﬁ to the new system. Help files, the platform
software development kit (SDK), and even a developers’ community can be found at

Google’s Android website, http://code.google.com/android. This site should be your
starting point, and I highly encourage you to visit the site.

NOTE

Google, in promoting the new Android operating system, even went as
far as to create a $10 million contest looking for new and exciting Android
applications.

While cell phones running Linux, Windows, and even PalmOS are easy to find, as of
this writing, no hardware platforms have been announced for Android to run on. HTC, LG
Electronics, Motorola, and Samsung are members of the Open Handset Alliance, under
which Android has been released, so we can only hope that they have plans for a few
Android-based devices in the near future. With its release in November 2007, the system
itself is still in a software-only beta. This is good news for developers because it gives us
a rare advance look at a future system and a chance to begin developing applications that
will run as soon as the hardware is released.

Chapter2

Downloading and
Installing Eclipse ey

pe—Ct ————

: RS e e S

LIS
m mEu " ’l
._ht © 2008 by The McGra Companies. Click here for terms of use.

18 Android: A Programmer’'s Guide

Once you complete the Java JDK installation—and by default the JRE
installation—you can begin to install Eclipse.

Downloading and Installing Eclipse

Navigate to the Eclipse Downloads page at www.eclipse.org/downloads, shown in the

following illustration. As the opening paragraph states, the JRE is required (Java 5 JRE
recommended) to develop in Eclipse, which you took care of in the previous section. U\(
Download the Eclipse IDE for Java Developers from this site. The package is regr

small (79MB) and should download fairly quickly. Be sure not to i pse

IDE for Java EE Developers, as this is a slightly diff rme will not be
covering its usage. ﬁ 3/(
£x O((‘ PR |
E=RE=R =

"|“i|>i||5:\7_.n‘c 7

-

I & Eclipse Downloads - Interet Explorer proviled

@@ & http:/ .

5
File Edit % elp
Coogle (Clw elipse ide Bsu 1, Ll R A] itk .-.1| T Check » 4 Autolink » T 20005 e Sendlow 402 () Settings

e e | [e Doarliads

_’-} -) - #= = Page = (5 lools v

CONTACT | LEGAL

HOME = COMMUNITY = MEMBERSHIP COMMITTERS = DOWHLOADS RESOURCES PROJECTS = ABOUT US SCARCH ?:J a A

Eclipse Downloads

lo download I:cllpse select a package below or choose one of the third party Echpse distros. You will need a Browse =
to use Eclipse [Java 5 JHE recummendedj All downloads are pronded dovnloads
Aticl under the terms and conditions of the Felipse Foundation Safh llser A tinless off
specified. * BitTomrents
Uownloads Home N g?{:ﬁm
= 2 Prablems extracting the 7IP file? Pleaze ead these Known lssues . SIllllI.{E codis
* By project : £ 5
i) Eclipse Europa Fall Maintenance Packages - Windows (compare packages)
* By lops —.]y Eclipse IDE for Java Developers - Windows 78 ME) [} windows =
€ s Pupular projects
B Iha szsertial tools for any Java developer, noluaing a Java Dk, 8 UV chant, XML Edfor snd Myiyn L L i)
Sl Find out more... Mac 05X .
- 1. Web Tools &
Eclipse IDE for Java EE Developers - Windows (125 MB) Windows 2. PHD
Tools for Java developers creating JIT and Yeb aoplications, including & Jeva IDC, tocks for JOC and Linux Development
LIEE| sf syt at adters Java 5 {or highar) required Fiml o aoe... Mac 05 % oy«
= . 4. Modelng 1ools
» Eclipse IDE for C/IC++ Developers - Windows (53 ME) vAndowe D) -
w An IDE for CS++ developers. Tind out mare... Limm e,
o i Developmeant
... Eclipzse for RCPIPlug-in Developers - Windows (157 M) Windows (CDT) &
[& complete set of tools for developers who want o create Celipse phug-ns or Fich Clierd Appications. it Linux 5. \isual Editor
e A conplede SR, develger ook sead sance code Fiod ol o Mac 05 X g g"EJ_"-“
" » . Business
Eclipse Classic 3.3.1.1 Windows (140 MB) PP -
Wirmlineess e
Tha clazsic Ecipes downlosd the Eclipee Platform, Java Development Tools, and Plug in Development Lintne Reparting
Enwironment. inchading source ond both wacr and proarommer documentation. Find out morc.. Mac 05 % {RIRT) -
T @ Tnteinet | Protes ted Mode: or T w00% -

36

Android: A Programmer’s Guide

Key Skills & Concepts

e Using the Android SDK documentation
e Using the Android SDK tools
e Using the sample applications

e Learning the life cycle of an Android application

o\
N ow that you have your development envi nﬁ d%) ady to
explore the Android SDK, ﬁﬁ]u iple ﬁles ﬁcally
d&lﬁ‘ applicatiens th Android platform.
These tools signed and ;ig: i; ke some incredible applications.
YouEl é td be familia d SDK and its tools before you begin
m

progr. ing.

intended to help yoy desi

The Android SDK also contains 11brarles for tying your applications into core Android

features such as those associated with cell phone functions (making and receiving calls),
GPS functionality, and text messaging. These libraries make up the core of the SDK and
will be the ones that you use most often, so take the time to learn all about these core
libraries.

This chapter covers all of the important items contained within the Android SDK. By
the end of the chapter, after familiarizing yourself with the contents of the Android SDK,
you will be comfortable enough to begin writing applications. However, as with any
subject, before you can dive into the practice of the discipline, you must familiarize
yourself with its contents and instructions.

CAUTION

| am not going to go over every minute detail of the Android SDK; Google does a very
good job of that within its documentation. To avoid the risk of spending too much time
discussing how things work instead of showing you how they work, | have tried to keep
this discussion as brief as possible. | cover only the most important fopics and items,
leaving you free to explore the rest in more depth yourself, at your own pace.

38

Android: A Programmer’s Guide

Android Documentation

The Android documentation is located in the Docs folder within the Android SDK at
../%sdk folder%/DOCS. The documentation that is supplied with the SDK includes steps
on downloading and installing the SDK, “Getting Started” quick steps for developing
applications, and package definitions. The documentation is in HTML format and can be
accessed though the documentation.html file in the root of the SDK folder. The following
illustration depicts the main page of the Android SDK documentation.

& Uscumentstion - Intemat Explorer prowided by Dall

@u - l@ Chandrondlandroid sdk windows md reddatandrond sdk windows md reddabdocs\documentation, bl

File Edit ‘iew Favorites Tools Help
Google [C+ [£] 6050 @ v | o2 Buokmarksw B 348 blacked | 9 Che A “ 7y Send tnw () Seltings
= =P M e e e
(@@ rikat i w7 Page » {3 Tools v
w4 @8 Documentabion | I. o~ | g o
' Tn help pratect your security, Intemer Feplorer has restricted this \mph;wcﬁ ur rnn&r&lir prl‘nx nptinns... X

-

dand0ID -

I\ -~
Androi \J V¥ c Y
P (eWelcome toa%% 1

Documentation

What is Andraoid?
Getting Started
Instaling the 51K
Hello Android
Analormy of an App
lutonal
Development Toals
Application Lilecycle
Developing
Applications
Implementing a LI
Building Blocks
Data Storage and
Belrievsl
Security Model
Hesources and 1180

= R T R |

Ihe Andrond platiorm 15 a software stack tor mobile dewvices including an operating system, middleware and key
applications. Developers can create applications for the platform using the Android SDIK. Applications arc written
using the Java programming language and run on Dalvik, & custom virtual machine designed for embedded use
which runs on top of a Linux kemel.

I you want Lo know how Lo develop applications for Android, you're in the righl place. This sile provides d varely of
dacumentahion that wall help you leam about Android and develop mobile apphcatons for the platform

An early look at the the Android SOK is also available. tincludes sample projects with source code, development
taols, an emulator, and of course all the libraries you'll nesd to build an Android application.

Download the SDK

To starl leaming aboul e Android plationm, please read the documentation in te following order.
What is Android?
An overview of the Andraid plaform

Getting Started
_Allthe basics, including Hello World %

M Computer | Protected Mode; OFf U -

You can navigate to all of the documentation that is included in the Android SDK by
using the links within documentation.html.

Chapter 4: Exploring the Android SDK 43

Note Pad

Note Pad, as shown in the illustration that follows, allows you to open, create,
and edit small notes. Note Pad is not a full-featured word editor, so do not
expect it to be something to rival Word for Windows Mobile. However, it does
a good job as a demonstration tool to show what is possible with a relatively
small amount of code.

@ il O3 400 pM
Note p.?_d : — a'\EJ)

§ ° o

t @

Skeleton App

Skeleton App, shown next, is an application shell. This is more of a base application that
demonstrates a couple of different application features, such as fonts, buttons, images, and
forms. If you are going to run Skeleton App by itself, you really are not going to get much

44

Android: A Programmer’s Guide

out of it. You will be better served by referring to Skeleton App as a resource for how to

implement specific items.

Skeleton App

Hello there, you Acthvity!

Py

Snake

The final demo that is
included with the Android
SDK is Snake. This is a
small, SNAFU-style game
that is far more simplistic
than Lunar Lander. This
illustration shows what

Snake looks like when run.

D> O =

@ il 3 138rm

CrTT T TP T

< G = W

e I =< o

Z — c =

~ Z xR —~ @

— D w

t @ o

Chapter 4: Exploring the Android SDK

NOTE

If you navigate to the base folder of each of the sample applications, you will see a
folder named src. This is the source code folder for the given sample application. You
can use this to view, edit, and recompile the code for any of the applications. Take
advantage of this source code to learn some tricks and tips about the Android platform.

Android Tools

The Android SDK supplies developers with a number of powerful and useful tools.
Throughout this book, you will use only a handful of them directly. This section tak
quick look at just a few of these tools, which will be covered in much m‘@pt i g
following chapters, as you dive into command-line develo¥és

o WO
:'o?l:.:ore defaled |nFormatht X@mls .ndep?)n u@‘& 233%’(

consult the Andro{ic‘@
em UBOXGXG a

Arguably one of the most important tools included in the Android SDK is emulator.exe.
emulator.exe launches the Android Emulator. The Android Emulator is used to run your
applications in a pseudo-Android environment. Given that, as of the writing of this book,
there were no hardware devices yet released for the Android platform, emulator.exe is
going to be your only means to test applications on a “native” platform.

You can run emulator.exe from the command line or execute it from within Eclipse.

In this book, you’ll usually let Eclipse launch the Android Emulator environment for you.

However, in the interest of giving you all the information you need to program with the
Android SDK outside of Eclipse, Chapter 6 covers command-line usage of emulator.exe
when you create your Hello World! applications.

When using the Android Emulator to test your applications, you have two choices for
navigating the user interface. First, the emulator comes with usable buttons, as shown in
Figure 4-1. You can use these buttons to navigate Android and any applications that you
develop for the platform.

TIP

The Power On/Off, Volume Up, and Volume Down buttons are slightly hidden to the
sides of the virtual device. They identify themselves when you hover the mouse pointer
over them.

45

48 Android: A Programmer’s Guide

APls

The API, or application programming interface, is the core of the Android SDK. An API
is a collection of functions, methods, properties, classes, and libraries that is used by
application developers to create programs that work on specific platforms. The Android
API contains all the specific information that you need to create applications that can
work on and interact with an Android-based application.
The Android SDK also contains two supplementary sets of APIs—the Google APIs
and the Optional APIs. Subsequent chapters will focus much more on these APIs as you u
begin writing applications that utilize them. For now, take a quick look a\élt t@

include so that you are familiar with their uses. s
Google APIs 0"

The Google APIs are 1ncluded i @m) and conta 3%1]mmg
references that allow y p 1cationsgsatf } 1s oog e services. If you
are wrltmg atlon an ur user to access Google services
thrm?r p catlon yougy the Google API.

Ldcated in the android.jar fdle, the Google API is contained within the com.google.*

package. There are quite a few packages that are included with the Google API. Some of
the packages that are shipped in the Google API include those for graphics, portability,
contacts, and calendar utilities. However, the packages devoted to Google Maps will be
the primary focus in this book.

Using the com.google.android.maps package, which contains information for Google
Maps, you can create applications that interact seamlessly with the already familiar
interface of Google Maps. This one set of packages opens a whole world of useful
applications just waiting to be created.

The Google API also contains a useful set of packages that allows you to take
advantage of the newer Extensible Messaging and Presence Protocol (XMPP) developed
by the Jabber open source community. Using XMPP, applications can quickly become
aware of other clients’ presence and availability for the purpose of messaging and
communications. The API packages dealing with XMPP are very useful if you want
to create a “chat”-style program that utilizes the phone messaging capabilities.

Optional APIs

The Android SDK includes a number of Optional APIs that cover functionality not
covered by the standard Android APIs. These Optional APIs are considered optional
because they deal with functionality that may or may not be present on a given handset

Chapter 5: Application: Hello World!

To make sure that you get a good overall look at programming in Android, in
Chapter 6 you will create both of these applications in the Android SDK command-line
environment for Microsoft Windows and Linux. In other words, this chapter covers
the creation process in Eclipse, and Chapter 6 covers the creation process using the
command-line tools. Therefore, before continuing, you should check that your Eclipse
environment is correctly configured. Review the steps in Chapter 3 for setting the PATH
statement for the Android SDK. You should also ensure that the JRE is correctly in your
PATH statement.

0.

TIP \S G
If you have configuration-related issues while attempting to.w a‘
command-line examples, try referring to the conflguroh rs 2 and ;

and look at the Android SDK documentahcé 3337
Creat] ﬁi kg}hl And@@ Iﬂc;‘éct in Eclipse

To st r Tirst Android pr lipse. When you open Eclipse for the first
time, it opens to an empty deve opment environment (see Figure 5-1), which is where
you want to begin. Your first task is to set up and name the workspace for your
application. Choose File | New | Android Project, which will launch the New Android
Project wizard.

CAUTION

Do not select Java Project from the New menu. While Android applications are written
in Java, and you are doing all of your development in Java projects, this option will
create a standard Java application. Selecting Android Project enables you to create
Android-specific applications.

If you do not see the option for Android Project, this indicates that the Android plugin
for Eclipse was not fully or correctly installed. Review the procedure in Chapter 3 for
installing the Android plugin for Eclipse to correct this.

The New Android Project wizard creates two things for you:

® A shell application that ties into the Android SDK, using the android.jar file, and
ties the project into the Android Emulator. This allows you to code using all of
the Android libraries and packages, and also lets you debug your applications in
the proper environment.

55

Chapter 5: Application; Hello Worldl 67

The next line in the file is the one that really does some perceptible action:

setContentView (R.layout.main) ;

The method setContentView() sets the Activity’s content to the specified resource.
In this case, we are using the main.xml file from the layout directory via the pointer in
the R java file. The main.xml file, right now, contains nothing more than the size of the
HelloWorldText screen and a TextView. The TextView is derived from View and is used
to display text in an Android environment. Reviewing the contents of main.xml, you can u\(
see that it contains the following line:

android:text="Hello World, HelloWorldText" esa.\ E

Considering that the setContentView m i b old to s, 1 as the
current View, and main.xml co f that s ﬁs\'\' 110WorldText,”
it may be safe to \igiigwlom ing and mnﬁ T dText now will give

you Tg plicatign, your unaltered HelloWorldText
applz? oose Run | Ru\@ Run As dialog box, select Android Application,
and click OK.

= Run &s @

Select a way to run 'HelloWorldTesxt"s

T Android Application
0] Jawa Spplet

[T Java Application
JulUnit Test

Description

Description not available

@ [0K] [Cancel

68

Android: A Programmer's Guide

The new project you just established contains the code to create a Hello World!
application on its own. However, that is not very engaging, nor does it teach you very
much about programming an Android application. You need to dissect the project and
see exactly how the project displayed the “Hello World!” message.

What happened when you created the new Android project is that the Android plugin
modified main.xml. This is a perfect example of one way to modify the UI in Android.
The following lines of code are added to main.xml by the Android SDK when the project

ae-C

T

While I have di8 w ﬁs&nce of this @w@& xml, I have not yet
discu dtle, ithout any co ode. I mentioned earlier in this book
that t 0 ways to des?aag\ndrmd through the code, and through the

main.xml file. The preceding cdde sample creates a TextView in xml and sets the text to
“Hello World, HelloWorldText.”” Edit this line of the main.xml file to read as follows:

<TextView

android:layout width="£fill parent"

android:layout height="wrap content" es
android:text="Hello World, HelloWo e@‘,

/>

android:text="This is the text of an Android TextView!"

[\ Bindreid Ervulator =e s

Rerun the project,
and your results should
.
appear as they do in HeloWordText
this illustration. ' e

Take some time
and experiment with
the xml TextView.

Then you can move

n - 2 &
< @ = &
W I =< o
Z = c =~

e M) el
t @~ °

on to another way of
creating a Hello World!
application.

Chapter 5: Application; Hello World! 69

Hello World! Again

In this section, you will create another Hello World! application for Android. However,
this time you will program the Ul in code rather than by using the xml file—and you will
actually do most of the work. The first step here is to remove the TextView code that is in
main.xml. The following section of code represents the TextView. Removing it essentially
makes your application an empty shell.

<TextView \)K
android:layout_width="fill parent" CO .
android:layout height="wrap content" a.\e .

android:text="Hello World, HelloWorldText”
/> ‘_

After you have remO\icll\tFe e yo ai ﬁ%%?ook like this:
<?xml ver 1\@e codlng—" ’>>8

<Lin mlns and chemas.android.com/apk/res/android
dr01d orientation=f{ve 1c "
android:layout width="fill parent"
android:layout _height="fill parent"
>

</LinearLayout>

Now that you have a clean main.xml file, and thus a clean application shell, you can
begin to add the code that will display “Hello World!” on the screen. Start by opening the
HelloWorldText.java file and removing the following line:

setContentView (R.layout.main) ;

NOTE

You still need to set a ContentView for your new application; however, you are going
to implement it slightly differently from how it is implemented here, so it is best fo just
remove the entire statement for now.

This line uses setContentView() to draw the main.xml file to the screen. Since you
will not be using main.xml to define your TextView, you will not be setting it to your
view. Instead, you will be building the TextView in code.

84

Android: A Programmer’s Guide

Key Skills & Concepts

e Using the Android SDK command-line tools
e Creating a command environment
e Navigating the Android server with a shell

e Using the Android SDK in Linux

So far this book has covered some very broad su Q‘g@ up an nihg on the

Android platform. At this p01 Q irly comfor : ctipse to
create and run a smgll A ‘&ﬁ n. You ¢ !z ject, edited the
main.xml a <Xl a'files, and r m&ﬁe ava file. These are the
basw@ é need to agépp 1cations.

his chapter, you are g;?;;g nd and round out those skills by experimenting
with command-line application development. Android development does not have to
be limited to the confines of the Eclipse IDE. The Android SDK offers a host of
command-line tools that can help you develop full applications without the need

of a graphical IDE. You will use these command-line tools to create, compile, and
run a Hello World! application, first in Windows and then in Linux.

Creating a Shell Activity Using the Windows CLI

The Android SDK comes with multiple tools to help you create and compile Android
applications. These tools are in place to help users who do not wish to, or do not have a
system capable of supporting, work within a GUI IDE. However, if you are doing all of
your Android development work within Eclipse, you still should be aware of the Android
SDK command-line tools and their functionality.

When you run Android-related functions, such as creating an Android project or
running an application in the Android Emulator, you are actually calling connections
to the Android command-line tools. These Android command-line tools, whether run
from a command-line interface or from a GUI IDE, are the real core to the functionality
of the Android SDK.

92

Android: A Programmer’s Guide

<property name="zip" value="zip" />
<!-- Rules -->
<!-- Create the output directories if they don't exist yet. -->

<target name="dirs">

<mkdir dir="${outdir}" />

<mkdir dir="${outdir-classes}" />
</target>

<!-- Generate the R.java file for this project's resources. -->
<target name="resource-src" depends="dirs"> U
<echo>Generating R.java...</echo> CO .
<exec executable="${aapt}" failonerror="true"s> \e .
<arg value="compile" /> Sa
<arg value="-m" /> e
<arg value="-J" /> N 1
<arg value="${outdir- m 33
<arg value="-M" & "
<arg wa nlfest 1"&0 O

5X,v lue="${resour
rg value=" g_
<arg value="$§an ar "

</exec>
</targets>
<!-- Generate java classes from .aidl files. -->

<target name="aidl" depends="dirs"s>
<apply executable="${aidl}" failonerror="true"s>
<arg value="-p${android-framework}" />
<arg value="-I${srcdir}" />
<fileset dir="${srcdir}">
<include name="**/*_ aidl"/>

</fileset>
</apply>
</targets>
<!-- Compile this project's .java files into .class files. -->

<target name="compile" depends="dirs, resource-src, aidl">
<javac encoding="ascii" target="1.5" debug="true" extdirs=""
srcdir="."
destdir="${outdir-classes}"
bootclasspath="${android-jar}" />
</target>
<!-- Convert this project's .class files into .dex files. -->

94 Android: A Programmer's Guide

<!-- Invoke the proper target depending on whether or not
an assets directory is present. -->

<!-- TODO: find a nicer way to include the "-A ${asset-dir}" argument
only when the assets dir exists. -->

<target name="package-res">
<available file="${asset-dir}" type="dir"
property="res-target" value="and-assets" />
<property name="res-target" value="no-assets" />
<antcall target:"package—res—${res—target}" />
</targets>

<!-- Put the project's .class files into the output package file. ——>O \)K
.

<target name="package-java" depends="compile, package-res"> C
<echo>Packaging java...</echo>

<jar destfile="${out- package " ef E a
‘c‘age file.

basedlr—"${outd1r classes "
update="true" /> NO
<!-- Put the pr flles int
Use avallab e o%i x/Llnux/MacOS systems,
o@ t e new packa as an internal zip command,
P{ er Ant 1. 6? é‘@ d is still widely installed.)

<target name="package-dex" depends="dex, package-res">
<echo>Packaging dex...</echo>
<exec executable="${zip}" failonerror="true">
<arg value="-qgj" />
<arg value="${out-package}" />
<arg value="${intermediate-dex}" />

</target>

</exec>
</targets>
<!-- Create the package file for this project from the sources. -->

<target name="package" depends="package-dex" />

<!-- Create the package and install package on the default emulator -->
<target name="install" depends="package">
<echo>Sending package to default emulator...</echo>
<exec executable="${adb}" failonerror="true"s>
<arg value="install" />
<arg value="${out—package}" />
</exec>
</targets>

</project>

Now that you have a good understanding of how build.xml is used in the manual,
command-line creation of Android projects, you can begin to edit your project files and

118

Android: A Programmer’s Guide

Key Skills & Concepts

e Using Intents
e Creating code that interacts with the phone hardware

e Learning the difference between dialing and calling

The chapters up to this point have introduced you to the basics 0 \aghmmmg
You have examined the outline of an Andr01d talled your first
applications to the Android server. You have e Vle S apgﬁn ntView(),

as well as how to create a UI 1n 1lls havg hel e a static
application. What yet is us é?é&:} nterface to interact with
the h W, form was CL ell phone.

utd not lose sig @@ that the platform for which Android was created

is, in essence still a cell pho The underlying hardware for the devices that Android will
run on is designed for the purpose of person-to-person communication. If you strip away
all the bells and whistles that the Android SDK is capable of adding to the cell phone, it
must still be able to send and receive phone calls. For this reason, this chapter focuses on
the code that enables you to interact with the phone hardware.

By the end of this chapter, you should have the skills needed to interact with some
of the basic functions of the phone. You will be able to work with the dialer to send and
receive calls. These tools and skills will be your keys to creating useful applications on
this flexible platform.

You are reading this book because you intend to design applications that run on a cell
phone, so it stands to reason that you should learn how Android allows for interaction
with the phone hardware—in particular, the process that enables the phone to send and
receive calls.

When we think of a cell phone, a few basic functions come to mind. The first, and
most obvious, of which is the ability to send and receive phone calls. This is inarguably
the quintessential function of a cell phone. There are a few peripheral features that make
the cell phone easier to use, such as the ability to keep and manage contacts and the ability
to store and review missed calls. As you’ll read in this chapter, you can access and
manipulate the code for all of these functions.

Chapter 7; Using Intents and the Phone Dialer 123

Broadcast Intent Message

SIM_STATE_CHANGED_ACTION The state of the SIM card has changed

TIME_CHANGED_ACTION The device's time was set

TIME_TICK_ACTION The current time has changed

TIMEZONE_CHANGED_ACTION The device’s timezone has changed

UMS_CONNECTED_ACTION The device has connected via USB

UMS_DISCONNECTED_ACTION The device has been disconnected from its \)K
USB host

WALLPAPER_CHANGED_ACTION The device’s wallp ga ep changed

Table 7-2 Broadcast Infents (confinued) NO ’l
oM 23
NOTE \N W l l ‘

Some d cast Intent ﬂ(% often, such as TIME_TICK_ACTION
and Sl AL STRENGTH_ CHA E N. Be corefu| how you use them. You

should try not to receive such broadcasts if at all p055|b|e

The Intent is only one-third of the picture. An Intent is really just that, an intent to do
something; an Intent cannot actually do anything by itself. You need Intent Filters and
Intent Receivers to listen for, and interpret, the Intents.

An Intent Receiver is like the mailbox of an Activity. The Intent Receiver is used
to allow an Activity to receive the specified Intent. Using the previous web browser
example, the Web Browser Activity is set up to receive web browser Intents. A system
like this allows unrelated Activities to ignore Intents that they would not be able to
process. It also allows Activities that need the assistance of another Activity to utilize
that Activity without needing to know how to call it.

With Intents and Intent Receivers, one Activity can send out an Intent and another can
receive it. However, there needs to be something that governs the type of information that
can be sent between the two Activities. This is where Intent Filters come in.

Intent Filters are used by Activities to describe the types of Intents they want to
receive. More importantly, they outline the type of data that should be passed with the
Intent. Therefore, in our example scenario, we want the web browser to open a web page.
The Intent Filter would state that the data passed with the WEB_SEARCH_ACTION
Intent should be in the form of a URL.

In the next section, you will begin to use Intents to open and utilize the phone’s dialer.

Chapter 7 Using Intents and the Phone Dialer 127

package android programmers guide.AndroidPhoneDialer;
import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.net.Uri;

public class AndroidPhoneDialer extends Activity {
/** Called when the Activity is first created. */
@Override

public void onCreate (Bundle icicle) { K
super.onCreate (icicle) ; O u

setContentView (R.layout.main) ; \e C

/** Create our Intent to call the Dlaler */
/** Pass the Dialer the number 555 2
Intent DialIntent = new &

51212"

Intent (Intent.DIAL ACTION %

/** Use NEW_TASK_L l unch g v1ty */
DJ.alInten lags In %TA AUNCH) ;
/** XI tBrt the Act
PYe oage

You should now compile AndroidPhoneDialer and run it on your Emulator. The
process for compiling and running applications was covered in previous chapters, so you
should be familiar with that process. Once you run your application, the Emulator should
launch. After the lengthy boot process, your Activity will launch.

TIP

It is a good idea to keep the Emulator running, even after you are finished with your
Activity and have returned to the code window. It is most people’s instinct to close the
Emulator window when they have finished testing their Activity. However, | have found
that leaving the Emulator open helps with two major issues. The first is the amount of
time it takes for the Emulator to start. By leaving the Emulator open, you avoid the
lengthy load time. Second, | have noticed that there are times when | make minor
changes to an Activity and they are not copied to the Emulator. Leaving the Emulator
open seems to alleviate this issue as well. If you continue to have issues in the Emulator,
remove the userdata-gemu.img file from your computer. This allows the Emulator fo start
up with a clean image.

Chapter 7; Using Intents and the Phone Dialer 133

To edit the Activity’s permissions, click the Permission link. This should take you to
the Android Manifest Permissions window, shown in the following illustration.

“

'[4] AndraidPhoneDisler] | [X] mainxml |G AndroidPhoneDialer M £3 . 2 =0

a Android Manifest Permissions

Permissions
List of permissions defined and used by the

rranifest }K

Add..

Rernove., esa\e *

VA
e\N
eV 500

Owerdien i_a'ipplication ! Perrmissions ! Instrumentation i AndroidManife st i

This window lists the permissions that are currently assigned to your Activity. Given
that you are working in a new project, you do not have any assigned permissions. Therefore,
click the Add button to begin the process. In the dialog box that opens, select Uses
Permission and click OK.

142

Android: A Programmer’s Guide

First, lay out the Views in your main.xml. You will actually add two Views here: a
TextView to act as a label and give some direction to the user, and an EditText to accept
the user’s input. Together these two Views will add the needed depth and practicality to
your Activity.
As you form the look of your Activity, keep in mind that the .xml file is formed
visually. This means that if you want the TextView to appear above the EditText on
the finished Activity, you should place it before the EditText in main.xml.
Because you have used TextViews a few times now, creation of this View will not get \(
too involved. Simply take a look at the attributes that you set in your TextV1ew u

<TextView android:id="@+id/textLabel" Sa_\e .

android:layout width="£fill parent"

android:layout height= "wrap content N 1
android:text="Enter Numbe 3

/- Q0

of the or 1s Just a simple TextView with the text
Enter er to D1a1 ThlS@(111 serve as a label for your EditView. Here’s
how you set the attributes for the EditView.

<EditText android:id="@+id/phoneNumber"
android:layout width="fill parent"
android:layout height="wrap content"

/>

NOTE

You do not have to set the android:text attribute because you do not need any
default text.

The id is set to phoneNumber, which is the name you will use to refer to the EditText
View in the code. Again, there should be no surprises when setting up main.xml. Your
final file should look like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
android:orientation="vertical"
android:layout_width="fill parent"

144

Android: A Programmer’s Guide

Once your phoneNumber EditText is created, you can use it to reference the text that
is input on the device. All you have to do now is call phoneNumber.getText() to retrieve
the user’s input. Replace the hard-coded value “tel:5551212” in the following line,

Intent (Intent.CALL ACTION,Uri.parse("tel:5551212")) ;

with the value of getText():

Intent (Intent.CALL ACTION,Uri.parse("tel:" + phoneNumber.getText (

o\)\‘

That is all the new code you need to update your project. With these gi lg
additions, you can give the user an object with whlch to in \1 and
%’ Java ﬁlgjrould

send that number to the phone’s Call Act1V1ty
look like this: " 3
package android pgo W ﬁl& ; dro:.dﬁhi%%r O

impo E:1v1ty,

impo n§r os Bundle

impor® android. w1dget.But on;

import android.view.View;

import android.content.Intent;

import android.net.Uri;
import android.widget.EditText;

public class AndroidPhoneDialer extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle icicle) {
super.onCreate (icicle) ;
setContentView(R.layout.main) ;
final EditText phoneNumber = (EditText) findViewById(R.id.phoneNumber

final Button callButton = (Button) findvViewById(R.id.callButton) ;
callButton.setOnClickListener (new Button.OnClickListener ()
public void onClick (View v) {
Intent CallIntent = new
Intent (Intent.CALL ACTION,Uri.parse("tel:" + phoneNumber.getText ())) ;
CallIntent.setLaunchFlags (Intent.NEW TASK LAUNCH) ;
startActivity(CallIntent) ;

154 Android: A Programmer's Guide

Intent Code for the .java File
Using the Package Explorer again, navigate to the src directory, open it, and right-click
the android programmers_guide.AndroidViews package, as shown in the following

illustration.
& Jaun « Echipse Platform [=T S
File Edt Source Refactor Nawgate Sesrch Projeet Run Window Help
vl B-0-Q- BHG- ™0 ¥ ~feweeg- & % Debug [TIna)
[PaciaeBicaii i T Hisraechy| . Navigator] - DI K
| o & Androidview: ik b O \)
= Android Libeary Galbts
- e
B android_programmens_guideAndrofViem Open in New Window
= res
& AndroidManifesten Shim 10 Al

Once again, you are to (ﬁ Qm ﬁr }% right-click the

Andr01dV1ews a New | Flle fro menu This file will hold all
the CP’V s8¢0 d Act ‘al-lg ct. Wame the file test.java. You should now
have &nice, new (but empt Ig ou just need to add a few lines of code to the file
to make it usable:

package testPackage.test;
import android.app.Activity;
import android.os.Bundle;
public class test extends Activity (
/** Called when the Activity is first created. */
@Override
public void onCreate (Bundle icicle) {
super.onCreate (icicle) ;
setContentView (R.layout. test) ;
/** This is our Test Activity
All code goes below */

Notice that you call test.xml in the setContentView method, using the context
R.layout.test. This line tells the new Activity to use the .xml file you created as the
layout file for this “page.”

Chapter 8: lists, Menus, and Other Views 158

Modifying the AndroidManifest.xml

Open your AndroidManifest.xml file in Eclipse. AndroidManifest.xml has not been
discussed in great detail in this book. AndroidManifest.xml contains the global settings for
your project. More importantly, AndroidManifest.xml also contains the Intent Filters
for your project.

Chapter 7 discussed how Android uses the Intent Filters to marshal what Intents can
be accepted by what Activities. The information that facilitates this process is kept in

AndroidManifest.xml. u\(
NOTE a\e .C
There is only one AndroidManifest.xml file per project.

If your AndroidManifest.xm le ﬁ it shoul %10ws

<activity androuig \'3‘ i % Qtrlng/app name" >
g\l name

<1ntent f

=1 ction.MAIN" />
< ate ory android: narp 1ntent category.LAUNCHER" />
</intent-filters>
</activity>

What you are looking at here is the Intent Filter for the AndroidViews Activity, the
main Activity that was created with the project. To this file you can add any other Intent
Filters that you want your project to handle. In this case, you want to add an Intent Filter
that will handle the new Test Activity that you created.

The following is the code for the Intent Filter that you need to add to the
AndroidManifest.xml file:

<activity android:name=".Test" android:label="Test Activity">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>

Adding this code to AndroidManifest.xml enables Android to pass Intents for the Test
Activity to the correct place. The full AndroidManifest.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

Chapter 8; lists, Menus, and Other Views 159

setContentView (R.layout.main) ;

}

As with everything you add to your Activities, you need to import a new package to
create your menu. Import the android.view.Menu into your AndroidViews Activity:

Import android.view.Menu;

To create the Menu, you need to override the onCreateOptionsMenu() method of the u
Activity. The method onCreateOptionsMenu() is a Boolean method thatjis 11e@
the user first selects the Menu Button. You will use this method tél@' céM and

add your selection items to it. Add the following coﬁ 6 d@l
@Override

public boolean onCrea e% QJXIS\M u)O‘
super.onCreate w menu) ; ﬁ T
}

Sywﬂl add the code toeaahgflenu inside the onCreateOptionsMenu() method.

The items that you need to add to the Menu are the Views that you are going to create

ava.

in this project. The following is the list of View names that you will need to add to
the Menu:

® AutoComplete

® Button
® CheckBox
o EditText

@ RadioGroup

® Spinner

In the preceding code that you created to override the onCreateOptionsMenu()
method, you passed in a Menu variable called menu. This variable represents the actual
menu item that is created on the Android interface.

To add your list of items to the Menu, you will use the menu.add() method. The
syntax for this call is as follows:

menu.add (<group>, <id>,<title>)

178 Android: A Programmer’'s Guide

CheckBox

In this section you will be creating an Activity for the CheckBox View. The steps for
creating the Activities are identical to those in the preceding sections. Therefore, you will
be provided with the full code of the three main Activity files—AndroidManifest.xml,
checkbox.xml, and testCheckBox.java. These files are provided for you in the following
sections.

AndroidManifest.xml
ndroidManifest.xm . | H\)\L

This section contains the full code of the current AndroidViews’ Andr01dMan1f

you are following along in Eclipse, modify your Activity’s Andr Rﬁ look
as follows:

<?xml version="1.0" encodlng—"utf—"m NO %1
<manifest xmlns:android=http ‘ ndroid.c a '%/a
package="andrgid gulde.An %“ﬁ
<application T i on—"@drawable/'lsg
]V ndroid:name="
andr@l b&<"@string/a i
<intent-filte¥{>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activitys>

<activity android:name=".AutoComplete" android:label="AutoComplete">
<intent-filters>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>
<activity android:name=".testButton" android:label="TestButton">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activitys>
<activity android:name=".testCheckBox" android:label="TestCheckBox">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activitys>
</application>
</manifest>

Chapter 8; Llists, Menus, and Other Views 187

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu (menu) ;

menu.add (0, 0, "AutoComplete");
menu.add (0, 1, "Button");
menu.add (0, 2, "CheckBox") ;
menu.add (0, 3, "EditText") ;
menu.add (0, 4, "RadioGroup") ;
menu . add (5

. 0, "Spinner") ; K
return true; U
} cO-
@Override a\e .

public boolean onOptionsItemSelected (Menug I
switch (item.getId()) N

case 0: m
showAutoComplete "(O
return true; \I\I

case 1:

piey ‘ pad

case 2:
showCheckBox () ;
return true;

case 3:
showEditText () ;
return true;

case 4:
showRadioGroup () ;
return true;

case 5:
showSpinner () ;
return true;

}

return true;
public void showButton()
Intent showButton = new Intent (this, testButton.class);
startActivity (showButton) ;
public void showAutoComplete () {
Intent autocomplete = new Intent (this, AutoComplete.class);

188 Android: A Programmer’'s Guide

startActivity (autocomplete) ;

}

public void showCheckBox () {
Intent checkbox = new Intent (this, testCheckBox.class);
startActivity (checkbox) ;

}

public void showEditText () {
Intent edittext = new Intent (this, testEditText.class) ;
startActivity (edittext) ;

) \(

) 0 8
Launch your application and select the EditText option fr(@%@\@o‘vn earlier

206 0’% e

in Figure 8-1) Q
The following illustration shows wha tivity

[+ Bnesid Ernulabar

E F @ LT 12:49 A0 =
rest EditText

Change Layout

e il 3] v s v =) Ul gl D
Change Text Colar
Q! IVl SE et el = L)
Aol 1 ol e e b el ket] 8
#2Z X CcVvEBENM. &
@ - ol

Click the Change Layout and Change Test Color Buttons. The results are depicted in
the following illustrations.

196 Android: A Programmer’s Guide

package="android programmers_guide.AndroidvViews">
<application android:icon="@drawable/icon">
<activity android:name=".AndroidvViews"
android:label="@string/app_name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activitys>
<activity android:name=".AutoComplete" android:label="AutoComplete">
<intent-filter>
<action android:name="android.intent.action.MAIN" /> U
<category android:name="android.intent.category.LAUNC (:)
</intent-filters> \
</activity>
<activity android:name=".testButton' estButt n'">
<intent-filter> ':Z

<action andrpid ro\d. 1ntent a 33
<categor % ﬁa "andro:.d int xﬁte AUNCHER"/
</1nten ﬂ\i
</act zk,)_
@ck android:label="TestCheckBox">

roid: name—
ntent fllte
<action ndr d:¥Mame="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER"/>
</intent-filters>
</activity>
<activity android:name=".testEditText" android:label="TestEditText">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filters>
</activity>
<activity android:name=".testRadioGroup" android:label="Test
RadioGroup" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filters>
</activitys>
<activity android:name=".testSpinner" android:label="Test Spinner">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activitys>
</application>
</manifest>

204

Android: A Programmer’s Guide

Key Skills & Concepts

e Using the Android location-based service APIs
e Obtaining coordinate data from the GPS hardware
e Changing your Activity’s look and feel with a RelativeLayout

e Using a MapView to plot your current location u\(

In this chapter, you are goin w @1 the An 0f %’I This
chapter is 1nvalgej @E 0 levera et r01d to work with the
SYstem

Glo (S S Eé ﬂ Vlce You will use the Android
ased API to colle nt position and display that location to the

screen. Toward the end of this chapter, you will use Google Maps to display your
current location on your cell phone.

You will also learn some new techniques that will add some depth and creativity to
your Activities. Resources such as RelativeLayouts and small buttons will let you create
more user-friendly and visually appealing Activities for Android.

In the first section of this chapter, you will learn about using your device’s GPS
hardware to obtain your current location. However, before you jump into that section,
you need to create your project for this chapter. Create a new Project in Eclipse and
name it AndroidLBS.

Using the Android Location-Based AP

The Android SDK contains an API that is specifically geared to help you interface your
Activity with any GPS hardware that may be in your device. This chapter assumes that
your device will include GPS hardware.

CAUTION

Just as Android-based cell phones are not required to include a camera, they are not
required to include GPS hardware either, although many models likely will include both
a camera and GPS hardware. Android included the Android Location-Based APl in
anticipation that GPS hardware will be included in many cell phones.

Chapter 9: Using the Cell Phone's GPS Functionality 205

Because you are working on a software-based emulator, and not on a real device, the
presence of GPS hardware has to be simulated. In this case, Android provides a file in
the adb server that simulates having GPS hardware. The file is located at

data/misc/location/<providers>

where <provider> represents the location information provider. The provider that Android

supplies to you is K
\e CO \

TIP a’

You can have multiple providers to simulate diff %Qwerefore Yi %1
create a provider named fest or gps_‘v @ refer

Wlthm th r] folder %&ber of files that will hold the
samp] éﬂ at yo m use. When you are using the Android
Emul or, you can use the ?(Q:V s of files to store/retrieve GPS style coordinates.
Each of these file types has a different format for providing information to the Android
Location-Based API.

data/misc/location/gps

® kml
® nmea
® track

Let’s take a look at what each of these files does and how they differ from each other.

Creating a kml File

A kml file is a Keyhole Markup Language file. These files were originally developed for,
and can be created by, Google Earth. The Android Location-Based API can parse a .kml
file for coordinates to simulate a GPS.

NOTE

If you do not have Google Earth, it is a free download from Google. Installing
it may be worth your time if you want to develop more Android Location-Based

API Activities.

Chapter 9: Using the Cell Phone's GPS Functionality 209

v|“:'j|ISean:h

& Bumn

MName Date modified Type Size
| AndroidStuff 6/2/2008 8:41 PhA File Folder
Documents
: . |nmea 4/18/2008 8:43 PM File
Pictures
J Music
More »
Folders ».
M Desktop

coV

Now that you have the file pﬁs d&sktop, 6‘ %%ld
Finally, open the féWa its conte j?oul e'm

data,

e

Wigw Elnlp

20

WA

GPRMC , 003350,
GPRMC, 003251,
GPRMC 004452,
GPRMC, 003353,
GPRMC , 003354,
GPRMC, 003255,
GPRME , 003356,
GRRMO |, O03357.
GPRMC , 003358,
GPRMC , 003359,
GPRMC , 003400,
GPRMC , 004400 .
GPRMC, 003402,
GPRMC , 003403,
GPRMC , 0032404 .
GPRMC , 003405,
HHEMC D034 06,
GPRMC , 003407
GPRMC , 003408,
GPRMC , 003400,
GPRMC , 002410,
GPRMC, 003411,
GPRMC , 003412,
GPRMC, 003413,
GPRMC , 003414,
HHEME 005415,
GPRMC , 003416,
GPRMC , 003417,
GPRMC, 003418,
GPRMC , 005419
GPRMC, 003420,
GPRMC , 003421,
GPRMC , 003422
GPRMC, 003423,
HRMC 003474 .
GPRMC , 003425,
GPRMC, 003426,
GPRMC , 003427,
GPRMC , 0044 26
GPRML , 003429,
GPRMC , 003430,
GPRMC, 003421,
GPRMC , 003422,
HRMC 003433,
GPRMC , 003434,

GPRMC, 003435,

000,4,3725.3432,N,12205., 7921 ,w, 0.
000,4,3725.3432,N,12205., 7021 W, 0.
000, 4, 3725, 3431 N, 12205 7921 W,0.
000,A4,3725.3431,M,12205. 7921,W, 0.
000,4,3725.3431,M,12205. 7920w, 0.
3725.3430,N,12205. 7020w, 0.
000,4,3725. 2430 N,12205. 7620 W, 0.
000,08, 3725 3430,N, 127057920 ,w, 0.
000,A,3725.3431,N,12205. 7920w, 0.
000,4A,3725.3432 ,N,12205. 7920,, 0.
000,4,2725.3433,M,12205, 7021 ,w, 0.
000, 4, 3725, 3434 N, 12205 /921 W,0.
000,4,3725.3434,M,12205. 7922 ,W, 0.
000,4,3725.3433,N,12205. 7922 ,W
000,A,3725.3433,N,12205. 7021,

000,A,3725.3432,M,12205. 7021,
0oo0,a, 37253437 ,8, 127057921,
000,A,3725.3432 ,N,12205. 7920,
000,4,3725.3432
000,4,2725.3431,N,12205., 7020,
000, 4, 3725 3830 M, 12205, /UL,
000,4,3725.3430,M,12205. 7921,
000.4,3725.3429,M,12205. 7921,
3725.2420,N,12205. 7021,
000,4,2725.3428,N,12205., 7020,
o00,a,3725.3427,8,12705.7921 ,
000,4,3725.3425,N,12205. 7921,
000,A,3725.3423,N,12205. 7920,
000,4,2725.2422,M,12205., 7018,
000, 4,3725. 3822 M, 12205 UL/,
000,4,3725.3423,M,12205. 7917,
000.4,3725.3423,N,12205. 7917,
.000,4,2725.3424 ,n,12205, 7018,
000,A,2725.32424 ,M,12205., 7018,
o00,a,3725.3425,M, 127057919,
000.4,3725.3426,N,12205. 7919,
000,4A,3725.3426,N,12205. 7919,
000,4,2725.3427,N,12205., 7020,
000, 4, 3725 3828 M, 12205 /ULy,
000, A,3725.3429,M,12205. 7919,
000.4,3725.3429,N,12205. 7919,
000,4,2725.3430,N,12205, 7010,
000,4,2725.3430,N,12205., 7020,
0oo0,a,3725.3431 ,M,12705. 7970,
000,A,3725.3432 ,N,12205. 7921,
000,4,3725.3432,N,12205. 7921,

000, 4,

000, 4,

N, 12205, 7920,

-15,87.28,061007, , ;0%46

:]nmea - Nmepad E
File [Ldit Tormat

BGPRMC, 003347, 000, 4,3725. 3433 ,M,12205. 7020 ,W, 0. 08,140_46, 061007, , ,D%70
GRRMO , 003348 000, 0, 3725, 3433 N, 12205, 7971 ,w,0.0%5,142. 51 , 061007, | ,0%7E
GPRMC, 003349, 000,A,3725.3432 ,N,12205. 7921 ,w,0.08,159, 56,001007,,,0%7E

06,151, 59,061007, ,,D%7F
20,120. 57,061007, , ,D%72

14,116 h1,06L00/,, ,D%/E
1%,115.32,061007,, ,0%7C
16,117.04,061007,,,0%7C

18,100.40,061007, ,,D%7A
21,100.26,061007 ., .D%73
05,152, 75,061007, , ,0%75
03,102, 08,061007, , ,D*72
03,54.36,061007, ,,D%4F

02,227.11,061007, , ,0%76
04,94 03,0100/, , ,D¥AF
02,112.80,061007, , ,0%70
17,105.75,061007, ,,D%73

17,103, 3" 061007, ,,0%73
17,81, 53, 01007, | D*4D
18,110.73,061007,,.0%79

18,92, 52,061007, ,,D4E
11,180.36,06100?,,,0*?4
24 . 1b6f 43 0810075, , ,O%5F
05,145.95,061007, , ,D*79

-03,200.27, 00100?. . .D"‘?F

05,141.06,061007, ,,0%74
10,148.28,061007, , ,D%78
7% ,746.49,061007 , , ,0%TF

45,182.37,061007,.,,0%70

34,105.22,06100?,,,0“?6
05,115.325,061007, ,,D%77
1h,bd_ b9, UblUU! D“‘ﬁ&

16,74.88,061007, ,,0%41
09,15.79,061007, . .D%4E
05,108.62,061007, , ,0%77
04,107.36,061007, , ,D*70
05,61.27,081007, , , 0%k
03.124.94 061007, ,,0%74
04,153, 78,061007, ,,D%74
16,70.10,061007, ,,0%46

13, /8. /9,00100/, , ,D¥4D
17,92.83,061007,,,0%41
153,77.12.,061007,,,0%47

12,82.68,061007, ,,D%4r
07,8.41,061007, , ,D%7A

10,786, 23, 0R1007 , , , D% 7T
.03,77.13,061007, , .D*44
.07,94.72,061007, ,,D%4D

any rows of coordinate

Chapter 9: Using the Cell Phone's GPS Functionality 219

import android.location.LocationManager;

Next, create the code for the Button. The goal is to retrieve the current coordinate
information from the GPS. You have created a few Buttons already in this book, and the
format for this one is no different. You need to set up your Button and load its layout from
main.xml. Then you can set up the onClick event to call a function, LoadCoords().

final Button gpsButton = (Button) findvViewById(R.id.gpsButton) ;

gpsButton.setOnClickListener (new Button.OnClickListener() { K
public void onClick (View v) { CO \)

LoadCoords () ; e
h esa\
The final step to create this Act1v1ty is ONQCIG of t%le 3% ds()
t

function. Create the TextViews L%v st yo

TextView 1 ﬁ ew:V:Lew) f:L ie :Ld latText)
EP @' e@)a i ById(R id. lngText)
NOTE

You do not have to create the two TextViews that you will use as labels because you will
not be posting anything to them.

Now create a LocationManager from which you can pull the coordinate values. The
important part of this instantiation is that you must pass the LocationManager a context;
use the LOCATION SERVICE:

LocationManager myManager =
(LocationManager)getSystemService (Context . LOCATION SERVICE) ;

To pull the coordinates from myManager, use the getCurrentLocation() method. This
method needs one parameter, a provider, which represents the location that the API will
pull the coordinates from. In this case, Android has provided a mock location gps that
contains the nmea file discussed earlier in this chapter:

Double latPoint myManager .getCurrentLocation ("gps") .getLatitude () ;
Double lngPoint = myManager.getCurrentLocation ("gps") .getLongitude () ;

Chapter 9: Using the Cell Phone's GPS Functionality 227

android:layout height="fill parent"
>
<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout width="wrap content"
android:layout height="wrap content"/>
</RelativeLayout>

Now you can add your two additional buttons. Place the buttons so that they appear in
the upper-left and lower-left corners of the MapView. You need to make one change to \)
the standard Button layout. By default, the RelativeLayout adds the But
the top edge of the anchor view, in this case, the Maleew Ther t‘ ayout use
the android:layout alignBottom attribute and assign it 6 1ew This will
align the button to the bottom of the map “ “ 3

<Button andro:Ld id="@xif/ omIn" O
style="?a e\]\rr/buttonStyl 6
text="+"
P(andr01d -v % rap_ content"
android: lt ="wrap_content" />

<Button andr01d‘1d—"@+1d/buttonZoomOut”
style="?android:attr/buttonStyleSmall"
android:text="-"

android:layout alignBottom="@+id/myMap"

android:layout width="wrap content"
android:layout height="wrap content" />

TIP

Take a close look at the layout attributes for the Button layout. | use a new attribute,
style, to make this Button a small button.

Your full main.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout height="fill parent"
>

<Button

android:id="@+id/gpsButton"

android:layout width="fill parent"
android:layout height="wrap_ content"
android:text="Where Am I"

/>

228 Android: A Programmer's Guide

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="wrap content"
android:layout height="wrap content"
>
<TextView
android:id="@+id/latLabel"
android:layout width="wrap content"
android:layout_ height="wrap_ content"
android:text="Latitude: "
/>
<TextView

android:id="@+id/latText" O \)K
.

android:layout width="wrap content"

android:layout_ height="wrap_ content" C
L Sa

</LinearLayout> ‘
<LinearLayout xmlns:android="http://sch maN@i om/apk/x ?oui"
android:layout width="wrap co ge@
android: layout _height= "w“@ O‘
<TextView \ 6
q +1d/lngLa
"(01

:layout w1d t"
aftdroid:layout helght "wr ent"
android:text="Longitude: "

/>
<TextView
android:id="@+id/lngText"
android:layout width="wrap content"
android:layout height="wrap content"
/>

</LinearLayout>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout _height="fill parent"
>
<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout width="wrap content"
android:layout height="wrap content"/>
<Button android:id="@+id/buttonZoomIn"
style="?android:attr/buttonStyleSmall"
android:text="+"
android:layout width="wrap content"
android:layout height="wrap content" />
<Button android:id="@+id/buttonZoomOut"
style="?android:attr/buttonStyleSmall"
android:text="-

232 Android: A Programmer's Guide

Test the zoom in and zoom out buttons. When you zoom in, you should see something

that looks similar to the following illustration.

(i Brdraid Esmailvter == .

AndroldLES

Where Am |

H P O =

Toggling Between MapView's
Standard and Satellite Views

Edit the AndroidLBS Activity one more time. You should add two more buttons to the
RelativeLayout. These buttons should toggle the MapView between standard view and
satellite view. Here are some points to consider:

©® Add the toggle buttons to the opposite corners of the MapView using the align layout
attributes.

@ Research the MapView to find the toggling method.

@ Create a function that you can pass the MapView to and toggle it.

The complete text of solution main.xml and AndroidLBS.java are as follows.

236 Android: A Programmer’s Guide

public void ZoomIn (MapView mv, MapController mc) {

if (mv.getZoomLevel () 1=21) {
mc . zoomTo (mv.getZoomLevel () + 1) ;
1
1
public void ZoomOut (MapView mv, MapController mc) {
if (mv.getZoomLevel () I=1) {
mc . zoomTo (mv.getZoomLevel () - 1) ;

}
}

public void ShowMap (MapView mv) {

if (mv.isSatellite()){ O u\(

mv.toggleSatellite() ;

! a\e.C
public void ShowSat (MapView mv) s
if (!mv.isSatellite(N 7
mv.toggleSa ellém " 33
} \e\l\l { 25A— O
\P gou run your Actl@,a\guld be able to toggle the satellite view on and

off, as shown in the following illustrations.

A Brdrond Ermulatos Androvd Emulston

AndroldLBs

AndroldLBS

‘Where Am [Where Am 1

o8 s
Frmesco® 008 92 E
0tk gl kmemom
Dk Gy Hayward & i
San Mateod S Fremont

"
Redwod” O
ity

5 ©5an Jose

B

wargan Hi
"8

240

Android: A Programmer’s Guide

Key Skills & Concepts

e Implementing a Google API package
e Configuring the XMPP development settings for Google access

e Implementing the View.OnClickListener() method

cO-

< hapter 9 introduced you to the Google API. You created an g @IWeraged
the Google API and Google Maps. Because of the ity of the API,

you were able to quickly display a Google current 1 t%qou also
learned how to manipulate that Y@Mely few line -S) 93

The Google AP# coriyi Pln an just h g aps. You used a small
part of w g 1 the last chi package for the Google API is
com. Y this base? gﬁ contains packages that allow you to create
Activities that leverage the p&wer of GTalk (Google’s chat service), Google Calendar,
Google Docs, Google Spreadsheet, and Google Services.

When I started writing this book, the version of the Android SDK was m3-rc22. By
the time I completed writing, Google had released m5-15. In the time between these two
releases, Google had deprecated a few of these packages—while leaving them in the SDK.

Google Calendar, Google Spreadsheet, and Google Services appear to be undergoing
an upgrade that, unfortunately, leaves them in a state of incompletion for the m5-rc15

release of the SDK. Google also removed any associated help files from the SDK for these

packages, to avoid any confusion. Therefore, the focus of this chapter is a package that
works quite well with the latest release of the Android SDK—GTalk.

In this chapter, you will build a small Activity that utilizes the GTalk package of the
Android SDK. When the Activity is complete, you will be able to send GTalk messages
from your phone to other GTalk users and receive messages from them.

NOTE

In the first iteration of the Google API for Android, the package dealing with GTalk was
a much broader XMPP package. (XMPP is the protocol on which many chat platforms
are based, including GTalk and Jabber.) With the latest release of the SDK, the original
XMPP package was tightened up and renamed to reflect the specificity of GTalk.

To get started, create a new Project in Eclipse and name GoogleAPI.

Android: A Programmer’s Guide

<EditText
android:id="@+id/messageText"
android:layout width="wrap content"
android:layout height="wrap content"
android:textSize="16sp"
android:minWidth="250dp"
android:scrollHorizontally="true" />
<Button
android:id="@+id/btnSend"
android:layout_width="wrap_content" K
android:layout height="wrap content" U
android:text="Send Msg"> CO .
</Button> a\e .
</LinearLayout> es

This layout will line up your
this LinearLayout i in you

e\\e

<?xXm ve(s1on— "1.o"

look like this:

<LinearLayout

1 Place

t he§l inline 4]3
ml file should

dut. Yo rﬂ‘G‘

xmlns:android="http://schemas.android.com/apk/res/android"

android:
android:

android
<ListView

android:
android:
android:
android:
android:
android:

<EditText

android:
android:
android:
android:

android

<LinearLayout

orientation="vertical"
layout width="fill parent"

:layout height="fill parent">

id="@+id/messagelList"

layout width="fill parent"
layout height="0dip"
scrollbars="vertical™"

layout weight="1"
drawSelectorOnTop="false" />

id="@+id/messageTo"
layout_width="wrap_content"
layout height="wrap content"
textSize="16sp"

:minWidth="250dp"
android:

/>

scrollHorizontally="true"

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill parent"

252 Android: A Programmer's Guide

this.bindService (new
Intent () .setComponent (GTalkServiceConstants.GTALK SERVICE COMPONENT) ,

connection, 0);

private ServiceConnection connection = new ServiceConnection() ({
IBinder service) {

public void onServiceConnected (ComponentName name,

try {
myIGTalkSession =
IGTalkService.Stub.asInterface(service) .getDefaultSession() ;
} catch (DeadObjectException e) {
myIGTalkSession = null; U

} \e ‘CO .

}
public void onServiceDisconnected (ame)
myIGTalkSession = null
| “0 T '(33
publlc vmﬂr‘@“w view) 0

P(rsor curso (Im. Messages CONTENT URI, null,
"cont ct= messageTo getText () .toString() + "\'",

null, null)
LlstAdapter adapter = new SimpleCursorAdapter (this,
android.R.layout.simple list item 1, cursor,
new Stringl[] {Im.MessagesColumns.BODY},
new int[] {android.R.id.text1});
this.messagelist.setAdapter (adapter) ;

try {
IChatSession chatSession;

chatSession =
myIGTalkSession.createChatSession (messageTo.getText () .
chatSession.sendTextMessage (messageText .getText () .
} catch (DeadObjectException ex) {
myIGTalkSession = null;

toString()) ;
toString()) ;

}

Compiling and Running GoogleAPI

Now, compile and run your GoogleAPI Activity in the Emulator. If your connection is
successful, you should see a screen that looks like the following.

Chapter 10: Using the Google APl with GTalk 253

= e
GoogleAF]
) Pl il BN S008I - L TR o
34t IR R e e B U B ol P
Al U5 il (G322 8
& izl e el vl EBE) (Nl Tl s e K
o U

P

To test the Activity, I sent the message “Hello” to androidprogrammersguide@gmail.com,
as shown here:

" Andraid Emlater =T

GoogleAF]

) Pl il BN S008I - L TR o
34t IR R e e B U B ol P
Al 155 il (A6 Tl M) 021
& izl e el vl EBE) (Nl Tl s e
@ 2

256 Android: A Programmer’s Guide

® Change the font color in the message list for messages you send as opposed to
messages you receive

® Change the background color of the message list

Ask the Expert Q. U\L

Q: Can the GTalk API be used to communicate with other XMPP- w @1

A: The answer to this is still unclear. The m3- rc22 eigi ‘&& mclu n XMPP

API rather than the more specific GTal m ul the It s possible
that these two will be combmﬁc rérélease of he Wthh case
the GTalk API ea munic sed chat clients.

e I

Chapter 11:

Application: Find a Friend

259

= Mew Android Project

New Android Project
Creates a new Android Project resource,

Project name: Find&Friend

Contents

@ Create new project in workspace
(71 Create project from existing saurce
[¥] Use default location

CifUsers/IFDiMarziofworkspace/Find&Friend

Properties

Package name:

android_programmersmm i

Activity narne:

prev®

Wote

E=3ECE 5

q

Browse..,

sa\€

cO VK

Finish

Cancel

While you should be fairly comfortable creating Android applications by now, you
will have a little bit of help creating this project. Google includes in the Android SDK
an application called NotePad, a simple interface that lets you store, modify, and delete
“notes” in a database. You are going to modify some of this sample code to create the

interface for your Friends database.

If you want to see how Google NotePad works, load the project into Eclipse and run
it in your Android Emulator before you move on. You will begin to modify this code
shortly, but first, in the following section, you will create your first SQLite database.

Creating a SQllite Database

Android devices will ship with an internal SQLite database. The purpose of this database
is to give users and developers a location in which to store information that can be used in

Activities.

262

Android: A Programmer’s Guide

TIP

If you are not familiar with SQlLite, a SQlLite command must terminate with a semicolon.
This is helpful if you want to span commands across prompts. Pressing the ENTER key
without terminating a SQlLite command will give you a continuation prompt, ...>. You
can continue to enter your command at this prompt until you use the semicolon. SQlLite
will treat such continued commands as one full command once the semicolon is used.

To create your friends table within your database, enter the following command at the

sqlite> prompt: \(
CREATE TABLE friends (_id INTEGER PRIMARY KEY, name TEXT, location TEX O ‘\)
created INTEGER, modified INTEGER) ; e

If your command executes successfully, you will @ e sqhte> prompt, as
shown in the following illustration. i

g ot 33

om. google andvo
om google. EY
mers_gulde

and. 1d_progvammers_g 1
d amdroid_programmers_guidg . Fim¥
S _J

L
1s
mkdir databases
kdir databases
chmod 777 databases
hmod 7?77 databases
1= -1
1s -1
PUXPWXPWX POOL root 2088-85-A3 AB:28 databases
cd databases
d databases
sglited friends.db
wglited friends.db
SQLite version 3.5.8
Enter ".help" for instructions
sglite? CREHTE TABLE friends ¢_id INTEGER PRIMARY KEY.
CREATE TABLE friends ¢(_id INTEGER PRIMARY KEY.
-.=2 name TEXT.
name TEXT.
...>» location TEXT.
location TERT.
...> created INTEGER.
created IMTEGER.
...> modified INTEGER);
modif ied INTEGERD;
sglite? _:J

Your database is now ready to be used, and you can exit SQLite. Use the command
.exit to exit. You can then quit your shell session and return to Eclipse.

Creating the database was the first step in setting up your application. Now that the
database and corresponding table are created, you need a method to access the data. The
data access method employed by Android is a Content Provider. The following section
walks you through creating a custom Content Provider for your new database and
accessing your data.

280 Android: A Programmer's Guide

private static final int NAME INDEX = 1;

private static final String[] PROJECTION = new String[] ({
Friends.Friend. ID,
Friends.Friend.NAME,

i

Cursor mCursor;
EditText mText;

Next, you need to override some methods, starting with onCreate() You hav @ u\(
.
this method overridden in other chapters. Typically, it holds all the co hoﬁ
executed when the Activity is created.

public void onCreate(Bundle i ﬁ ‘ 331

super.onCreate (ic

setCon Te\hl layout name%@
Pveurl - get@@gt hta();

mCursor = managedQuery (uri, PROJECTION, null, null);

mText = (EditText) this.findViewById (R.id.name) ;
mText .setOnClickListener (this) ;

Button b = (Button) findviewById(R.id.ok);
b.setOnClickListener (this) ;

Notice that, in the previous code sample, you assign layouts to their respective Views
and initiate some of your variables. However, you may be wondering where the data is for
the name field. That is, you have created a cursor, but you have not retrieved anything
from it. You will use the onResume() method for that.

The two methods that you will override next, onResume() and onPause(), will do
the work of reading from and writing to the database, respectively. Within the Android
life cycle, onResume() is called when an Activity is open and on the top of the focus.
onPause() is called when an Activity is being closed but before focus is handed to
another Activity.

Override your onResume() method to read the database and retrieve the name field:

protected void onResume () {
super.onResume () ;

282 Android: A Programmer's Guide

Friends.Friend.NAME,

}i

Cursor mCursor;
EditText mText;

@Override
public void onCreate (Bundle icicle) {
super.onCreate (icicle) ;

setContentView (R.layout.name editor) ; K
oM

Uri uri = getIntent () .getDatal() ;

mCursor = managedQuery (uri, PROJECTION, nulxe ga\e
mText = (EditText) this.findView N
mText.setOnClickListepger (xﬁ " 33
Button b s ﬂ {'\ 1ewById @ O

b. set (this) ;

@®verride

protected void onResume
super.onResume () ;

if (mCursor != null) {
mCursor.first () ;
String title = mCursor.getString(NAME INDEX) ;
mText .setText (title) ;

@Override
protected void onPause () {
super.onPause () ;

if (mCursor != null) {
String title = mText.getText ().toString() ;
mCursor.updateString (NAME_INDEX, title);
mCursor.commitUpdates () ;

public void onClick (View v)
finish() ;
}

Chapter 11: Application: Find a Friend 283

At this point, you can edit name values in the Friends database. However, there are
two fields of importance in the database, name and location. In the next section, you will
create an editor for the location field.

Creating the LocationEditor Activity
In this section, you will create an editor for the location field of the Friends database. You
are going to make this Activity slightly different from the NameEditor Activity. Therefore,

the code will be different and follow a slightly unfamiliar process. \(
If you explored the Google demo NotePad, you should have noticed that the Q \)

editor is a white screen with a dynamically drawn line on it that repem
This effect is performed using a custom View. You are 6 @ me custom

View for the LocationEditor. 331

The first step is to e @;h orjava files for the layout
and \fir he layout d ain a call to the custom View layout.
The IXout is as followsé

<?xml version="1.0" encoding="utf-8"?>
<view xmlns:android="http://schemas.android.com/apk/res/android"
class="android programmers guide.FindAFriend.LocationEditor$MyEditText"
android:id="@+id/location"

android:layout width="fill parent"

android:layout height="fill parent"

android:background="#ffffff"

android:padding="10dip"

android:scrollbars="vertical"

android:fadingEdge="vertical" />

location_editor. xm| S
ion "editor.xml

The LocationEditor will also contain a menu system that will allow the user to discard,
delete, or revert any changes they make. This will be a pretty complex Activity. Therefore, it
is best to start at the beginning, the imports section of the LocationEditor.java.

LocationEditor.java
Take a look at the following imports for this Activity, many of which deal with drawing
the custom View on the screen:

import android.app.Activity;
import android.content.ComponentName;

296 Android: A Programmer’s Guide

DrawFriendsOverlay drawFriendsOverlay = new DrawFriendsOverlay() ;

@Override

public void onCreate (Bundle icicle) {
super.onCreate (icicle) ;
setContentView (R.layout. friendsmap) ;

Intent intent = getIntent();
if (intent.getData() == null) {
intent.setData (Friends.Friend.CONTENT URI) ;

}

mCursor = managedQuery (getIntent () .getData(), PROJECTION, null,nullly \)K
cO-

final MapView myMap = (MapView) f1ndV1ewById (R. 1d my: \6

final MapController myMapController = myMap @

LoadFriends (myMap, myMapController, mC r
OverlayController myOverlayContr 11%
myMap.createOverlayController 3

myOverlayController.

d i ndsOverl

final But#&o tton) w uttonZoomIn) ;
‘ nCllckLlst ner (s n. OnCllckLlstener() {
eM c v01d onClic
P(Zoom @_@a Controller) ;

final Button zoomOut = (Button) findViewById(R.id.buttonZoomOut) ;
zoomOut . setOnClickListener (new Button.OnClickListener () {
public void onClick (View v) {
ZoomOut (myMap, myMapController) ;
I
final Button viewMap = (Button) findviewById(R.id.buttonMapView) ;
viewMap.setOnClickListener (new Button.OnClickListener ()
public void onClick (View v) {
ShowMap (myMap, myMapController) ;
3N
final Button viewSat = (Button) findvViewById(R.id.buttonSatView) ;
viewSat.setOnClickListener (new Button.OnClickListener () ({
public void onClick (View v){
ShowSat (myMap, myMapController) ;

P

public void LoadFriends (MapView mv, MapController mc, Cursor c){
Point myLocation = null;
Double latPoint = null;
Double lngPoint = null;

c.first () ;

dof{
if (c.getString(c.getColumnIndex("location")) 1= null) {
final String geoPattern = "(geo:[\\-1?2[0-9]1{1,3}\\.[0

]{1,6}\\,[\\—]?[0—9]{1,3}\\.[0—9]{1,6}\\# ",

Pattern pattern = Pattern.compile(geoPattern) ;

298 Android: A Programmer's Guide

mv.toggleSatellite() ;

}

protected class DrawFriendsOverlay extends Overlay({
public String[] friendName = new String[0];
public Point[] friendPoint new Point [0] ;
final Paint paint = new Paint();

@Override
public void draw(Canvas canvas, PixelCalculator calculator, Boolean

shadow) {
for (int x=0;x<friendPoint.length; x++){ 0 u

int [] coords = new int[2];

calculator. getP01ntXY(fr1endP01nt [x], coor \e C
RectF oval = new RectF (coords| , coords %
coords [0] + 7, K?é
paint.setTextSize (14) “0
canvas.drawText (fgien rfm
coords 0)& [171, "
canvas W paint) 6 O
Eﬂollc void addNeerna‘gg name, Point point) {

int x = friendPoint.length;

String[] friendNameB = new String[x + 1];
Point[] friendPointB = new Point([x + 1];

System. arraycopy (friendName, 0, friendNameB, 0, x);
System.arraycopy (friendPoint, 0, friendPointB, 0, Xx);

friendNameB[x] = name;
friendPointB [x]= point;

friendName = new String[x + 1];

friendPoint = new Point([x + 1];

System. arraycopy (friendNameB, 0, friendName, 0, x + 1);
System. arraycopy (friendPointB, 0, friendPoint, 0, x + 1);

The last task to finish this project is to create the main Activity, FindAFriend, which
will be a shell that calls the other Activities you created in this chapter.

Chapter 11: Application: Find a Friend 301

menu.add (0, INSERT_ID, R.string.menu insert) .setShortcut('3', 'a');

Intent intent = new Intent (null, getIntent () .getDatal()) ;
intent.addCategory (Intent .ALTERNATIVE CATEGORY) ;
menu.addIntentOptions (
Menu.ALTERNATIVE, 0, new ComponentName (this, FindAFriend.class),
null, intent, 0, null);

return true;

@Override
public boolean onPrepareOptionsMenu(Menu menu) {

O.
super.onPrepareOptionsMenu (menu) ; \e ‘C
final boolean haveItems = mCursor.count (' ef E a

if (haveltems)

Uri uri = Content ris mmﬁ getInt %t]
getSelectedItemId() 0
‘ 1 ics new 3
P (e cS1 = nt&ef EDIT ACTION, uri);

enu.Item|[nu.Item([1];

Intent 1ntent = new Intent (null, uri);

1ntent.addCategory(Intent.SELECTED_ALTERNATIVE_CATEGORY);

menu.addIntentOptions (Menu.SELECTED ALTERNATIVE, 0, null,
specifics, intent, 0, items);

menu.add(Menu.SELECTED_ALTERNATIVE, DELETE_1ID,
R.string.menu delete)

.setShortcut ('2', 'd');

menu.add(Menu.SELECTED_ALTERNATIVE, FIND_FRIENDS,
R.string.find friends) .setShortcut('4', 'f');

if (items[0] != null) {

items [0] .setShortcut ('1', 'e');
}

} else {

menu.removeGroup (Menu.SELECTED ALTERNATIVE) ;

menu.setItemShown (DELETE_ID, haveltems) ;
return true;

@Override
public boolean onOptionsItemSelected (Menu.Item item) {
switch (item.getId()) {

case DELETE_ID:
deleteltem() ;

This option launches the $ustom

Chapter 11: Application: Find a Friend 303

)

- @ @l (D12:38AM

FindAFriend

21 3 [l UG LR T £ 18 o0 1)
AR I FRRC DT I (e ST EICX) P
Sl 1D (A ikl il S el P (5
Z X € VM B NM . &
@ = A

1ew you created. Enter a friend’s name on the line

provided, as shown here, and return to the main Activity by clicking the back arrow on the

Emulator.

=l
Create Friend
$id @l i3 [nd sl Vgl 7l 3l el)
4 (AR] (R I i 1= ol) £
Al sl iod e e TR el L (4R
£z X Cc Vv BNM -
@ = A

This'page intentionally left blank

316

Android: A Programmer’s Guide

dialing (continued)
notation to dial a specific phone number
or voicemail, 125
directories, 63—-68
DX.exe, 47

Eclipse, 10
advantages of using, 11
Android plugin for, 24-33
creating your first Android project,
55-61

downloading and installing, 18-20
and JRE versions, 20 _‘(Omogle -‘

EditText, 245-246

implementin, ﬂ(\@m
EdltTextg ‘y 183-189

edittext.xml, 184—185
embedded device programming, history
of, 2-5
embedded devices, 3
Emulator, 45-46, 71-72
authenticating users, 243-244
calling to or from, 148
commands, 308-310
compiling and running GoogleAPIs,
252-255
configuring for GTalk, 241-244
installing applications with,
103-106
leaving open, 127
error messages, 58
erTors
Call Activity, 130
running ANT, 98-103
when running Hello World! Activity,
105-106
executable files, 47

Fedora 8 Linux, 109
FindAFriend Activity, 258-259
creating, 276-302
running, 302-305
finish(), 281
FORWARD RESULT LAUNCH, 126
FriendsMap Activity, 293-298

alC- L
331

& Open Handset Alliance, 5, 8, 109
le Android development site, 22—-23
Google Calendar, 240
Google Docs, 240
Google Earth, 205-208
Google Maps
and markers, 237
passing coordinates to, 222-226
Google NotePad, 259
Google Services, 240
Google Spreadsheet, 240
GoogleAPl java, 247-248
GoogleAPIs, 48, 240
adding a settings feature, 255-256
compiling and running in the Emulator,
252-255
GoogleAPL.xml, creating an Activity’s layout
in, 245-247
GPS. See Android Location-Based API
GTalk, 240
adding packages to GoogleAPlI.java,
247-248
communicating with other XMPP-based
chat clients, 256

o ¥

getC

&@3@

compiling and running Google API,
252-255

configuring the Android Emulator for,
241-244

creating an Activity’s layout in
GoogleAPIl.xml, 245-247

implementing View.OnClickListener,
248-252

H

Hello World!, 41
adding the JAVA HOME variable,

317

Index

importing packages
full packages vs. specific sections, 202
to GoogleAPl.java, 247-248

insert(), 269-271

integrated development environments (IDEs), 10
See also Eclipse

Intent Filters, 123
adding to AutoCompleteTextView,

169-170

for AndroidViews Activity,

155-15 u\(
and DIAL_ACTION I\éuc

Intent Receivers, 123

Intent Reso a"es
Intenﬁ
c Vlty Acti

96-97 9120
code-based UI, 75-77 .‘(Om tsn% 21-123
compiling with ANT, A ON 129
creating an varston, 115 ined, 119

i
edi JémS 96 ge
err? —-106 P a-
with images, 72-81
installing with adb, 103-106
on Linux, 109-114
programming in code, 69-72
reinstalling and launching, 108
uninstalling prior versions, 106—108
XML-based UI, 78-81

HelloWorldImage, 7281
HelloWorldText, 55-61
homebrew developers, 4

IChatSession, 250-251
IDEs. See integrated development
environments (IDEs)
images
displaying, 7281
naming, 74
ImageView, 7577, 78—80

DIAL _ACTION, 124-128
Intent code for .java file, 154
Intent code for .xml file, 152—153

J

Java Development Kit (JDK), downloading and
installing, 1218

Jjava file, Intent code for, 154

Java Runtime Environment (JRE)
downloading and installing, 12—18
versions, 20

JAVA HOME variable, 96-97

JDK. See Java Development Kit (JDK)

JRE. See Java Runtime Environment (JRE)

K

Keyhole Markup Language file. See .kml file
kml file, 237
creating, 205-208

