
We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?
Preview from Notesale.co.uk

Page 6 of 337

developed in Java and run on the Linux 2.6 kernel. If you are a quick learner, you may be
able to understand what is going on with just some basic object-oriented programming
(OOP) experience. Chapter 2 explains how to download and install the preferred
integrated development environment, Eclipse. All the code samples and screenshots in
this book are provided using Eclipse (Europa release) and the Android plugin for Eclipse.

Any comments, questions, or suggestions about any of the material in this book can
be forwarded directly to the author at jfdimarzio@jfdimarzio.com.

xvi Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 18 of 337

Device manufacturers still closely guard the operating systems that run on their
devices. While a few have opened up to the point where they will allow some Java-based
applications to run within a small environment on the phone, many do not allow this.
Even the systems that do allow some Java apps to run do not allow the kind of access
to the “core” system that standard desktop developers are accustomed to having.

Open Handset Alliance and Android
This barrier to application development began to crumble in November of 2007 when
Google, under the Open Handset Alliance, released Android. The Open Handset Alliance
is a group of hardware and software developers, including Google, NTT DoCoMo,
Sprint Nextel, and HTC, whose goal is to create a more open cell phone environment.
The first product to be released under the alliance is the mobile device operating
system, Android. (For more information about the Open Handset Alliance, see
www.openhandsetalliance.com.)

With the release of Android, Google made available a host of development tools
and tutorials to aid would-be developers onto the new system. Help files, the platform
software development kit (SDK), and even a developers’ community can be found at
Google’s Android website, http://code.google.com/android. This site should be your
starting point, and I highly encourage you to visit the site.

NOTE
Google, in promoting the new Android operating system, even went as
far as to create a $10 million contest looking for new and exciting Android
applications.

While cell phones running Linux, Windows, and even PalmOS are easy to find, as of
this writing, no hardware platforms have been announced for Android to run on. HTC, LG
Electronics, Motorola, and Samsung are members of the Open Handset Alliance, under
which Android has been released, so we can only hope that they have plans for a few
Android-based devices in the near future. With its release in November 2007, the system
itself is still in a software-only beta. This is good news for developers because it gives us
a rare advance look at a future system and a chance to begin developing applications that
will run as soon as the hardware is released.

Chapter 1: What Is Android? 5

Preview from Notesale.co.uk

Page 23 of 337

Chapter2
Downloading and
Installing Eclipse

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

Preview from Notesale.co.uk

Page 27 of 337

18 Android: A Programmer’s Guide

Once you complete the Java JDK installation—and by default the JRE
installation—you can begin to install Eclipse.

Downloading and Installing Eclipse
Navigate to the Eclipse Downloads page at www.eclipse.org/downloads, shown in the
following illustration. As the opening paragraph states, the JRE is required (Java 5 JRE
recommended) to develop in Eclipse, which you took care of in the previous section.
Download the Eclipse IDE for Java Developers from this site. The package is relatively
small (79MB) and should download fairly quickly. Be sure not to download the Eclipse
IDE for Java EE Developers, as this is a slightly different product and I will not be
covering its usage.

Preview from Notesale.co.uk

Page 36 of 337

Now that you have your development environment established, you are ready to
explore the Android SDK, which contains multiple files and tools specifically

intended to help you design and develop applications that run on the Android platform.
These tools are very well designed and can help you make some incredible applications.
You really need to be familiar with the Android SDK and its tools before you begin
programming.

The Android SDK also contains libraries for tying your applications into core Android
features such as those associated with cell phone functions (making and receiving calls),
GPS functionality, and text messaging. These libraries make up the core of the SDK and
will be the ones that you use most often, so take the time to learn all about these core
libraries.

This chapter covers all of the important items contained within the Android SDK. By
the end of the chapter, after familiarizing yourself with the contents of the Android SDK,
you will be comfortable enough to begin writing applications. However, as with any
subject, before you can dive into the practice of the discipline, you must familiarize
yourself with its contents and instructions.

CAUTION
I am not going to go over every minute detail of the Android SDK; Google does a very
good job of that within its documentation. To avoid the risk of spending too much time
discussing how things work instead of showing you how they work, I have tried to keep
this discussion as brief as possible. I cover only the most important topics and items,
leaving you free to explore the rest in more depth yourself, at your own pace.

36 Android: A Programmer’s Guide

Key Skills & Concepts
● Using the Android SDK documentation

● Using the Android SDK tools

● Using the sample applications

● Learning the life cycle of an Android application

Preview from Notesale.co.uk

Page 54 of 337

Android Documentation
The Android documentation is located in the Docs folder within the Android SDK at
../%sdk folder%/DOCS. The documentation that is supplied with the SDK includes steps
on downloading and installing the SDK, “Getting Started” quick steps for developing
applications, and package definitions. The documentation is in HTML format and can be
accessed though the documentation.html file in the root of the SDK folder. The following
illustration depicts the main page of the Android SDK documentation.

You can navigate to all of the documentation that is included in the Android SDK by
using the links within documentation.html.

38 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 56 of 337

Note Pad
Note Pad, as shown in the illustration that follows, allows you to open, create,
and edit small notes. Note Pad is not a full-featured word editor, so do not
expect it to be something to rival Word for Windows Mobile. However, it does
a good job as a demonstration tool to show what is possible with a relatively
small amount of code.

Skeleton App
Skeleton App, shown next, is an application shell. This is more of a base application that
demonstrates a couple of different application features, such as fonts, buttons, images, and
forms. If you are going to run Skeleton App by itself, you really are not going to get much

Chapter 4: Exploring the Android SDK 43

Preview from Notesale.co.uk

Page 61 of 337

44 Android: A Programmer’s Guide

out of it. You will be better served by referring to Skeleton App as a resource for how to
implement specific items.

Snake
The final demo that is
included with the Android
SDK is Snake. This is a
small, SNAFU-style game
that is far more simplistic
than Lunar Lander. This
illustration shows what
Snake looks like when run.

Preview from Notesale.co.uk

Page 62 of 337

NOTE
If you navigate to the base folder of each of the sample applications, you will see a
folder named src. This is the source code folder for the given sample application. You
can use this to view, edit, and recompile the code for any of the applications. Take
advantage of this source code to learn some tricks and tips about the Android platform.

Android Tools
The Android SDK supplies developers with a number of powerful and useful tools.
Throughout this book, you will use only a handful of them directly. This section takes a
quick look at just a few of these tools, which will be covered in much more depth in the
following chapters, as you dive into command-line development.

NOTE
For more detailed information about the other tools included in the Android SDK,
consult the Android doc files.

emulator.exe
Arguably one of the most important tools included in the Android SDK is emulator.exe.
emulator.exe launches the Android Emulator. The Android Emulator is used to run your
applications in a pseudo-Android environment. Given that, as of the writing of this book,
there were no hardware devices yet released for the Android platform, emulator.exe is
going to be your only means to test applications on a “native” platform.

You can run emulator.exe from the command line or execute it from within Eclipse.
In this book, you’ll usually let Eclipse launch the Android Emulator environment for you.
However, in the interest of giving you all the information you need to program with the
Android SDK outside of Eclipse, Chapter 6 covers command-line usage of emulator.exe
when you create your Hello World! applications.

When using the Android Emulator to test your applications, you have two choices for
navigating the user interface. First, the emulator comes with usable buttons, as shown in
Figure 4-1. You can use these buttons to navigate Android and any applications that you
develop for the platform.

TIP
The Power On/Off, Volume Up, and Volume Down buttons are slightly hidden to the
sides of the virtual device. They identify themselves when you hover the mouse pointer
over them.

Chapter 4: Exploring the Android SDK 45

Preview from Notesale.co.uk

Page 63 of 337

48 Android: A Programmer’s Guide

APIs
The API, or application programming interface, is the core of the Android SDK. An API
is a collection of functions, methods, properties, classes, and libraries that is used by
application developers to create programs that work on specific platforms. The Android
API contains all the specific information that you need to create applications that can
work on and interact with an Android-based application.

The Android SDK also contains two supplementary sets of APIs—the Google APIs
and the Optional APIs. Subsequent chapters will focus much more on these APIs as you
begin writing applications that utilize them. For now, take a quick look at what they
include so that you are familiar with their uses.

Google APIs
The Google APIs are included in the Android SDK and contain the programming
references that allow you to tie your applications into existing Google services. If you
are writing an Android application and want to allow your user to access Google services
through your application, you need to include the Google API.

Located in the android.jar file, the Google API is contained within the com.google.*
package. There are quite a few packages that are included with the Google API. Some of
the packages that are shipped in the Google API include those for graphics, portability,
contacts, and calendar utilities. However, the packages devoted to Google Maps will be
the primary focus in this book.

Using the com.google.android.maps package, which contains information for Google
Maps, you can create applications that interact seamlessly with the already familiar
interface of Google Maps. This one set of packages opens a whole world of useful
applications just waiting to be created.

The Google API also contains a useful set of packages that allows you to take
advantage of the newer Extensible Messaging and Presence Protocol (XMPP) developed
by the Jabber open source community. Using XMPP, applications can quickly become
aware of other clients’ presence and availability for the purpose of messaging and
communications. The API packages dealing with XMPP are very useful if you want
to create a “chat”-style program that utilizes the phone messaging capabilities.

Optional APIs
The Android SDK includes a number of Optional APIs that cover functionality not
covered by the standard Android APIs. These Optional APIs are considered optional
because they deal with functionality that may or may not be present on a given handset

Preview from Notesale.co.uk

Page 66 of 337

To make sure that you get a good overall look at programming in Android, in
Chapter 6 you will create both of these applications in the Android SDK command-line
environment for Microsoft Windows and Linux. In other words, this chapter covers
the creation process in Eclipse, and Chapter 6 covers the creation process using the
command-line tools. Therefore, before continuing, you should check that your Eclipse
environment is correctly configured. Review the steps in Chapter 3 for setting the PATH
statement for the Android SDK. You should also ensure that the JRE is correctly in your
PATH statement.

TIP
If you have configuration-related issues while attempting to work with any of the
command-line examples, try referring to the configuration steps in Chapters 2 and 3;
and look at the Android SDK documentation.

Creating Your First Android Project in Eclipse
To start your first Android project, open Eclipse. When you open Eclipse for the first
time, it opens to an empty development environment (see Figure 5-1), which is where
you want to begin. Your first task is to set up and name the workspace for your
application. Choose File | New | Android Project, which will launch the New Android
Project wizard.

CAUTION
Do not select Java Project from the New menu. While Android applications are written
in Java, and you are doing all of your development in Java projects, this option will
create a standard Java application. Selecting Android Project enables you to create
Android-specific applications.

If you do not see the option for Android Project, this indicates that the Android plugin
for Eclipse was not fully or correctly installed. Review the procedure in Chapter 3 for
installing the Android plugin for Eclipse to correct this.

The New Android Project wizard creates two things for you:

● A shell application that ties into the Android SDK, using the android.jar file, and
ties the project into the Android Emulator. This allows you to code using all of
the Android libraries and packages, and also lets you debug your applications in
the proper environment.

Chapter 5: Application: Hello World! 55

Preview from Notesale.co.uk

Page 73 of 337

Chapter 5: Application: Hello World! 67

The next line in the file is the one that really does some perceptible action:

setContentView(R.layout.main);

The method setContentView() sets the Activity’s content to the specified resource.
In this case, we are using the main.xml file from the layout directory via the pointer in
the R.java file. The main.xml file, right now, contains nothing more than the size of the
HelloWorldText screen and a TextView. The TextView is derived from View and is used
to display text in an Android environment. Reviewing the contents of main.xml, you can
see that it contains the following line:

android:text="Hello World, HelloWorldText"

Considering that the setContentView() method is being told to set main.xml as the
current View, and main.xml contains a TextView that says “Hello World, HelloWorldText,”
it may be safe to assume that compiling and running HelloWorldText now will give
you your Hello World! application. To test this, run your unaltered HelloWorldText
application. Choose Run | Run to open the Run As dialog box, select Android Application,
and click OK.

Preview from Notesale.co.uk

Page 85 of 337

The new project you just established contains the code to create a Hello World!
application on its own. However, that is not very engaging, nor does it teach you very
much about programming an Android application. You need to dissect the project and
see exactly how the project displayed the “Hello World!” message.

What happened when you created the new Android project is that the Android plugin
modified main.xml. This is a perfect example of one way to modify the UI in Android.
The following lines of code are added to main.xml by the Android SDK when the project
is created:

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorldText"

/>

While I have discussed the existence of this TextView in the xml, I have not yet
discussed why it works without any corresponding code. I mentioned earlier in this book
that there are two ways to design a UI for Android: through the code, and through the
main.xml file. The preceding code sample creates a TextView in xml and sets the text to
“Hello World, HelloWorldText.” Edit this line of the main.xml file to read as follows:

android:text="This is the text of an Android TextView!"

Rerun the project,
and your results should
appear as they do in
this illustration.

Take some time
and experiment with
the xml TextView.
Then you can move
on to another way of
creating a Hello World!
application.

68 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 86 of 337

Hello World! Again
In this section, you will create another Hello World! application for Android. However,
this time you will program the UI in code rather than by using the xml file—and you will
actually do most of the work. The first step here is to remove the TextView code that is in
main.xml. The following section of code represents the TextView. Removing it essentially
makes your application an empty shell.

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorldText"

/>

After you have removed the TextView code, your main.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

</LinearLayout>

Now that you have a clean main.xml file, and thus a clean application shell, you can
begin to add the code that will display “Hello World!” on the screen. Start by opening the
HelloWorldText.java file and removing the following line:

setContentView(R.layout.main);

NOTE
You still need to set a ContentView for your new application; however, you are going
to implement it slightly differently from how it is implemented here, so it is best to just
remove the entire statement for now.

This line uses setContentView() to draw the main.xml file to the screen. Since you
will not be using main.xml to define your TextView, you will not be setting it to your
view. Instead, you will be building the TextView in code.

Chapter 5: Application: Hello World! 69

Preview from Notesale.co.uk

Page 87 of 337

So far this book has covered some very broad subjects to get you up and running on the
Android platform. At this point, you should be fairly comfortable using Eclipse to

create and run a small Android application. You created a new project, edited the
main.xml and <activity>.java files, and recompiled the R.java file. These are the
basic skills that you need to create Android applications.

In this chapter, you are going to expand and round out those skills by experimenting
with command-line application development. Android development does not have to
be limited to the confines of the Eclipse IDE. The Android SDK offers a host of
command-line tools that can help you develop full applications without the need
of a graphical IDE. You will use these command-line tools to create, compile, and
run a Hello World! application, first in Windows and then in Linux.

Creating a Shell Activity Using the Windows CLI
The Android SDK comes with multiple tools to help you create and compile Android
applications. These tools are in place to help users who do not wish to, or do not have a
system capable of supporting, work within a GUI IDE. However, if you are doing all of
your Android development work within Eclipse, you still should be aware of the Android
SDK command-line tools and their functionality.

When you run Android-related functions, such as creating an Android project or
running an application in the Android Emulator, you are actually calling connections
to the Android command-line tools. These Android command-line tools, whether run
from a command-line interface or from a GUI IDE, are the real core to the functionality
of the Android SDK.

84 Android: A Programmer’s Guide

Key Skills & Concepts
● Using the Android SDK command-line tools

● Creating a command environment

● Navigating the Android server with a shell

● Using the Android SDK in Linux

Preview from Notesale.co.uk

Page 102 of 337

92 Android: A Programmer’s Guide

<property name="zip" value="zip" />

<!-- Rules -->

<!-- Create the output directories if they don't exist yet. -->
<target name="dirs">

<mkdir dir="${outdir}" />
<mkdir dir="${outdir-classes}" />

</target>

<!-- Generate the R.java file for this project's resources. -->
<target name="resource-src" depends="dirs">

<echo>Generating R.java...</echo>
<exec executable="${aapt}" failonerror="true">

<arg value="compile" />
<arg value="-m" />
<arg value="-J" />
<arg value="${outdir-r}" />
<arg value="-M" />
<arg value="AndroidManifest.xml" />
<arg value="-S" />
<arg value="${resource-dir}" />
<arg value="-I" />
<arg value="${android-jar}" />

</exec>
</target>

<!-- Generate java classes from .aidl files. -->
<target name="aidl" depends="dirs">

<apply executable="${aidl}" failonerror="true">
<arg value="-p${android-framework}" />
<arg value="-I${srcdir}" />
<fileset dir="${srcdir}">

<include name="**/*.aidl"/>
</fileset>

</apply>
</target>

<!-- Compile this project's .java files into .class files. -->
<target name="compile" depends="dirs, resource-src, aidl">

<javac encoding="ascii" target="1.5" debug="true" extdirs=""
srcdir="."
destdir="${outdir-classes}"
bootclasspath="${android-jar}" />

</target>
<!-- Convert this project's .class files into .dex files. -->

Preview from Notesale.co.uk

Page 110 of 337

<!-- Invoke the proper target depending on whether or not
an assets directory is present. -->

<!-- TODO: find a nicer way to include the "-A ${asset-dir}" argument
only when the assets dir exists. -->

<target name="package-res">
<available file="${asset-dir}" type="dir"

property="res-target" value="and-assets" />
<property name="res-target" value="no-assets" />
<antcall target="package-res-${res-target}" />

</target>

<!-- Put the project's .class files into the output package file. -->
<target name="package-java" depends="compile, package-res">

<echo>Packaging java...</echo>
<jar destfile="${out-package}"

basedir="${outdir-classes}"
update="true" />

</target>

<!-- Put the project's .dex files into the output package file.
Use the zip command, available on most unix/Linux/MacOS systems,
to create the new package (Ant 1.7 has an internal zip command,
however Ant 1.6.5 lacks it and is still widely installed.)

-->
<target name="package-dex" depends="dex, package-res">

<echo>Packaging dex...</echo>
<exec executable="${zip}" failonerror="true">

<arg value="-qj" />
<arg value="${out-package}" />
<arg value="${intermediate-dex}" />

</exec>
</target>

<!-- Create the package file for this project from the sources. -->
<target name="package" depends="package-dex" />

<!-- Create the package and install package on the default emulator -->
<target name="install" depends="package">

<echo>Sending package to default emulator...</echo>
<exec executable="${adb}" failonerror="true">

<arg value="install" />
<arg value="${out-package}" />

</exec>
</target>

</project>

Now that you have a good understanding of how build.xml is used in the manual,
command-line creation of Android projects, you can begin to edit your project files and

94 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 112 of 337

The chapters up to this point have introduced you to the basics of Android programming.
You have examined the outline of an Android application and installed your first

applications to the Android server. You have learned how to use Views and setContentView(),
as well as how to create a UI in XML. These skills have helped you to create a static
application. What you have not done yet is use the application interface to interact with
the hardware that the platform was created for—the cell phone.

You should not lose sight of the fact that the platform for which Android was created
is, in essence, still a cell phone. The underlying hardware for the devices that Android will
run on is designed for the purpose of person-to-person communication. If you strip away
all the bells and whistles that the Android SDK is capable of adding to the cell phone, it
must still be able to send and receive phone calls. For this reason, this chapter focuses on
the code that enables you to interact with the phone hardware.

By the end of this chapter, you should have the skills needed to interact with some
of the basic functions of the phone. You will be able to work with the dialer to send and
receive calls. These tools and skills will be your keys to creating useful applications on
this flexible platform.

You are reading this book because you intend to design applications that run on a cell
phone, so it stands to reason that you should learn how Android allows for interaction
with the phone hardware—in particular, the process that enables the phone to send and
receive calls.

When we think of a cell phone, a few basic functions come to mind. The first, and
most obvious, of which is the ability to send and receive phone calls. This is inarguably
the quintessential function of a cell phone. There are a few peripheral features that make
the cell phone easier to use, such as the ability to keep and manage contacts and the ability
to store and review missed calls. As you’ll read in this chapter, you can access and
manipulate the code for all of these functions.

118 Android: A Programmer’s Guide

Key Skills & Concepts
● Using Intents

● Creating code that interacts with the phone hardware

● Learning the difference between dialing and calling

Preview from Notesale.co.uk

Page 136 of 337

NOTE
Some of these Broadcast Intents are sent out quite often, such as TIME_TICK_ACTION
and SIGNAL_STRENGTH_CHANGED_ACTION. Be careful how you use them. You
should try not to receive such broadcasts if at all possible.

The Intent is only one-third of the picture. An Intent is really just that, an intent to do
something; an Intent cannot actually do anything by itself. You need Intent Filters and
Intent Receivers to listen for, and interpret, the Intents.

An Intent Receiver is like the mailbox of an Activity. The Intent Receiver is used
to allow an Activity to receive the specified Intent. Using the previous web browser
example, the Web Browser Activity is set up to receive web browser Intents. A system
like this allows unrelated Activities to ignore Intents that they would not be able to
process. It also allows Activities that need the assistance of another Activity to utilize
that Activity without needing to know how to call it.

With Intents and Intent Receivers, one Activity can send out an Intent and another can
receive it. However, there needs to be something that governs the type of information that
can be sent between the two Activities. This is where Intent Filters come in.

Intent Filters are used by Activities to describe the types of Intents they want to
receive. More importantly, they outline the type of data that should be passed with the
Intent. Therefore, in our example scenario, we want the web browser to open a web page.
The Intent Filter would state that the data passed with the WEB_SEARCH_ACTION
Intent should be in the form of a URL.

In the next section, you will begin to use Intents to open and utilize the phone’s dialer.

Chapter 7: Using Intents and the Phone Dialer 123

Broadcast Intent Message

SIM_STATE_CHANGED_ACTION The state of the SIM card has changed

TIME_CHANGED_ACTION The device’s time was set

TIME_TICK_ACTION The current time has changed

TIMEZONE_CHANGED_ACTION The device’s timezone has changed

UMS_CONNECTED_ACTION The device has connected via USB

UMS_DISCONNECTED_ACTION The device has been disconnected from its
USB host

WALLPAPER_CHANGED_ACTION The device’s wallpaper has been changed

Table 7-2 Broadcast Intents (continued)

Preview from Notesale.co.uk

Page 141 of 337

package android_programmers_guide.AndroidPhoneDialer;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.net.Uri;

public class AndroidPhoneDialer extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
/** Create our Intent to call the Dialer */
/** Pass the Dialer the number 5551212 */
Intent DialIntent = new

Intent(Intent.DIAL_ACTION,Uri.parse("tel:5551212"));
/** Use NEW_TASK_LAUNCH to launch the Dialer Activity */
DialIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
/** Finally start the Activity */
startActivity(DialIntent);

}
}

You should now compile AndroidPhoneDialer and run it on your Emulator. The
process for compiling and running applications was covered in previous chapters, so you
should be familiar with that process. Once you run your application, the Emulator should
launch. After the lengthy boot process, your Activity will launch.

TIP
It is a good idea to keep the Emulator running, even after you are finished with your
Activity and have returned to the code window. It is most people’s instinct to close the
Emulator window when they have finished testing their Activity. However, I have found
that leaving the Emulator open helps with two major issues. The first is the amount of
time it takes for the Emulator to start. By leaving the Emulator open, you avoid the
lengthy load time. Second, I have noticed that there are times when I make minor
changes to an Activity and they are not copied to the Emulator. Leaving the Emulator
open seems to alleviate this issue as well. If you continue to have issues in the Emulator,
remove the userdata-qemu.img file from your computer. This allows the Emulator to start
up with a clean image.

Chapter 7: Using Intents and the Phone Dialer 127

Preview from Notesale.co.uk

Page 145 of 337

Chapter 7: Using Intents and the Phone Dialer 133

To edit the Activity’s permissions, click the Permission link. This should take you to
the Android Manifest Permissions window, shown in the following illustration.

This window lists the permissions that are currently assigned to your Activity. Given
that you are working in a new project, you do not have any assigned permissions. Therefore,
click the Add button to begin the process. In the dialog box that opens, select Uses
Permission and click OK.

Preview from Notesale.co.uk

Page 151 of 337

First, lay out the Views in your main.xml. You will actually add two Views here: a
TextView to act as a label and give some direction to the user, and an EditText to accept
the user’s input. Together these two Views will add the needed depth and practicality to
your Activity.

As you form the look of your Activity, keep in mind that the .xml file is formed
visually. This means that if you want the TextView to appear above the EditText on
the finished Activity, you should place it before the EditText in main.xml.

Because you have used TextViews a few times now, creation of this View will not get
too involved. Simply take a look at the attributes that you set in your TextView:

<TextView android:id="@+id/textLabel"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enter Number to Dial:"
/>

There is nothing out of the ordinary here. This is just a simple TextView with the text
Enter Number to Dial:. This TextView will serve as a label for your EditView. Here’s
how you set the attributes for the EditView.

<EditText android:id="@+id/phoneNumber"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

NOTE
You do not have to set the android:text attribute because you do not need any
default text.

The id is set to phoneNumber, which is the name you will use to refer to the EditText
View in the code. Again, there should be no surprises when setting up main.xml. Your
final file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"

142 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 160 of 337

Once your phoneNumber EditText is created, you can use it to reference the text that
is input on the device. All you have to do now is call phoneNumber.getText() to retrieve
the user’s input. Replace the hard-coded value “tel:5551212” in the following line,

Intent(Intent.CALL_ACTION,Uri.parse("tel:5551212"));

with the value of getText():

Intent(Intent.CALL_ACTION,Uri.parse("tel:" + phoneNumber.getText()));

That is all the new code you need to update your project. With these simple two
additions, you can give the user an object with which to input a phone number, and
send that number to the phone’s Call Activity. The full code in the .java file should
look like this:

package android_programmers_guide.AndroidPhoneDialer;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import android.view.View;
import android.content.Intent;
import android.net.Uri;
import android.widget.EditText;

public class AndroidPhoneDialer extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);

final EditText phoneNumber = (EditText) findViewById(R.id.phoneNumber
);

final Button callButton = (Button) findViewById(R.id.callButton);
callButton.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

Intent CallIntent = new
Intent(Intent.CALL_ACTION,Uri.parse("tel:" + phoneNumber.getText()));

CallIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
startActivity(CallIntent);

}

});
}

}

144 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 162 of 337

154 Android: A Programmer’s Guide

Intent Code for the .java File
Using the Package Explorer again, navigate to the src directory, open it, and right-click
the android_programmers_guide.AndroidViews package, as shown in the following
illustration.

Once again, you are going to add a new file to the folder. After you right-click the
AndroidViews package, select New | File from the context menu. This file will hold all
the code for the second Activity in this project. Name the file test.java. You should now
have a nice, new (but empty) .java file. You just need to add a few lines of code to the file
to make it usable:

package testPackage.test;
import android.app.Activity;
import android.os.Bundle;
public class test extends Activity {

/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.test);
/** This is our Test Activity

All code goes below */
}

}

Notice that you call test.xml in the setContentView method, using the context
R.layout.test. This line tells the new Activity to use the .xml file you created as the
layout file for this “page.”

Preview from Notesale.co.uk

Page 172 of 337

Modifying the AndroidManifest.xml
Open your AndroidManifest.xml file in Eclipse. AndroidManifest.xml has not been
discussed in great detail in this book. AndroidManifest.xml contains the global settings for
your project. More importantly, AndroidManifest.xml also contains the Intent Filters
for your project.

Chapter 7 discussed how Android uses the Intent Filters to marshal what Intents can
be accepted by what Activities. The information that facilitates this process is kept in
AndroidManifest.xml.

NOTE
There is only one AndroidManifest.xml file per project.

If your AndroidManifest.xml file is currently open, it should appear as follows:

<activity android:name=".AndroidViews" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

What you are looking at here is the Intent Filter for the AndroidViews Activity, the
main Activity that was created with the project. To this file you can add any other Intent
Filters that you want your project to handle. In this case, you want to add an Intent Filter
that will handle the new Test Activity that you created.

The following is the code for the Intent Filter that you need to add to the
AndroidManifest.xml file:

<activity android:name=".Test" android:label="Test Activity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

Adding this code to AndroidManifest.xml enables Android to pass Intents for the Test
Activity to the correct place. The full AndroidManifest.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

Chapter 8: Lists, Menus, and Other Views 155

Preview from Notesale.co.uk

Page 173 of 337

setContentView(R.layout.main);
}

}

As with everything you add to your Activities, you need to import a new package to
create your menu. Import the android.view.Menu into your AndroidViews Activity:

Import android.view.Menu;

To create the Menu, you need to override the onCreateOptionsMenu() method of the
Activity. The method onCreateOptionsMenu() is a Boolean method that is called when
the user first selects the Menu Button. You will use this method to build your Menu and
add your selection items to it. Add the following code to AndroidViews.java:

@Override
public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);
}

You will add the code to create the Menu inside the onCreateOptionsMenu() method.
The items that you need to add to the Menu are the Views that you are going to create
in this project. The following is the list of View names that you will need to add to
the Menu:

● AutoComplete

● Button

● CheckBox

● EditText

● RadioGroup

● Spinner

In the preceding code that you created to override the onCreateOptionsMenu()
method, you passed in a Menu variable called menu. This variable represents the actual
menu item that is created on the Android interface.

To add your list of items to the Menu, you will use the menu.add() method. The
syntax for this call is as follows:

menu.add(<group>,<id>,<title>)

Chapter 8: Lists, Menus, and Other Views 159

Preview from Notesale.co.uk

Page 177 of 337

178 Android: A Programmer’s Guide

CheckBox
In this section you will be creating an Activity for the CheckBox View. The steps for
creating the Activities are identical to those in the preceding sections. Therefore, you will
be provided with the full code of the three main Activity files—AndroidManifest.xml,
checkbox.xml, and testCheckBox.java. These files are provided for you in the following
sections.

AndroidManifest.xml
This section contains the full code of the current AndroidViews’ AndroidManifest.xml. If
you are following along in Eclipse, modify your Activity’s AndroidManifest.xml to look
as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidViews">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidViews"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
<activity android:name=".testButton" android:label="TestButton">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testCheckBox" android:label="TestCheckBox">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

</application>
</manifest>

Preview from Notesale.co.uk

Page 196 of 337

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
@Override
public boolean onOptionsItemSelected(Menu.Item item){
switch (item.getId()) {
case 0:

showAutoComplete();
return true;

case 1:
showButton();
return true;

case 2:
showCheckBox();
return true;

case 3:
showEditText();
return true;

case 4:
showRadioGroup();
return true;

case 5:
showSpinner();
return true;

}
return true;

}
public void showButton() {

Intent showButton = new Intent(this, testButton.class);
startActivity(showButton);

}
public void showAutoComplete(){

Intent autocomplete = new Intent(this, AutoComplete.class);

Chapter 8: Lists, Menus, and Other Views 187

Preview from Notesale.co.uk

Page 205 of 337

startActivity(autocomplete);
}
public void showCheckBox(){

Intent checkbox = new Intent(this, testCheckBox.class);
startActivity(checkbox);

}
public void showEditText() {

Intent edittext = new Intent(this, testEditText.class);
startActivity(edittext);

}
}

Launch your application and select the EditText option from the Menu (shown earlier
in Figure 8-1).

The following illustration shows what the EditText Activity looks like.

Click the Change Layout and Change Test Color Buttons. The results are depicted in
the following illustrations.

188 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 206 of 337

package="android_programmers_guide.AndroidViews">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidViews"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testButton" android:label="TestButton">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testCheckBox" android:label="TestCheckBox">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testEditText" android:label="TestEditText">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

<activity android:name=".testRadioGroup" android:label="Test
RadioGroup">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

<activity android:name=".testSpinner" android:label="Test Spinner">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

196 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 214 of 337

In this chapter, you are going to learn about the Android Location-Based API. This
chapter is invaluable if you want to leverage the ability of Android to work with the
Global Positioning System (GPS) hardware of a device. You will use the Android
Location-Based API to collect your current position and display that location to the
screen. Toward the end of this chapter, you will use Google Maps to display your
current location on your cell phone.

You will also learn some new techniques that will add some depth and creativity to
your Activities. Resources such as RelativeLayouts and small buttons will let you create
more user-friendly and visually appealing Activities for Android.

In the first section of this chapter, you will learn about using your device’s GPS
hardware to obtain your current location. However, before you jump into that section,
you need to create your project for this chapter. Create a new Project in Eclipse and
name it AndroidLBS.

Using the Android Location-Based API
The Android SDK contains an API that is specifically geared to help you interface your
Activity with any GPS hardware that may be in your device. This chapter assumes that
your device will include GPS hardware.

CAUTION
Just as Android-based cell phones are not required to include a camera, they are not
required to include GPS hardware either, although many models likely will include both
a camera and GPS hardware. Android included the Android Location-Based API in
anticipation that GPS hardware will be included in many cell phones.

204 Android: A Programmer’s Guide

Key Skills & Concepts
● Using the Android location-based service APIs

● Obtaining coordinate data from the GPS hardware

● Changing your Activity’s look and feel with a RelativeLayout

● Using a MapView to plot your current location

● Using Google Maps to find your current location

Preview from Notesale.co.uk

Page 222 of 337

Because you are working on a software-based emulator, and not on a real device, the
presence of GPS hardware has to be simulated. In this case, Android provides a file in
the adb server that simulates having GPS hardware. The file is located at

data/misc/location/<provider>

where <provider> represents the location information provider. The provider that Android
supplies to you is

data/misc/location/gps

TIP
You can have multiple providers to simulate different scenarios. Therefore, you can
create a provider named test or gps1; whichever you prefer.

Within the specific provider’s folder could be any number of files that will hold the
sample coordinates that you want Android to use. When you are using the Android
Emulator, you can use the following types of files to store/retrieve GPS style coordinates.
Each of these file types has a different format for providing information to the Android
Location-Based API.

● kml

● nmea

● track

Let’s take a look at what each of these files does and how they differ from each other.

Creating a kml File
A .kml file is a Keyhole Markup Language file. These files were originally developed for,
and can be created by, Google Earth. The Android Location-Based API can parse a .kml
file for coordinates to simulate a GPS.

NOTE
If you do not have Google Earth, it is a free download from Google. Installing
it may be worth your time if you want to develop more Android Location-Based
API Activities.

Chapter 9: Using the Cell Phone’s GPS Functionality 205

Preview from Notesale.co.uk

Page 223 of 337

Now that you have the file pulled to your desktop, associate it with Notepad.
Finally, open the file to examine its contents. You should see many rows of coordinate

data, as shown here.

Chapter 9: Using the Cell Phone’s GPS Functionality 209

Preview from Notesale.co.uk

Page 227 of 337

Chapter 9: Using the Cell Phone’s GPS Functionality 219

import android.location.LocationManager;

Next, create the code for the Button. The goal is to retrieve the current coordinate
information from the GPS. You have created a few Buttons already in this book, and the
format for this one is no different. You need to set up your Button and load its layout from
main.xml. Then you can set up the onClick event to call a function, LoadCoords().

final Button gpsButton = (Button) findViewById(R.id.gpsButton);
gpsButton.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

LoadCoords();
}});

The final step to create this Activity is to fill out the code of the LoadCoords()
function. Create the TextViews that you will post your coordinates to:

TextView latText = (TextView) findViewById(R.id.latText);
TextView lngText = (TextView) findViewById(R.id.lngText);

NOTE
You do not have to create the two TextViews that you will use as labels because you will
not be posting anything to them.

Now create a LocationManager from which you can pull the coordinate values. The
important part of this instantiation is that you must pass the LocationManager a context;
use the LOCATION_SERVICE:

LocationManager myManager =
(LocationManager)getSystemService(Context.LOCATION_SERVICE);

To pull the coordinates from myManager, use the getCurrentLocation() method. This
method needs one parameter, a provider, which represents the location that the API will
pull the coordinates from. In this case, Android has provided a mock location gps that
contains the nmea file discussed earlier in this chapter:

Double latPoint = myManager.getCurrentLocation("gps").getLatitude();
Double lngPoint = myManager.getCurrentLocation("gps").getLongitude();

Preview from Notesale.co.uk

Page 237 of 337

Chapter 9: Using the Cell Phone’s GPS Functionality 227

android:layout_height="fill_parent"
>

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

</RelativeLayout>

Now you can add your two additional buttons. Place the buttons so that they appear in
the upper-left and lower-left corners of the MapView. You need to make one change to
the standard Button layout. By default, the RelativeLayout adds the Button to align with
the top edge of the anchor view, in this case, the MapView. Therefore, in the layout, use
the android:layout_alignBottom attribute and assign it the id of the MapView. This will
align the button to the bottom of the map.

<Button android:id="@+id/buttonZoomIn"
style="?android:attr/buttonStyleSmall"

android:text="+"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
<Button android:id="@+id/buttonZoomOut"
style="?android:attr/buttonStyleSmall"
android:text="-"
android:layout_alignBottom="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

TIP
Take a close look at the layout attributes for the Button layout. I use a new attribute,
style, to make this Button a small button.

Your full main.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/gpsButton"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Where Am I"
/>

Preview from Notesale.co.uk

Page 245 of 337

228 Android: A Programmer’s Guide

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/latLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Latitude: "
/>

<TextView
android:id="@+id/latText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/lngLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Longitude: "
/>

<TextView
android:id="@+id/lngText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
<Button android:id="@+id/buttonZoomIn"
style="?android:attr/buttonStyleSmall"
android:text="+"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
<Button android:id="@+id/buttonZoomOut"
style="?android:attr/buttonStyleSmall"
android:text="-"

Preview from Notesale.co.uk

Page 246 of 337

232 Android: A Programmer’s Guide

Test the zoom in and zoom out buttons. When you zoom in, you should see something
that looks similar to the following illustration.

Try This Toggling Between MapView’s
Standard and Satellite Views

Edit the AndroidLBS Activity one more time. You should add two more buttons to the
RelativeLayout. These buttons should toggle the MapView between standard view and
satellite view. Here are some points to consider:

● Add the toggle buttons to the opposite corners of the MapView using the align layout
attributes.

● Research the MapView to find the toggling method.

● Create a function that you can pass the MapView to and toggle it.

The complete text of solution main.xml and AndroidLBS.java are as follows.

Preview from Notesale.co.uk

Page 250 of 337

236 Android: A Programmer’s Guide

public void ZoomIn(MapView mv, MapController mc){
if(mv.getZoomLevel()!=21){
mc.zoomTo(mv.getZoomLevel()+ 1);
}

}
public void ZoomOut(MapView mv, MapController mc){
if(mv.getZoomLevel()!=1){

mc.zoomTo(mv.getZoomLevel()- 1);
}

}
public void ShowMap(MapView mv){

if (mv.isSatellite()){
mv.toggleSatellite();

}
}
public void ShowSat(MapView mv){

if (!mv.isSatellite()){
mv.toggleSatellite();

}
}
}

When you run your Activity, you should be able to toggle the satellite view on and
off, as shown in the following illustrations.

Preview from Notesale.co.uk

Page 254 of 337

Chapter 9 introduced you to the Google API. You created an Activity that leveraged
the Google API and Google Maps. Because of the ease and flexibility of the API,

you were able to quickly display a Google Map of a user’s current location. You also
learned how to manipulate that map with relatively few lines of code.

The Google API contains more than just hooks into Google Maps. You used a small
part of a much larger API in the last chapter. The base package for the Google API is
com.google. From this base, the Google API contains packages that allow you to create
Activities that leverage the power of GTalk (Google’s chat service), Google Calendar,
Google Docs, Google Spreadsheet, and Google Services.

When I started writing this book, the version of the Android SDK was m3-rc22. By
the time I completed writing, Google had released m5-15. In the time between these two
releases, Google had deprecated a few of these packages—while leaving them in the SDK.

Google Calendar, Google Spreadsheet, and Google Services appear to be undergoing
an upgrade that, unfortunately, leaves them in a state of incompletion for the m5-rc15
release of the SDK. Google also removed any associated help files from the SDK for these
packages, to avoid any confusion. Therefore, the focus of this chapter is a package that
works quite well with the latest release of the Android SDK—GTalk.

In this chapter, you will build a small Activity that utilizes the GTalk package of the
Android SDK. When the Activity is complete, you will be able to send GTalk messages
from your phone to other GTalk users and receive messages from them.

NOTE
In the first iteration of the Google API for Android, the package dealing with GTalk was
a much broader XMPP package. (XMPP is the protocol on which many chat platforms
are based, including GTalk and Jabber.) With the latest release of the SDK, the original
XMPP package was tightened up and renamed to reflect the specificity of GTalk.

To get started, create a new Project in Eclipse and name GoogleAPI.

240 Android: A Programmer’s Guide

Key Skills & Concepts
● Implementing a Google API package

● Configuring the XMPP development settings for Google access

● Implementing the View.OnClickListener() method

Preview from Notesale.co.uk

Page 258 of 337

<EditText
android:id="@+id/messageText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="16sp"
android:minWidth="250dp"
android:scrollHorizontally="true" />

<Button
android:id="@+id/btnSend"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Send Msg">

</Button>
</LinearLayout>

This layout will line up your Views so that they fall inline with each other. Place
this LinearLayout in your main LinearLayout. Your final GoogleAPI.xml file should
look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<ListView
android:id="@+id/messageList"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:scrollbars="vertical"
android:layout_weight="1"
android:drawSelectorOnTop="false" />

<EditText
android:id="@+id/messageTo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="16sp"
android:minWidth="250dp"
android:scrollHorizontally="true" />

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"

246 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 264 of 337

this.bindService(new
Intent().setComponent(GTalkServiceConstants.GTALK_SERVICE_COMPONENT),
connection, 0);

}
private ServiceConnection connection = new ServiceConnection() {
public void onServiceConnected(ComponentName name, IBinder service) {

try {
myIGTalkSession =

IGTalkService.Stub.asInterface(service).getDefaultSession();
} catch (DeadObjectException e) {

myIGTalkSession = null;
}
}

public void onServiceDisconnected(ComponentName name) {
myIGTalkSession = null;

}

};
public void onClick(View view) {

Cursor cursor = managedQuery(Im.Messages.CONTENT_URI, null,
"contact=\'" + messageTo.getText().toString() + "\'",

null, null);
ListAdapter adapter = new SimpleCursorAdapter(this,

android.R.layout.simple_list_item_1, cursor,
new String[]{Im.MessagesColumns.BODY},
new int[]{android.R.id.text1});

this.messageList.setAdapter(adapter);

try {
IChatSession chatSession;
chatSession =

myIGTalkSession.createChatSession(messageTo.getText().toString());
chatSession.sendTextMessage(messageText.getText().toString());

} catch (DeadObjectException ex) {
myIGTalkSession = null;

}
}

}

Compiling and Running GoogleAPI
Now, compile and run your GoogleAPI Activity in the Emulator. If your connection is
successful, you should see a screen that looks like the following.

252 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 270 of 337

Chapter 10: Using the Google API with GTalk 253

To test the Activity, I sent the message “Hello” to androidprogrammersguide@gmail.com,
as shown here:

Preview from Notesale.co.uk

Page 271 of 337

● Change the font color in the message list for messages you send as opposed to
messages you receive

● Change the background color of the message list

256 Android: A Programmer’s Guide

Ask the Expert
Q: Can the GTalk API be used to communicate with other XMPP-based chat clients?

A: The answer to this is still unclear. The m3-rc22 version of the SDK included an XMPP
API rather than the more specific GTalk API included in the m5-15 SDK. It is possible
that these two will be combined in a future release of the Android SDK; in which case
the GTalk API can be used to communicate with other XMPP-based chat clients.

Preview from Notesale.co.uk

Page 274 of 337

Chapter 11: Application: Find a Friend 259

While you should be fairly comfortable creating Android applications by now, you
will have a little bit of help creating this project. Google includes in the Android SDK
an application called NotePad, a simple interface that lets you store, modify, and delete
“notes” in a database. You are going to modify some of this sample code to create the
interface for your Friends database.

If you want to see how Google NotePad works, load the project into Eclipse and run
it in your Android Emulator before you move on. You will begin to modify this code
shortly, but first, in the following section, you will create your first SQLite database.

Creating a SQLite Database
Android devices will ship with an internal SQLite database. The purpose of this database
is to give users and developers a location in which to store information that can be used in
Activities.

Preview from Notesale.co.uk

Page 277 of 337

262 Android: A Programmer’s Guide

TIP
If you are not familiar with SQLite, a SQLite command must terminate with a semicolon.
This is helpful if you want to span commands across prompts. Pressing the ENTER key
without terminating a SQLite command will give you a continuation prompt, …>. You
can continue to enter your command at this prompt until you use the semicolon. SQLite
will treat such continued commands as one full command once the semicolon is used.

To create your friends table within your database, enter the following command at the
sqlite> prompt:

CREATE TABLE friends (_id INTEGER PRIMARY KEY, name TEXT, location TEXT,
created INTEGER, modified INTEGER);

If your command executes successfully, you will be returned to the sqlite> prompt, as
shown in the following illustration.

Your database is now ready to be used, and you can exit SQLite. Use the command
.exit to exit. You can then quit your shell session and return to Eclipse.

Creating the database was the first step in setting up your application. Now that the
database and corresponding table are created, you need a method to access the data. The
data access method employed by Android is a Content Provider. The following section
walks you through creating a custom Content Provider for your new database and
accessing your data.

Preview from Notesale.co.uk

Page 280 of 337

280 Android: A Programmer’s Guide

private static final int NAME_INDEX = 1;

private static final String[] PROJECTION = new String[] {
Friends.Friend._ID,
Friends.Friend.NAME,

};

Cursor mCursor;
EditText mText;

}

Next, you need to override some methods, starting with onCreate(). You have seen
this method overridden in other chapters. Typically, it holds all the code that should be
executed when the Activity is created.

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.name_editor);

Uri uri = getIntent().getData();

mCursor = managedQuery(uri, PROJECTION, null, null);

mText = (EditText) this.findViewById(R.id.name);
mText.setOnClickListener(this);

Button b = (Button) findViewById(R.id.ok);
b.setOnClickListener(this);

}

Notice that, in the previous code sample, you assign layouts to their respective Views
and initiate some of your variables. However, you may be wondering where the data is for
the name field. That is, you have created a cursor, but you have not retrieved anything
from it. You will use the onResume() method for that.

The two methods that you will override next, onResume() and onPause(), will do
the work of reading from and writing to the database, respectively. Within the Android
life cycle, onResume() is called when an Activity is open and on the top of the focus.
onPause() is called when an Activity is being closed but before focus is handed to
another Activity.

Override your onResume() method to read the database and retrieve the name field:

protected void onResume() {
super.onResume();

Preview from Notesale.co.uk

Page 298 of 337

Friends.Friend.NAME,
};

Cursor mCursor;
EditText mText;

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);

setContentView(R.layout.name_editor);

Uri uri = getIntent().getData();

mCursor = managedQuery(uri, PROJECTION, null, null);

mText = (EditText) this.findViewById(R.id.name);
mText.setOnClickListener(this);

Button b = (Button) findViewById(R.id.ok);
b.setOnClickListener(this);

}

@Override
protected void onResume() {

super.onResume();

if (mCursor != null) {
mCursor.first();
String title = mCursor.getString(NAME_INDEX);
mText.setText(title);

}
}

@Override
protected void onPause() {

super.onPause();

if (mCursor != null) {
String title = mText.getText().toString();
mCursor.updateString(NAME_INDEX, title);
mCursor.commitUpdates();

}
}

public void onClick(View v) {
finish();

}
}

282 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 300 of 337

Chapter 11: Application: Find a Friend 283

At this point, you can edit name values in the Friends database. However, there are
two fields of importance in the database, name and location. In the next section, you will
create an editor for the location field.

Creating the LocationEditor Activity
In this section, you will create an editor for the location field of the Friends database. You
are going to make this Activity slightly different from the NameEditor Activity. Therefore,
the code will be different and follow a slightly unfamiliar process.

If you explored the Google demo NotePad, you should have noticed that the “notes”
editor is a white screen with a dynamically drawn line on it that repeats itself as needed.
This effect is performed using a custom View. You are going to use this same custom
View for the LocationEditor.

location_editor.xml
The first step is to create location_editor.xml and LocationEditor.java files for the layout
and code, respectively. The layout file should contain a call to the custom View layout.
The full layout is as follows:

<?xml version="1.0" encoding="utf-8"?>
<view xmlns:android="http://schemas.android.com/apk/res/android"
class="android_programmers_guide.FindAFriend.LocationEditor$MyEditText"
android:id="@+id/location"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffffff"
android:padding="10dip"
android:scrollbars="vertical"
android:fadingEdge="vertical" />

The LocationEditor will also contain a menu system that will allow the user to discard,
delete, or revert any changes they make. This will be a pretty complex Activity. Therefore, it
is best to start at the beginning, the imports section of the LocationEditor.java.

LocationEditor.java
Take a look at the following imports for this Activity, many of which deal with drawing
the custom View on the screen:

import android.app.Activity;
import android.content.ComponentName;

Preview from Notesale.co.uk

Page 301 of 337

296 Android: A Programmer’s Guide

DrawFriendsOverlay drawFriendsOverlay = new DrawFriendsOverlay();

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.friendsmap);

Intent intent = getIntent();
if (intent.getData() == null) {

intent.setData(Friends.Friend.CONTENT_URI);
}
mCursor = managedQuery(getIntent().getData(), PROJECTION, null,null);

final MapView myMap = (MapView) findViewById(R.id.myMap);
final MapController myMapController = myMap.getController();
LoadFriends(myMap, myMapController, mCursor);
OverlayController myOverlayController =

myMap.createOverlayController();
myOverlayController.add(drawFriendsOverlay, true);
final Button zoomIn = (Button) findViewById(R.id.buttonZoomIn);

zoomIn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

ZoomIn(myMap,myMapController);
}});

final Button zoomOut = (Button) findViewById(R.id.buttonZoomOut);
zoomOut.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ZoomOut(myMap,myMapController);

}});
final Button viewMap = (Button) findViewById(R.id.buttonMapView);
viewMap.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ShowMap(myMap,myMapController);

}});
final Button viewSat = (Button) findViewById(R.id.buttonSatView);
viewSat.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ShowSat(myMap,myMapController);

}});

}

public void LoadFriends(MapView mv, MapController mc, Cursor c){
Point myLocation = null;
Double latPoint = null;
Double lngPoint = null;
c.first();
do{

if (c.getString(c.getColumnIndex("location")) != null) {
final String geoPattern = "(geo:[\\-]?[0-9]{1,3}\\.[0

9]{1,6}\\,[\\-]?[0-9]{1,3}\\.[0-9]{1,6}\\#)";
Pattern pattern = Pattern.compile(geoPattern);

Preview from Notesale.co.uk

Page 314 of 337

mv.toggleSatellite();
}

}
protected class DrawFriendsOverlay extends Overlay{
public String[] friendName = new String[0];
public Point[] friendPoint = new Point[0];
final Paint paint = new Paint();

@Override
public void draw(Canvas canvas, PixelCalculator calculator, Boolean

shadow){
for(int x=0;x<friendPoint.length; x++){

int[] coords = new int[2];
calculator.getPointXY(friendPoint[x], coords);

RectF oval = new RectF(coords[0] - 7, coords[1] + 7,
coords[0] + 7, coords[1] - 7);

paint.setTextSize(14);
canvas.drawText(friendName[x],

coords[0] +9, coords[1], paint);
canvas.drawOval(oval, paint);

}
}
public void addNewFriend(String name,Point point){
int x = friendPoint.length;

String[] friendNameB = new String[x + 1];
Point[] friendPointB = new Point[x + 1];

System.arraycopy(friendName, 0, friendNameB, 0, x);
System.arraycopy(friendPoint, 0, friendPointB, 0, x);

friendNameB[x] = name;
friendPointB[x]= point;

friendName = new String[x + 1];
friendPoint = new Point[x + 1];
System.arraycopy(friendNameB, 0, friendName, 0, x + 1);
System.arraycopy(friendPointB, 0, friendPoint, 0, x + 1);

}

}
}

The last task to finish this project is to create the main Activity, FindAFriend, which
will be a shell that calls the other Activities you created in this chapter.

298 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 316 of 337

Chapter 11: Application: Find a Friend 301

menu.add(0, INSERT_ID, R.string.menu_insert).setShortcut('3', 'a');

Intent intent = new Intent(null, getIntent().getData());
intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(

Menu.ALTERNATIVE, 0, new ComponentName(this, FindAFriend.class),
null, intent, 0, null);

return true;
}

@Override
public boolean onPrepareOptionsMenu(Menu menu) {

super.onPrepareOptionsMenu(menu);
final boolean haveItems = mCursor.count() > 0;

if (haveItems) {
Uri uri = ContentUris.withAppendedId(getIntent().getData(),

getSelectedItemId());

Intent[] specifics = new Intent[1];
specifics[0] = new Intent(Intent.EDIT_ACTION, uri);
Menu.Item[] items = new Menu.Item[1];

Intent intent = new Intent(null, uri);
intent.addCategory(Intent.SELECTED_ALTERNATIVE_CATEGORY);
menu.addIntentOptions(Menu.SELECTED_ALTERNATIVE, 0, null,

specifics, intent, 0, items);
menu.add(Menu.SELECTED_ALTERNATIVE, DELETE_ID,

R.string.menu_delete)
.setShortcut('2', 'd');

menu.add(Menu.SELECTED_ALTERNATIVE, FIND_FRIENDS,
R.string.find_friends).setShortcut('4', 'f');

if (items[0] != null) {
items[0].setShortcut('1', 'e');

}
} else {

menu.removeGroup(Menu.SELECTED_ALTERNATIVE);
}

menu.setItemShown(DELETE_ID, haveItems);
return true;

}

@Override
public boolean onOptionsItemSelected(Menu.Item item) {

switch (item.getId()) {
case DELETE_ID:

deleteItem();

Preview from Notesale.co.uk

Page 319 of 337

Chapter 11: Application: Find a Friend 303

This option launches the custom View you created. Enter a friend’s name on the line
provided, as shown here, and return to the main Activity by clicking the back arrow on the
Emulator.

Preview from Notesale.co.uk

Page 321 of 337

This page intentionally left blank
Preview from Notesale.co.uk

Page 330 of 337

dialing (continued)
notation to dial a specific phone number

or voicemail, 125
directories, 63–68
DX.exe, 47

E
Eclipse, 10

advantages of using, 11
Android plugin for, 24–33
creating your first Android project,

55–61
downloading and installing, 18–20
and JRE versions, 20

EditText, 245–246
implementing an EditText view,

141–145
EditText Activity, 183–189
edittext.xml, 184–185
embedded device programming, history

of, 2–5
embedded devices, 3
Emulator, 45–46, 71–72

authenticating users, 243–244
calling to or from, 148
commands, 308–310
compiling and running GoogleAPIs,

252–255
configuring for GTalk, 241–244
installing applications with,

103–106
leaving open, 127

error messages, 58
errors

Call Activity, 130
running ANT, 98–103
when running Hello World! Activity,

105–106
executable files, 47

F
Fedora 8 Linux, 109
FindAFriend Activity, 258–259

creating, 276–302
running, 302–305

finish(), 281
FORWARD_RESULT_LAUNCH, 126
FriendsMap Activity, 293–298

G
getCurrentLocation(), 219
getType(), 271
Google

applications, 7
and the Open Handset Alliance, 5, 8, 109

Google Android development site, 22–23
Google Calendar, 240
Google Docs, 240
Google Earth, 205–208
Google Maps

and markers, 237
passing coordinates to, 222–226

Google NotePad, 259
Google Services, 240
Google Spreadsheet, 240
GoogleAPI.java, 247–248
GoogleAPIs, 48, 240

adding a settings feature, 255–256
compiling and running in the Emulator,

252–255
GoogleAPI.xml, creating an Activity’s layout

in, 245–247
GPS. See Android Location-Based API
GTalk, 240

adding packages to GoogleAPI.java,
247–248

communicating with other XMPP-based
chat clients, 256

316 Android: A Programmer’s Guide

Preview from Notesale.co.uk

Page 334 of 337

compiling and running Google API,
252–255

configuring the Android Emulator for,
241–244

creating an Activity’s layout in
GoogleAPI.xml, 245–247

implementing View.OnClickListener,
248–252

H
Hello World!, 41

adding the JAVA_HOME variable,
96–97

code-based UI, 75–77
compiling with ANT, 98–103
creating an image-based version, 115
editing project files, 95–96
errors, 105–106
with images, 72–81
installing with adb, 103–106
on Linux, 109–114
programming in code, 69–72
reinstalling and launching, 108
uninstalling prior versions, 106–108
XML-based UI, 78–81

HelloWorldImage, 72–81
HelloWorldText, 55–61
homebrew developers, 4

I
IChatSession, 250–251
IDEs. See integrated development

environments (IDEs)
images

displaying, 72–81
naming, 74

ImageView, 75–77, 78–80

importing packages
full packages vs. specific sections, 202
to GoogleAPI.java, 247–248

insert(), 269–271
integrated development environments (IDEs), 10

See also Eclipse
Intent Filters, 123

adding to AutoCompleteTextView,
169–170

for AndroidViews Activity, 155–157
and DIAL_ACTION Intent, 125

Intent Receivers, 123
Intent Resolver, 119
Intents

Activity Action Intents, 119, 120
Broadcast Intents, 119, 121–123
CALL_ACTION, 129
defined, 119
DIAL_ACTION, 124–128
Intent code for .java file, 154
Intent code for .xml file, 152–153

J
Java Development Kit (JDK), downloading and

installing, 12–18
.java file, Intent code for, 154
Java Runtime Environment (JRE)

downloading and installing, 12–18
versions, 20

JAVA_HOME variable, 96–97
JDK. See Java Development Kit (JDK)
JRE. See Java Runtime Environment (JRE)

K
Keyhole Markup Language file. See .kml file
.kml file, 237

creating, 205–208

Index 317

Preview from Notesale.co.uk

Page 335 of 337

