Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Oxford University first year Biomedical Sciences/Medicine notes on genes
Description: These set of notes are based on 20 lectures given throughout first year and include all aspects of genes in a lot of detail and are 24 pages long. Include experimental evidence and detailed descriptions of the mechanisms of transcription, DNA replication, translation and gene expression regulation.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Genes    

 
Study  of  genes  and  the  processes  involved  emphasises  the  idea  that  there  is  an  extensive  degree  of  integration  
between  systems  which  requires  the  fine  orchestration  of  specialized  functions
...
   
Function:    
•   Store  large  quantity  of  information  
•   Allow  accurate  replication  of  information    
 
Often  depicted  as  a  one-­‐way  pathway  when  proteins  also  control  expression  of  DNA  and  RNA  molecules  have  major  
regulatory  roles  rather  than  simply  acting  as  the  messenger
...
   
 
-­‐   Discovered  by  Friedrich  Miescher  and  termed  nuclein:    
•   Experiment:    
1
...
 
2
...
  Lipids  removed  using  ether  
4
...
  Acid  or  ethanol  added  to  obtain  DNA  precipitate  
 
Rosalind  Frankilin  –  X-­‐ray  diffraction  images  
 
•   X  rays  have  wavelength  which  has  same  order  of  magnitude  as  space  between  atoms  in  DNA  
•   X  rays  fired  at  sample  and  directions  they  are  diffracted  and  different  intensities  are  recorded  on  a  
photographic  plate
...
4A  per  residue  
o   10  bases  per  helical  turn  
 
 
Structure:    
 
Regular  arrangement  of  phosphate  and  sugar  but  no  distinct  pattern  of  bases    
 
-­‐   Regular  repeating  structure    
-­‐   Two  antiparallel  polynucleotide  chain  to  form  right  handed  double  helix    

-­‐  

Strand  has  polarity  in  5’  to  3’  direction    

 
Molecular:    
 

1
...
 

3
...
  2-­‐deoxyribose  sugar  bonded  at  5’  position  to  negative  phosphate  
ii
...
  Nucleotides  joined  by  phosphodiester  bond  between  5’P  and  3’OH  of  ribose  
sugar  of  nucleotide
...
  Bases  hydrogen  bond  to  complementary  pair  on  opposing  strand:  
1
...
  G-­‐C  =  3    
Evidence  for  base  pairing:      
Chargaff  –  not  equal  no
...
 Evidence  for  helical  structure  and  H  bonds
...
8  A,  purine  +  purine  =  too  short  and  pyrmidine  –  pyrimidine  
to  long
...
   
Phosphates  on  outside  of  molecule  and  bases  in  interior  positioned  perpendicular  to  axis  of  helix  
suggested  by  Frankin  as  ability  of  phosphates  to  attract  water  and  bases  are  hydrophobic
...
   

 
 
 
 
Function  evidence    
 
•   Cell  staining  early  1900’s:  
§   Feulgen  stain  showed  nuclear  component  of  chromosones    
§   Due  to  the  diversity  of  proteins  people  were  focused  on  their  role  as  a  genetic  material  
rather  than  chromosones
...
   
§   Had  slightly  different  morphology  –  pathogenic  strain  =  smooth  dome  shape  colonies  so  
called  S  form
...
  Injected  various  combinations  of  each  strain  into  mice]  
2
...
 
3
...
 
4
...
   
5
...
   
 
CONCLUSION:  harmless  bacteria  had  been  transformed  permanently  due  to  a  transformable  material  that  is  DNA  
 
Avery  and  McCarty  1994:  Transforming  principle    
 

•   Demonstrated  DNA  is  the  transforming  material  however  when  initially  published  still  argued  
contamination  due  to  proteins
...
 
2
...
 
4
...
 
6
...
   
Addition  of  DNA  nucleases  did  not  cause  death
...
coli  and  label  
DNA  and  proteins
...
 
•   Genetic  material  contained  in  head  and  injected  using  viral  tail
...
  Two  batches  of  T2  phages  labelled  –  one  with  phosphorus  which  is  in  DNA  and  one  with  sulphur  which  is  
only  present  in  proteins  and  not  DNA
...
  T2  and  E
...
coli  surface  –  phage  ghosts  =  empty  
viral  head  coats  
3
...
coli  which  are  more  dense  formed  on  bottom  and  separated  from  ghosts
...
  Extracted  and  found  mostly  radioactive  phosphorus  in  cells  and  sulphur  remained  in  solution  with  phage  
ghost  heads
...
  Therefore  no  movement  of  proteins  but  major  movement  of  DNA  into  E
...
   
 
Macromolecular  structure,  packaging  and  regulation    
 
Eukaryotic:  
 
-­‐   DNA  packaged  in  multiple  chromosomes  an  associated  with  histone  proteins
...
   
 
Flexibility  allows  for  easy  access  by  proteins;    
 
Forces  involved  in  interactions:    
§   Hydrogen  bonding  
§   Salt  interactions  
§   Hydrophobic  effect    
 
specific  and  non  specific  interactions:    
 
Specific  –  base  sequence  matters  
Non-­‐specific  –  oblivious  to  DNA  base  sequence    
 
Non  specific:  
-­‐   Usually  involve  phosphate-­‐sugar  backbone  of  DNA  and  peptide  backbone  of  protein  -­‐  electrostatic  
interactions  and  hydrogen  bonding  
-­‐   Interaction  between  DNA  and  histone  proteins  where  most  commonly  seen  
-­‐   142  hydrogen  bonds  formed  between  one  histone  core  and  a  length  of  DNA  

-­‐  

Histones  contain  many  positively  charged  amino  acids  eg  lysine  and  arginine  as  their  electrostatic  
interactions  prevent  repulsion  between  phosphates  in  backbone  during  packaging    
-­‐   Despite  being  non-­‐specific  some  histones  bind  more  tightly  to  certain  sequences  due  to  structural  
preferences  eg  binding  to  sequence  with  many  A/T  requires  compression  of  the  minor  groove  resulting  in  
tighter  interactions
...
   
-­‐   All  4  types  of  histones  have  similar  amino  acid  sequence  and  contain  histone  fold  motif  =  3  alpha  helices  
joined  together  by  two  loops
...
   
-­‐   H1  has  a  globular  region  and  pair  of  tails  at  both  N  and  C  terminus  –  C  tail  is  required  to  bind  to  chromatin
...
   
-­‐   2  types  of  conformations  that  folding  due  to  nucleosome  interaction  can  lead  to:  
§   zigzag  conformation  –  every  other  nucleosome  interacts  with  stiff  straight  linker  DNA
...
   
§    
-­‐   3Onm  fibre  folded  further  into  series  of  loops  to  form  packagaed  structure  of  approx  300nm
...
 
 
 
Evidence:  Hewish  and  Burgyone:  
 
•   Nucleases  used  to  cleave  linker  DNA  and  separate  nucleosomes  and  unfolded  chromatin    
•   Pure  DNA  when  electrophoresed  does  not  produce  any  bands    
•   Cleaved  material  electrophoresed  and  bands  which  were  mutiples  of  each  other  produced    
•   Suggests  proteins  found  at  regular  intervals  on  DNA  
 
Regulation  via  packaging:    
 
-­‐   Histone  proteins  have  been  conserved  throughout  evolution  and  display  very  little  variation  between  species  
–  depicts  their  importance
...
   
•   Specific  patterns  of  histone  tail  modification  can  communicate  genes  that  are  to  be  expressed  or  a  
new  length  of  DNA  synthesized
...
 
o   Non  histone  proteins  tend  to  play  regulatory  role  in  condensation  and  
decondensation  of  chromosones
...
 Eg  repression  of  white  eye  gene  in  Drosophilia  due  to  
displacement  of  barrier  sequence  which  prevents  it  from  usually  spreading  
to  heterochromatin  region
...
 These  are  
inactivated  during  mitosis  to  help  keep  the  structure  of  mitotic  chromosomes
...
 –  epigenetic  
inheritance  
 
 

DNA  replication  
 
-­‐  
-­‐  
-­‐  

Strucutre  of  DNA  consisting  of  double  helix  and  complementary  base  pairing  provided  an  indication  of  how  
DNA  replication  occurs
...
   

 
Proposed  DNA  replicates  by  mechanism  of  semi  conservative  replication:    
 
◦   Single  strand  of  DNA  used  as  template  to  produce  new  complementary  sequence  of  base  pairs  
◦   Meselson  and  Stahl  experiment:    
 
E
...
   
 
Transferred  to  N14  medium  –  if  hypothesis  correct  first  generation  contains  DNA  molecules  with  one  
heavy  and  one  light  strand  therefore  single  intermediate  band  formed  when  centrifuged
...
   
 
Components  required  for  DNA  replication:    
 
DNA  polymerases  general:    
 
•   Product  template  directed  ie  template  specifies  product    
•   Catalyse  phosphodiesterase  bond  between  3’OH  and  phosphate    
•   Low  error  rate  with  1  in  109  nucleotides  copied
...
   
•   Requires  SINGLE  STRAND  and  PRIMER  (either  DNA  or  RNA)  

•   Nucleophilic  attack  occurs  on  the  3’OH  of  the  primer  by  the  incoming  alpha  phosphate  of  the  incoming  
nucleotide  with  a  PPi  being  expelled  therefore  polymerisation  occurs  in  the  5’  to  3’  direction
...
   
•   Fidelity  maintenance:    
o   Have  an  intrinisic  3’  to  5’  exonuclease  which  can  remove  nucleotides  which  have  been  incorrectly  
incorperated  
o   When  error  is  detected  by  polymerase  this  exonuclease  is  activated
...
   
 
•   Evidence  to  detect  activity  of  the  polymerase:      
o   using  radioactive  TTP  to  monitor  DNA  synthesis  as  it  is  only  used  by  DNA  and  not  RNA
...
   
o   Isolated  from  E  coli  as  it  grows  rapidly  and  can  be  harvested  in  large  quantities  and  purify  DNA  using    
 
 
Prokaryote  DNA  replication  (E
...
 
 
•   First  Recognition  of  OriC  and  separation  of  DNA  strand  at  replication  of  origin
...
   
 
•   Negative  supercoiling  of  dnaA  box  causes  separation  of  dnaB  box  region  up  stream  which  puts  torque  on  
the  nearby  AT-­‐rich  region  to  denature  and  form  a  replication  bubble  
 
 
•   DnaA  complex  recruits  DnaB  (helicase)  on  opposite  sides  of  separated  DNA  strands  and  expands  the  
replication  bubble  in  5’  to  3’  direction  using  energy  from  ATP  hydrolysis  moving  bidirectionally  in  opposite  
directions
...
   
 
•   SSBPs  (single  strand  binding  proteins)  also  bind  to  prevent  reannealing  of  strands  or  formation  of  another  
structure  which  would  block  replication
...
 Primase  forms  primosome  complex  with  template  with  DNA  and  
additional  proteins
...
   
 
•   Rnase  removes  the  primers  from  the  DNA  

•   Due  to  unidirectional  catalysis  by  DNA  polymerases  antiparallel  strands  are  synthesized  at  different  rates:  
 
o   Leading  strand  
§   One  RNA  primer  is  made  at  the  origin  
§   DNA  pol  III  attaches  nucleotides  in  a  5’  to  3’  direction  as  it  slides  toward  the  replication  fork    
 
o   Lagging  strand  
§   Synthesis  is  also  in  the  5’  to  3’  direction  
•   However  it  occurs  away  from  the  replication  fork  
§   Many  RNA  primers  are  required  
§   DNA  pol  III  uses  the  RNA  primers  to  synthesize  small  DNA  fragments  (1000  to  2000  
nucleotides  each)  
•   These  are  termed  Okazaki  fragments  after  their  discoverers  
•   DNA  pol  I  removes  the  RNA  primers  and  fills  the  resulting  gap  with  DNA  
•   After  the  gap  is  filled,  a  covalent  bond  is  still  missing  so  
DNA  ligase  must  create  this  bond  
 
Exp:  Ozakazi  used  pulse  chase  experiment:  
-­‐    replicating  DNA  radioactively  labelled  by  short  exposure  to  3H  thymidine  containing  nucleotides
...
   
-­‐   Sediment  coeffeicient  of  radioactive  DNA  different  therefore  could  be  centrifuged    
-­‐   Lyse  cells  and  then  expose  to  xray  film    
-­‐   Labelled  DNA  only  found  to  be  present  as  long  or  short  fragments  –  not  inbetween  
 
When  primers  are  removed  and  filled  with  nucleotides  by  DNA  polymerase,  DNA  ligase  then  catalyses  nicks  in  
backbone  in  lagging  strand
...
  Instability  of  mismatched  pairs  
a
...
  This  feature  only  accounts  for  part  of  the  fidelity  
c
...
  Configuration  of  the  DNA  polymerase  active  site  
d
...
  Energy  penalty  less  as  affinity  correct  nucleotide  has  for  moving  DNA  polymerase  is  greater  than  
incorrect    

f
...
   
g
...
   Proofreading  function  of  DNA  polymerase  
a
...
   
b
...
   
 
Nucleotide  excision  repair  (NER)    
-­‐   repairs  leisons  that  distort  the  DNA  double-­‐helix  (e
...
 pyrimidine  dimers)
...
 
-­‐   This  fragment  is  12-­‐13  nucleotides  long  in  prokaryotes,  and  27-­‐29  nucleotides  long  in  eukaryotes
...
 

UvrA  recognises  and  binds  to  damaged  DNA
...
 
2
...
 
3
...
 
       DNA  polymerase  I  and  DNA  ligase  refil  and  seal  the  gap
...
   
-­‐   A  family  of  DNA  glycosylases  recognise  bases  with  a  range  of  modifications,  and  upon  recognition,  will  cleave  
the  glycosidic  bond  between  the  sugar  and  the  base  to  leave  an  apurinic  or  apyrimidinic  site
...
 
-­‐   DNA  polymerase  I  (E
...
 DNA  ligase  ligates  the  backbone  together
...
  Most  regulation  occurs  at  initiation  which  is  logical  as  little  energy  expense  \  
2
...
 of  DnaA  boxes    
3
...
  ATP  needs  to  bind  to  DnaA  to  initate  replication  and  required  for  action  of  helicase    
5
...
   
6
...
   
 
o   Initiation  of  DNA  synthesis  occurs  in  G1  whereas  actual  replication  is  in  S  phase  
 
o   Multiple  origins  of  replication  due  to  size  of  genetic  material  
 
o   Pre  replication  initiation  complex  consisting  of  hexamer  of  proteins  binds  to  replication  of  origin  called  ARS  
(autonomously  replicating  sequences)  and  remains  bound  throughout  replication    
 

o   ORC,  (equivalent  to  dnaA)  binds  to  origin  of  replication  in  ATP  dependent  manner,  induces  unwinding  of  
DNA  upstream  of  origin  and  recruits  MCM  
 
o   Various  proteins  then  coordinate  the  loading  of  the  MCM  complex  (mini  chromosome  maintenance)  by  
binding  to  OCR  and  MCM  to  join  them
...
   

 
 
 

o   Pri  made  up  multiple  subunits  synthesizes  the  RNA  primer  
o   There  are  several  DNA  polymerases  which  form  a  complex  to  carry  out  DNA  replication:    
-­‐  
-­‐  

Polymerase  gamma  –  mitochondrial  DNA  replication  
Polymerase  Beta  –  DNA  repair  and  filling  gaps    

-­‐  

Pol  α  –  Elongates  chain  from  primer  by  forming  a  complex  with  the  small  catalytic  subunit  of  Pri  
(PriS)  and  large  non  catalytic  subunit  (PriL)
...
 3’  to  5’  proofreading  
exonuclease  and  processive  

 
-­‐  
-­‐  
 
 

o   Beta  clamp  protein  which  is  not  part  of  the  polymerase  complex  like  in  prokaryotes  ensures  processivity    
o   Problem  of  linear  sequence  is  that  end  of  genetic  sequence  is  lost  in  lagging  strand  as  cannot  be  synthesized  
to  very  end  therefore  require  telomeres  which  consist  of  repeating  sequences  usually  C  and  G
...
   

o   Promoters  at  certain  distance  away  from  structural  genes  to  prevent  steric  hinderence  and  
polymerase  has  to  bind  to  promoter  and  then  bend  over  DNA  to  bind  to  another  region  for  
transcription
...
 
o   Core  of  RNAP  can  now  associate  with  DNA  and  covers  60bps  
o   C  termal  domain  of  alpha  subunit  binds  to  AT  rich  UP  region  
o   Sigma  factor  and  core  complex  undergo  conformational  change  so  RNAP  latched  on  more  tightly/  
more  stable  and  sigma  factor  loosens  grip
...
   
o   RNAP  unwinds  DNA  between  -­‐9  and  +3  –  AT  rich  Pribnow  box  H  bonds  broken  and  17bp  
transcription  bubble  forms
...
 
•   transcription  bubble  moves  ahead  of  RNAP  and  rewinding  of  DNA  behind  polymerase  contributes  to  driving  
its  movement    
•   To  prevent  entanglement  of  RNA-­‐DNA  hybrid  negative  supercoiling  behind  and  supercoiling  ahead  –  
supercoiling  tension  also  drives  movement  but  too  much  can  prevent  opening  of  transcription  bubble
...
   
•   Fidelity:    
o   RNAP  backtracks  if  incorrect  NTP  inserted  by  pyrophosphorolytic  editing  involving  reincorporation  of  
PPi    
o   Hydrolytic  editing  stimulated  by  Gre  factors  which  cleave  incorrect  RNA  sequence  
 
Termination  
 
1
...
  Intrinsic  terminators  involved:  stop  codon  has  specific  GC  rich  sequence  which  is  transcribed  into  
RNA  to  form  hairpin
...
  End  of  sequence  is  AU  rich  therefore  easily  disrupted    
c
...
  Evidence  for  pull  out  model:  Landick  and  Block  using  optical  tweezers  and  optical  traps  to  exert  force  
onto  hybrid  and  investigate  effect  of  different  forces
...
  Rho  dependent  
a
...
  Clamps  RNA  and  moves  its  way  up  DNA  until  it  reaches  the  RNAP  complex    
c
...
   
 
Eukaryotes  
 
Initiation  
 
Promoters:    

-­‐  

-­‐  

-­‐  

TATA  Box:    
•   Position  =  upstream  from  genes  -­‐30  -­‐  -­‐40    
•   60%  of  promoters  =  TATA\  
 
Inr  
•   -­‐22  -­‐  +5  position  
 
Downstream  promoter  element    
•   +22  -­‐  +32  

In  order  of  most  well  
recognised  due  to  their  
positions
...
  RNAP1    
a
...
  rRNA  5S  
 
 
2
...
  Trna  
b
...
  RNAP2:    
-­‐   In  nucleus  and  main  transcriptional  RNA  for  mRNA  
•   Rbp11  
•   Rpb3  –  alpha  
•   Rbp2  –  beta  
•   Rpb1  –  beta  prime  
•   Rbp6  
-­‐   No  sigma  factor  therefore  requires  aid  of  transcription  factors  for  recognition  of  promoter
...
 Contains  zinc  finger  domain  and  only  interacts  with  backbone  and  stabilises  
complex  by  binding  to  TBP
...
     
•   TFIIE  –  binds  and  recruits  TFIIH  and  regulates  its  helicase  and  kinase  activities  
•   TFIIH  –  Last  to  be  assembled  in  complex  and  initiates  transcription  and  acts  as  a  DNA  helicase  and  can  repair  
DNA  damage  by  nucleotide  excision  repair
...
   
•   Serine  can  be  phosphorylated  to  regulate  the  RNAP  –  allows  for  transition  between  initiation  and  
elongation
...
  conformational  change  and  releases  TF  from  the  complex  
ii
...
   polyA  tail  machinery  recruited  if  serine  2  is  phosphorylated  
iv
...
   

 
•   Splicesome  

Large  ribonucleoprotein  –  snRNP  particles  (U1-­‐U5)    
Recognises  spice  sites  and  polarises  all  components  involved  in  cleavage  
Splicesome  catalyses  two  transesterfication  reactions  
Splice  site  donor  (5’  intron)  and  acceptor  (3’  intron)  between  intron  and  extron  
Branch  point  containing  AT  rich  region  followed  by  stretch  of  pyrimidines  in  intron  
upstream  of  the  splice  receptor  
§   Self  –Cleavage:  occurs  internally  –  splicesome  polaries  3’OH  which  will  become  a  
nucleophile  and  attach  5’  phosphodiester  bond  and  cleave  forcing  the  intron  into  a  
loop  after  two  sequential  cuts  at  donor  and  acceptor  site
...
   
o   Example:  Src  regulation:    
-­‐   Exon  sequence  of  Src  is  only  included  in  nerve  cells  where  it  provides  an  extra  site  of  
phosphorylation  of  the  Src  tyrosine  kinase  in  the  neural  form    
§  
§  
§  
§  
§  

 
Differences:  
-­‐   Chromatin  needs  to  be  unwound  
-­‐   Capping  
-­‐   polyA  
-­‐   splicing    
 

Transcriptional  Regulation:    
 
Top  of  hierarchy  
No  superfluous  intermediate    
 

Main  reason  is  conservation  of  energy:    
 
Translation  =  extremely  energetically  expensive  process  due  to:    
-­‐    GTP  and  ATP  hydrolysis  being  used  for  almost  every  step  for  breaking  of  bonds  
-­‐   energy  required  for  proofreading    
-­‐   80%  of  available  energy  in  cell  used  up  on  protein  synthesis    
 
Places  at  which  regulation  can  occur:    
 
1
...
  RNA  processing  –  EUKARYOTES    
3
...
  Translation    
 

 

 
Points  of  regulation:    
•   Initiation:    
•   Sigma  factor    
•   Transcription  factor  recruitment  
•   Histones  –  acess  of  RNAP2  to  genes  –  histone  methytransferases/aceyltrasnfererases:    
•   Type  of  promoter  –  different  affinities  
 
•   Elongation  
•   Release  of  TF  by  phosphorylation  so  elongation  can  begin  
 
Euk  regulation:  
 
General  transcription  factors:  only  needed  in  eukaryote  transcription  as  no  sigma  factor:  
-­‐   TFIIE  –  regulates  helicase  and  kinase  activity  of  TFIIH  
-­‐   TFIIH  phosphorylates  RNAP2  C  terminal  domain  releasing  polymerase  –  important  for  transition  from  
initiation  to  elongation    
 
Chromatin    
•   Activator  can  bind  and  loosen  chromatin  packaging  so  more  accessible  to  RNAP2  and  transcription  factors    
•   Active  process  of  chromatin  remodelling  
•   Large  protein  complexes  interact  with  transcription  factors  eg  Swi/Snf  in  yeast  to  alter  chromatin  
remodelling    
 
 
 
 Mechanism  of  loosening  to  active  chromatin:    
•   Phosphorylation  of  H1-­‐type  linker  h istones    
o   Cause  H1  to  deplete  
o   Facilitate  binding  of  regulatory  factors  to  DNA    
 
•   Core  histone  acetylation  
o   Aceylation  of  lysine  residues  neutralises  positive  charges  so  DNA  repels  each  other  more  so  looser    
o   Also  effect  nucleosome-­‐nucleosome  interactions  
 
•   Increased  incorporation  of  specific  h istone  variants    
 
Mechanism  of  tightening  to  inactive  chromatin:  JUST  TO  OPPOSITE    
•   Dephosphorylation  of  H1  linker  histones  
•   Deacylation  
•   Diminishment  of  histone  varients    
•   methylation  
 
Mechanism  of  long  range  silencing  to  form  heterochromatin:    
1
...
  Sir3  and  sir4  interact  with  the  histone    
3
...
  Subnuclear  localisation  of  genes:    
a
...
   
These  studies  cannot  distinguish  between  cause  and  effect  of  active  transcription  whereas:    
-­‐   Genetic  studies  of  histone  mutations    
-­‐   In  vivo  transcription  systems    
 
 
Prok  regulation    
 
-­‐   Genetic  switch  transcription  factors:    
•   DNA  binding  proteins  distort  the  structure  of  the  DNA  to  cause  bending    
•   Simplest  structure  contains  helix  turn  helix  motif  which  is  2  helices  at  a  fixed  angle:  
o   Trp  repressor  in  prok  
-­‐   When  tryptophan  acts  as  an  activator  of  the  repressor  as  if  in  medium  no  point  making  it    
-­‐   2  tryptophan  molecules  bind  to  repressor  and  tilt  the  helix  turn  helix  motif  of  the  repressor  so  it  can  bind  to  
the  major  groove
...
   
 
o   Homeodomain  in  euk    
•   Measure  DNA  and  protein  interaction  by  radioactively  labelled  DNA  and  doing  Gel  electrophoresis
...
   
 
Enhancers    
1
...
  Region  of  DNA  where  activators  will  bind  to  form  a  loop  in  the  DNA  contacting  the  promoter  which  
will  recruit  the  mediator  multiprotein  complex:  
§   Recruits  Transcription  factors  which  are  normally  diffusion  limited  
§   Modulates  phosphorylation  of  serines  of  YSPTSPS  
 
Silencers  
•   Block  binding  of  activators  to  enhancers  
•   Make  chromatin  more  compact  and  less  accessible    
 
Example:  Lac  operon  in  E
...
   
•  
•  
•  
•  

 

 
1
...
  Repressor  is  normally  bound  to  operator  when  no  lactose  present
...
 RNA  polymerase  can  still  bind  to  promoter  but  sterically  hindered  so  cannot  carry  out  
transcription  of  operon  (two  or  more  coding  regions)    
3
...
  Allows  transcription  to  occur  of:    
a
...
  Lactose  permease  –  lacY  
c
...
  NEGATIVE  CONTROL    

 

Experiments  to  identify  lac  operon  
 
Genetics:    
 
-­‐   Genes  involved  in  lactose  utilisation  are  closely  linked:  
•   Usng  complementation  analysis  lacZ  and  lacy  genes  identified  by  Lac  mutations
...
   
 
Structure  
-­‐   Structure  of  lac  repressor  
•    is  a  helix  turn  helix  motifs  which  fits  into  the  major  groove  of  DNA  

•   tetramer  and  subunits  have  separate  domains  for  inducer  binding  and  DNA  binding    
•   binding  of  the  inducer  (IPTG)  changes  the  structure  of  the  core  and  the  headpieces  of  the  dimer  are  
no  longer  orientated  to  permit  optimal  binding  to  the  operator    
•   tetramer  structure  allows  repressor  to  interact  with  2  operators  and  therefore  stabilise  the  DNA  
protein  interaction
...
  When  the  inducer  is  bound  to  the  repressor  the  lac  genes  are  being  readily  expressed  and  their  expression  is  
boosted  by  a  positive  regulator
...
  When  glucose  is  low  there  is  an  increase  in  the  availability  of  adenylyl  cyclase  and  so  an  increase  in  cAMP  
concentration    
3
...
  CRP  does  not  bind  if  the  cell  is  metabolising  glucose  as  there  is  an  absence  of  cAMP    
5
...
   
•   This  allows  a  rapid  response  so  that  the  preinitiation  complex  does  not  have  to  reform  to  transcribe  
the  next  gene  
•   Heat  shock  induces  the  activation  of  the  heat  shock  transcription  factor  which  binds  to  the  
promotor  proximal  region  of  the  hsp70  
•   This  stimulates  paused  polymerase  to  continue  elongation  

 

Translation:    
 
-­‐  
-­‐  
-­‐  
-­‐  

Process  role  is  to  produce  proteins  which  are  vital  to  all  cellular  processes  
22  amino  acids  =  range  of  different  combination    
requires  tight  regulation    
understanding  mechanism  allow  us  to  exploit  for  our  uses  such  as  genetic  engineering  and  antibiotics    
 
1
...
  read  in  triplet  groups  with  NO  overlap  
3
...
  Wobble  Hypothesis  by  Crick:  1st  and  2nd  positions  pair  strictly  whereas  3rd  undergos  loose  pairing  so  
can  move  and  tolerate  mismatches  better  
 
Prokaryotic:  Translation  and  transcription  occur  simultaneously    
 
Ribosomes:  
Common  features  between  eukaryotic  =  A  (aminoacyl)  ,  P  (peptidyl)  and  E  (Exist)  sites    
 
Prok  -­‐  70S:  
-­‐   Small  subunit  –  30S  
•   16S  rRNA  –  ensures  translational  accuracy  and  correct  binding  of  mRNA  in  position    
•   21  proteins  –  help  to  stabilise  rRNAs  and  protect  from  exonuclease  activity  
-­‐   Large  subunit  –  50S  
•   23S  rRNA  –  peptidyl  transfer  activity    
•   5S  rRNA  –  stabilising  3D  structure  and  evidence  of  involvement  in  signal  transmission    
•   31  proteins  -­‐  help  to  stabilise  rRNAs  and  protect  from  exonuclease  activity  
 
 
Initiation:    

 
1
...
  10  bps  upstream  of  desired  AUG  codon  is  Shine  Dalgerno  sequence  (AGGA)  which  is  complementary  to  the  
seqeuence  of  the  16S  rRNA  
 
3
...
  Blocks  free  amino  acid  group  thus  preventing  the  initiator  from  participating  in  the  polypeptide  
elongation    
b
...
  tRNA  brings  AA  to  ribsome:  
a
...
  variable  region  
ii
...
  anticodon  =  3’  single  stranded  region    
b
...
  3ry  structure  =  L  shape    
 
5
...
   Shape  
b
...
  size  
 
6
...
  Hydrolysis  of  ATP  molecule  to  produce  PPi  and  Amino  acid-­‐AMP  complex  
b
...
  Assembley  of  the  preinitiation  complex:  
a
...
  IF3  blocks  E  site  and  maintains  dissociation  of  subunits  
i
...
  P  site  holds  tRNA  with    growing  polypeptide  chain  
iii
...
 
c
...
  Binds  to  fMet-­‐tRNA  and  inserts  tRNA  into  P  site    
ii
...
  Causes  conformational  change  releasing  IF3  and  IF1  so  large  subunit  can  associate    
2
...
  Good  point  of  regulation:  eg  IF2  can  be  phosphorylated  on  its  serine  residues  so  it  can  no  longer  bind  to  
fMet  tRNA
...
     ribosome  can  only  read  two  codons  at  one  time  so  only  2  tRNAs  can  be  present  at  one  time  
 
-­‐2
...
     
f)  EF-­‐Tu  dissociates    
 
-­‐3
...
 
•   Guananine  nucleotide  exchange    
 
-­‐4  :    
•   Peptide  bond  formation  occurs  between  amino  on  acid  in  p  site  and  AA  in  a  site  calatylsed  by  23S
...
  Stop  codon:  UAA,  UAG,  UGA:  These  do  not  code  for  any  tRNA  therefore  A  site  left  empy  
2
...
  RF1  –  UAA/UAG    
b
...
  These  trigger  ribosome  to  hydrolyse  polypeptide  from  tRNA  in  P  site  –  same  reaction  as  peptidyl  transfer  
just  onto  water  molecule  instead  of  AA
...
  RF3  –  GTP  bound:  hydrolysis  of  GTP  induces  conformational  change  allowing  RF1/RF2  to  dissociate    
5
...
   RRF  (ribosome  recycling  factor)  which  allows  mRNA  to  be  released  
b
...
  IF1    
 
Regulation:    
 
-­‐   Harpin  structure  formation  of  the  mRNA    stops  translation  
-­‐   Speed  at  which  mRNA  goes  through  ribosome:  limited  time  for  a  hairpin  to  form  
-­‐   Phosphorylation  of  Ifs/EFs  to  prevent  their  binding
...
   
Ribosomes:  
 
80S:  
-­‐   Small  subunit  –  40s  
•   18S  rRNA  
•   33  proteins  
-­‐   Large  subunit  –  80s  
•   28
...
8S  rRNA  
•   5S  rRNA    
•   45  proteijns    
 
Initiation:  
 
•   e-­‐IF1    -­‐  Sits  in  A  site  so  initiator  tRNA  only  enters  P  
•   e-­‐IF1A  –  sites  in  E  site  so  initiator  tRNA  only  enters  P  
•   e-­‐IF2  –  same  role  as  in  eukayotes    
•   e-­‐IF3  -­‐  binds  near  outside  of  ribosome  and  prevents  association  
 
-­‐   e-­‐IF4F  –  large  complex  
•   e-­‐IF4  –  binds  cap  to  help  position  mRNA  in  correct  position  
•   e-­‐IF4G  –  scaffolding  to  stabilise  everything  
•   e-­‐IF4A  –  helicase  that  unwinds  secondary  structure  such  as  hairpins  which  may  stop  translation  
process  
•   e-­‐IF4B  –  helps  Eif4A    
•   e-­‐IF5  –    
§   triggers  GTP  hydrolysis  in  e-­‐IF2    
§   replenishes  GTP  on  e-­‐IF2  
 
-­‐   Methylated  5’  cap  helps  position  mRNA  
-­‐   Kozak  sequence  homogoulous  to  Shine  Dalgernon  sequence,  however  not  always  present  just  helpful  for  
identification  of  AUG  start  codon    
 
There  are  not  multiple  start  codons  therefore  not  necessary  to  have  Shine  Dalgerno  sequence
...
   

§   Protein  can  autoregulate  as  Mrna  is  then  rapidly  degraded  by  exonucleases  
-­‐  
-­‐  

 
miRNA/siRNA  –  few  base  pairs  complementary  to  mRNA  and  forms  double  strand  triggering  destruction  by  
recruiting  machinery  which  removes  polyA  tail  so  prone  to  action  of  exonucleases  or  preventing  
continuation  of  translation    
-­‐    
 Steps  to  ensure  mRNA  is  read  accurately  and  protein  is  synthesized  accurately:    
 
Key  stage  to  ensure  fidelity:    
1
...
  scanning  for  the  start  AUG  codon  
3
...
  Initiator  tRNA  fmet  that  can  bind  in  the  partial  P  site  
5
...
  Correct  geometry  and  hydrogen  bonding  within  the  ribosome  
7
...
  Rate  of  synthesis  
 


Title: Oxford University first year Biomedical Sciences/Medicine notes on genes
Description: These set of notes are based on 20 lectures given throughout first year and include all aspects of genes in a lot of detail and are 24 pages long. Include experimental evidence and detailed descriptions of the mechanisms of transcription, DNA replication, translation and gene expression regulation.