Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: notes forintegration
Description: integration

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


CHAPTER 7

INTEGRALS
POINTS TO REMEMBER


Integration is the reverse process of Differentiation
...




From geometrical point of view an indefinite integral is collection of family
of curves each of which is obtained by translating one of the curves
parallel to itself upwards or downwards along y-axis
...


STANDARD FORMULAE

1
...






 x n 1

c
x dx   n  1

 log x  c
n

n  1
n  –1

  ax  b n  1
c

  n  1 a
n
 ax  b  dx  
1
 log ax  b  c
a

3
...


 tan x
...


 – cos x  c
...


 – log cos x  c  log sec x  c
...


 cot x dx

8
...
dx

2

 cosec x cot x dx

11
...


 cosec x dx

13
...


15
...


1 x

17
...


19
...


2

1 x

2

2

x

2

a

2

14
...


–1

log

2a

dx 

1

x  c , x  1
...


a  x

log

2a

dx 

x
 a dx 

x  c, x  1
...


dx  sec

1

a

 – cosec x  c
...
tan x
...
dx  tan x  c
...


dx  tan

2

 sec

9
...


10
...


 log sin x  c
...


x a
–1

x

 c
...


21
...


23
...


2

dx  log x 

dx  log x 

x

2



25
...


2

a

2

2

2

a x

a  x dx 



x
a

24
...


–1

 c
...


a

2

2

log x 

a  x

log x 

x

2

 c
...


2

RULES OF INTEGRATION
1
...
f x dx  k  f x dx
...


 k f x   g x dx  k  f x dx  k  g x dx
...


2
...


n
 f  x   f ´x  dx



 f  x  n  1

 c
...


f ´ x 

 f  x  

n

 f  x  n  1

dx 

 c
...
g  x  dx

 f x
...
  g  x  dx  dx
...


a

DEFINITE INTEGRAL AS A LIMIT OF SUMS
...
 f  a  n  1 h  
h0




b  a

h 

b


...






a

c



b

f  x  dx 

a

 f t  dt
...

a

a

b

4
...


b

b

3
...


(i)


a

XII – Maths

c

b

f  x dx 



a

f  a  b  x  dx
...

0

a

5
...

–a

a

6
...


a

2a

7
...


3
...


2
...


1

1



x

 x8 

8


6
...

 e

1

5
...


1

7
...

 4  3 cos x 


8
...


 cos 2x  2sin2 x 
 dx
...


2

11
...


8 x
 dx
...


 1 sin2 x dx
...


2
7

 sin

x dx
...


65

d 
f  x  dx 
...


15
...

e

17
...


x

dx
...


 x  1

21
...


 sec x
...


2

1

 dx
...




16
...


ex
 a x dx
...


13
...


x

dx
...




22
...


24
...


26
...




28
...


30
...


1 

  ax  ax  dx
...


 cot x
...


27
...


29
...

sin x

x  1



33
...


0 x dx



x e 1  e x 1
dx
...


31
...


2

XII – Maths

where [ ] is greatest integer function
...


2
2
0 x dx

where [ ] is greatest integer function
...


a f x   f a  b  x  dx
...


If

40
...


39
...


a f x  dx  b f  x  dx
...


1

a

1

0 1 x 2


, then what is value of a
...


(i)



x cosec

 tan–1x 2 

1 x

4

dx
...


cos  x  a 

(iii)

 sin  x  a  sin  x  b  dx
...


(v)

 cos x cos 2x cos 3x dx
...


sin x cos x
2

2

2



dx
...


(xii)

sin x cos x

67



5

3

x dx
...


1

dx
...


sin 2x

XII – Maths

42
...

1

*(ii)

 x  6  log x 

(iii)

1 x  x

(v)

(vii)

(ix)

(xi)
43
...



...


dx
...


2

  3x  2 

x

2

 x  1 dx
...


(iii)

 cos

XII – Maths

(vi)

7

 1


...


  cos   2

68

(xii)




x
x



1
9  8x  x

2

sin  x   

dx
...


2

dx
...


sec x  1 dx
...


x 1

  x  1  x  2   x  3  dx
...


(vi)


...


(xii)

tan x dx
...

dx

 sin x 1  2 cos x 
...


1
dx
...


 cos

 sin

(vi)

 1  sin 2x 
dx
...


(xi)

e

x

(xii)


 log  log x    log x 



2

x

3

(viii)

x dx
...


e

x



x

(x)

e

3

x dx
...


x dx
...


 2x 2 


x 2

 1

 x  12

dx
...

1  cos 2x 
1


 dx
...


  6x  5 



x

2

2

6  x  x dx
...


x  3

x

2

 4x  3 dx
...


Evaluate the following definite integrals :

4

(i)



sin x  cos x

 9  16 sin 2x

2

dx
...


x
0

1 x
1 x

1 2

2
2



(iv)

dx
...



2

(v)

 sin
0

2

sin 2x
4

4

dx
...


 4x  3


2

(vii)

x  sin x

 1  cos x dx
...


Evaluate :
3

(i)





 x  1  x  2  x  3  dx
...






4

(iii)

2



log 1  tan x  dx
...


(iv)

0

0



(v)

x sin x

 1  cos

2

0

dx
...



2

(vii)

x sin x cos x

 sin
0

4

4



(viii)

a

x
2

0

47
...


x  cos x

2

2

dx
...



 sec x cosec x

(iv)

e
0

a

dx
...


1  x2 


e
cos x

cos x

e

a  x

 cos x

dx
...


a  x

XII – Maths

1

48
...


0
log x  log sin x

49
...


dx
...


52
...

b

4

53
...


sin x dx
...


dx
...




4

a

55
...


56
...


57
...


58
...


59
...


1

LONG ANSWER TYPE QUESTIONS (6 MARKS)
60
...


(ii)

 x
2x

dx

 x  1  x

3

  x  1  x  3 

2

dx

(iv)

x

x

4

x

4

 4

2

dx

4

dx

– 16


2

(v)



cot x  dx
...


x tan

x

2 2



1

dx
...


Evaluate the following integrals as limit of sums :
4

(i)



2

 2x  1 dx
...


0

73

XII – Maths

3

2
  3x

(iii)

4

 2x  4  dx
...


0

1

5

 x

(v)

2

2

 3 x  dx
...


Evaluate
1

 cot

(i)

1

1 

x  x 2  dx

0

dx

  sin x  2 cos x  2 sin x  cos x 

(ii)

1



(iii)

log 1  x 

0

1  x2

63
...


65
...



2

dx

  2 log sin x

(iv)

– log sin 2x  dx
...


 5  cos2   4 sin  d 
...


e

2x

cos 3x dx
...




2
...


2e – 2

2
3
...


4
...

log8 9
16

5
...


log | log (log x) | + c

XII – Maths

74

8
...


0

9
...


0

11
...


f(x) + c

13
...


2 32 2
32
x   x  1  c
3
3

15
...


e
 
 a

17
...


2
 x  13 2  2  x  11 2  c
...


log x  1 

20
...


x cos2  + c

22
...

cos 

23
...


log cos   x sin 
c
sin 

25
...


x4
1
3x 2
 2
 3 log x  c
...

x 1

2

2

x

x

log e a   c

c

27
...

3

28
...


2 log |sec x/2| + c
...


1
log x e  e x  c
...


x  log x 2  c

32
...


0

34
...




36
...


–1

38
...


1

40
...

2
a

(i)

1
1

log  cosec  tan1 x 2   2   c
...


1 2
1
x  x x 2  1  log x  x 2  1  c
...


1
(v)

log

12x  6 sin 2x  3 sin 4x  2 sin 6x   c
...

32 
2
2
6


(viii)

4
 cot6 x
cot x 


  c
...


5

1

(ix)

 a2

 b

2



2

2

2

2

 c
...
sin a  c
...
: Take sec2 x as numerator]

(xi)
(xii)

42
...

sin–1 (sin x – cos x) + c
...



[Hint : put x2 = t]

C

[Hint : put log x = t]

3 log x  2
1

log

5

5 – 1  2x

c

5  1  2x

(iv)

 x  4
sin1 
 c
...
log sin x 

 cos  


 Hint :



5
(vii)

(viii)

(ix)

2

log 3 x  2 x  1 

6

 4x  x

sin  x   
sin  x   

 11

tan


1

3 2

x  3 log x

2

2

2

1





2
2
sin x  sin  

sin  x   

3 x  1 

c

2 

 6x  12  2 3 tan

 4 sin

2

sin x  sin   c

1

 x  3

c

3 

 x  2
 c

 2 


77

XII – Maths

(x)

1 

1 x  x

3
2 2



1



3

 2x  1 1  x  x 2

8



5

sin

1

16

1


2
 x   x  x  1



7
2
 c
 

1
2
2 3
 x  x 1
  log x 
2
 8


3
2

(xi)

x 2

(xii)

 log cos x 

 x  1

 2 x  1

  c

5 

1

2

cos x  cos x  c



2

[Hint : Multiply and divide by

43
...


3
log x  3 

10

4

log x  2 

15

x  4 log

 x  2 2

1

x 1 c

6

c

x 1
(vi)

x 

2
3

tan

x 
1  x 

  3 tan    c
2 
 3

1 

[Hint : put x2 = t]
(vii)

XII – Maths

2
17

log 2x  1 

1

log x

17

2

 4 

1
34

78

tan

1

x
2

c

sec x  1 ]

(viii)

1



log 1  cos x 

2

1

log 1  cos x 

6

2

log 1  2 cos x  c

3

[Hint : Multiply Nr and Dr by sin x and put cos x = t]

(ix)

1

1  sin x

log

8

(x)

1

1  sin x

log

2

(xi)

x
x

1

2

1

tan

44
...
sec2 x and take sec x as first function]
(ii)

(iii)

e

ax

2

a b

(iv)

2x tan

2

1

 a cos  bx

3x 

1

 c   b sin  bx  c    c1

log 1  9x

2

c

[Hint : put 3x = tan ]

3
(v)

(vi)

2  x sin x  cos x   c
3
 x 4  1
x
x
1
tan x –

 c
...


2
x a

2ax  x

e

(viii)

2



2

a

2

1

sin

2

x

 c
...

 x  1


(xi)

ex tan x + c
...
[Hint : put log x = t  x = et ]

log x

(xiii)

2  6  x  x

2 32



25
 2x  1
2
1  2x  1 
 8
6  x  x 
sin 
c
 5 

8
 4

(xiv)

(xv)

1

 x  2  x 2  9  3 log x 

2

x

2

 9  c

2

2

x

2

 4x  3 

3
1



log x  2 

3

2

 x  2
 
 2 

x

2

x

2

 4x  3

 4x  3  c

2

(xvi)

 x  2

 2 


1
45
...


(ii)

20

80




4

x

2

 4x  8  c

(iii)

(v)





4

1


...


(i)
(iii)

log 2
...

5
2
x
sin x 




 Hint : 
 dx
...




(ii)

log 2
...


2

2


...



 Hint :



(vii)



8

1
(v)

1

25

/2
...


5 – 10 log

(i)



2

(vi)

46
...


16



 Hint : Use



2


...


(ii)

12
0
...


2
/2
...


1
2

49
...


50
...


51
...

2

52
...


2 2

54
...


log |1 + sin x| + c

56
...


log |cos x + sin x| + c

58
...


a c x  b c x  C
...




XII – Maths

1
1 
1  2 
3
x 

3 2

x  x2  c


1 
2

log  1  2     c

x  3


82

(iv)

sin x  x cos x
c
x sin x  cos x

(v)

 x  a  tan1 x  ax  c

(vi)

2 sin1

(vii)

0

(viii)

 2 

(ix)

60
...



x  4 log x 

5

log x  1 

4

3

log x  1

4

 log x

2

1 

1

tan

–1

x  c
...


1
–1

x
   c
...


 x
   c
...




1
2 2

tan

1

 x2

 1
2x



1
4 2

83

log

x
x

2
2



2x  1



2x  1

c

XII – Maths

(vii)

/8
...


(iii)

26
...


(ii)

127  e


...

8

(iv)

62
...


2
141

(v)

8


...

 2
2

1
tan x  x
log
c
5
2 tan x  1

63
...

6
2
3

64
...


1
1
sec x  tan x  log sec x  tan x  c
...


e 2x
2cos 3x  3 sin3x   c
...

2  sin 

84


Title: notes forintegration
Description: integration