Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Calculus Derivatives and Integrals
Description: Derivatives of and Integrals yielding: + inverse circular functions + logarithmic functions + exponential functions + hyperbolic functions + inverse hyperbolic functions Plus, Logarithmic Differentiation. This is a comprehensive powerpoint-type PDF notes on these topics. It includes numerous examples and step-by-step solution. Text is large plus topic color-themed. College calculus. Mathematical Analysis
Description: Derivatives of and Integrals yielding: + inverse circular functions + logarithmic functions + exponential functions + hyperbolic functions + inverse hyperbolic functions Plus, Logarithmic Differentiation. This is a comprehensive powerpoint-type PDF notes on these topics. It includes numerous examples and step-by-step solution. Text is large plus topic color-themed. College calculus. Mathematical Analysis
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Unit 1
Derivatives of and
Integrals Yielding
Transcendental Functions
Unit 1
...
1
...
dx
1
y 2Arcsin x 3
dy
1
2
dx
1
1 x 3
2
1 23
x
3
Example 1
...
2
1
...
1
...
x
Arccsc x3
Dx
x
1
1
2
3
x
3x Arccsc x
3
3 2
2 x
x x 1
2
x
Theorem
1
1 u
2
du Arcsin u C
1
1 u 2 du Arctan u C
u
1
u 1
2
du Arcsec u C
Theorem
1
u
du Arcsin C
2
2
a
a u
1
1
u
a2 u 2 du a Arctan a C
1
1
u
u u 2 a2 du a Arcsec a C
Example 1
...
4
Evaluate the following
...
16 sin 2 x
cos x dx
2
2
4 sin x
du
42 u 2
u
Arcsin C
4
sin x
Arcsin
C
4
Let
u sin x
du cos x dx
2
...
2
x 2x 3
dx
2
x 2x 3
dx
2
x 2x 1 1 3
dx
2
x 1 2
dx
x 1
2
2
2
dx
x 1
2
2
2
du
u
2
2
2
1
u
Arctan
C
2
2
1
x 1
Arctan
C
2
2
Let
u x 1
du dx
Required Exercises
Answer Exercises in TC7
...
7 (33-55) on page 505-507
Exercises 5
...
End of Unit 1
...
2
Derivatives of and Integrals
Yielding Logarithmic
Functions
First Fundamental Theorem of Calculus
Let the function f be continuous on a, b and
let x be any number in a, b
...
dx
Example 1
...
1
Use the First Fundamental Theorem of Calculus
dy
to find
...
y
x
2
t 4 dt
2
2
...
dx
y ln x
x1
y dt
1 t
dy 1
by the First FTC
...
2
...
1
...
y ln x 5x 2
4
2
y ln x 5x 2
4
2
1
2
1
4
2
y ln x 5x 2
2
ln ab b ln a
1
4
2
y ln x 5x 2
2
dy 1
1
4
4 x3 10 x
2
dx 2 x 5x 2
3
...
2
...
1
1
f ' x
log5 tan 3x ln 2 tan 3x ln5
sec2 3x 3
Example 1
...
4
Find the derivative of the function given by
y log 5x 3 2 x 7
...
2
...
csc2 2 x
1
...
2
dx 2
dx 2
dx
x 9
x 9
x 9
x
For 2
dx,
x 9
2
x
Let
u x 9
dx
x2 9
du 2 xdx
1 du
du
xdx
2 u
2
1
ln u C
2
1
ln x2 9 C
2
Therefore,
x 1
x
1
x2 9 dx x2 9 dx x2 9 dx
1
1
x
2
ln x 9 Arctan C
2
3
3
3
...
2
...
sec Arcsin x
1 x2
dx
sec u du
Let
u Arcsin x
dx
du
1 x2
ln sec u tan u C
ln sec Arcsin x tan Arcsin x C
Required Exercises
Answer Exercises in TC7
...
2 (5-36) on page 449-450
Exercises 5
...
Reading Assignment
There is a READING ASSIGNMENT
found in the fb group
...
2
Unit 1
...
3
...
2x 1 x 1
5
y
2
x 1
1
3
4
2
2x 1 x 1
5
ln y ln
2
x 1
1
3
4
2
4
ln y ln 2 x 1 ln x 1 ln x 1
5
2
3
1
2
1
ln y 5ln 2 x 1 4ln x 1 ln x3 1
2
1 dy
1
1
1 1
5
2 4 2
2 x 3 3x 2
y dx
2x 1
x 1
2 x 1
2
1 dy
1
1
1 1
5
2 4 2
2 x 3 3x 2
y dx
2x 1
x 1
2 x 1
2
1 dy
10
8x
3x
2
3
y dx 2 x 1 x 1 2 x 2
10
dy
8x
3x 2
y
2
3
dx
2x 1 x 1 2x 2
dy 2 x 1 x 1 10
8x
3x 2
2
3
3
dx
x 1
2x 1 x 1 2x 2
5
2
4
Logarithmic Differentiation
For y f x ,
i
...
ii
...
iii
...
iv
...
Example 1
...
2
Differentiate the function given by y x
y x
cos 2 x
...
Exercises 5
...
5 (14-20) on page 476
Check your answers on A-155 and A-156
...
4
Derivatives of and
Integrals Yielding
Exponential Functions
Exponential Function
Let a 0 and a 1
...
x
ya
x log a y
1 dy
1
y ln a dx
dy
y ln a
dx
dy
x
a ln a
dx
x
Theorem
If u is a differentiable function of x then
Dx a
u
a
u
ln a Dxu
Dx eu eu Dxu
Example 1
...
1
Find the derivative of the function defined
...
4
...
dx
x
y
x y
e e e
dy
dy
x y
e e
e 1
dx
dx
x
y dy
x y
x y dy
e e
e e
dx
dx
dy y x y
e e ex y ex
dx
dy e x y e x
y x y
dx e e
x
y
Theorem
e du e
u
u
C
u
a
a du ln a C
u
Example 1
...
3
Evaluate the integrals
...
eArcsec x
x
x2 1
dx
eu du
eu C
eArcsec x C
Let
u Arcsec x
1
du
dx
x x2 1
2
...
4
...
x
2x csc 2x dx
1
csc u du
ln 2
1
ln csc u cot u C
ln 2
ln csc 2x cot 2x
C
ln 2
Let
u 2x
du 2x ln 2 dx
du
2x dx
ln 2
Required Exercises
Answer Exercises in TC7
...
4 (5-53) on page 467-468
Exercises 5
...
End of Unit 1
...
5
Derivatives of and
Integrals Yielding
Hyperbolic Functions
Hyperbolic Functions
e e
sinh x
2
x
x
e e
cosh x
2
x
x
sinh x
tanh x
cosh x
1
csch x
sinh x
cosh x
coth x
sinh x
1
sech x
cosh x
Circular and Hyperbolic Functions
Properties of Hyperbolic Functions
y sinh x
Domain
Range
y
5
4
3
2
1
-5
-4
-3
-2
-1
1
-1
-2
-3
-4
-5
2
3
4
5
x
y cosh x
Domain
y
5
4
Range 1,
3
2
1
-3
-2
-1
1
-1
2
3
x
y tanh x
Domain
Range 1,1
y
1
...
0
0
...
5
-1
...
5
2
3
x
Hyperbolic Identities
x
x
e e
sinh x
2
x
x
e e
2
x
x
e e
2
sinh x
P x cosh x,sinh x
cosh x sinh x 1
2
2
2
2
cosh x sinh x
1
2
2
2
cosh x cosh x cosh x
2
2
1 tanh x sech x
sinh x sinh x
cosh x cosh x
cosh x sinh x 1
2
2
1 tanh 2 x sech 2 x
coth x 1 csch x
2
2
y sinh x
e x e x
y
2
dy 1 x x
e e 1
dx 2
e x e x
2
cosh x
y cosh x
e x e x
y
2
dy 1 x x
e e 1
dx 2
e x e x
2
sinh x
Theorem
If u is a differentiable function of x then
Dx sinh u cosh u Dxu
Dx cosh u sinh u Dxu
Dx tanh u sech 2 u Dxu
Dx csch u csch u coth u Dxu
Dx sech u sech u tanh u Dxu
Dx coth u csch u Dxu
2
Example 1
...
1
Find the derivative of the function
...
y sinh e
Arccot x
dy
1
Arccot x
Arccot x
cosh e
e 1 x2
dx
2
...
f x 2 cosh x
x
3
f x 2 cosh x
3
x
f ' x 2x 3cosh 2 x sinh x cosh 3 x 2 x ln 2
4
...
5
...
sinh log x
1
...
coth
2
x
x
dx
2 coth u du
2
2 csch u 1 du
2
2 coth u u C
2coth x 2 x C
Let u x
du
1
dx
2 x
1
2du
dx
x
3
...
e
4dx
x
e
x 2
2
2
x x dx
e e
sech x dx
2
tanh x C
Required Exercises
Answer Exercises in TC7
...
9 (1-32) on page 524
Check your answers on A-158
...
5
Unit 1
...
3
-2
-1
1
-1
-2
-3
2
3
x
Inverse Hyperbolic Sine Function
The inverse hyperbolic sine function is
defined as
y Argsinh x if and only if x sinh y
y Argsinh x
Domain
Range
y
3
2
1
-3
-2
-1
1
-1
-2
-3
2
3
x
Hyperbolic Cosine Function
y
f x cosh x
4
3
Domain
Range 1,
2
1
f is not a 1-1
function
...
y Argcosh x
Domain 1,
Range 0,
y
4
3
2
1
-2
-1
1
-1
2
3
4
x
Other Inverse Hyperbolic Functions
y Arg tanh x if and only if x tanh y
where 1 x 1 and y
...
Other Inverse Hyperbolic Functions
y Argsech x if and only if x sech y
where 0 x 1 and y 0
...
y Argsinh x
sinh y x
dy
cosh y 1
dx
dy
1
dx cosh y
dy
1
dx
1 x2
cosh 2 y sinh 2 y 1
cosh 2 y 1 sinh 2 y
cosh y 1 sinh 2 y
Theorem
If u is a differentiable function of x then
Dx Argsinh u
Dx Argcosh u
1
1 u
2
1
u2 1
Dxu
Dxu
1
Dxu
Dx Arg tanh u
2
1 u
Dx Argcsch u
Dx Argsech u
1
u 1 u
1
u 1 u
2
1
Dx Argcoth u
Dxu
2
1 u
2
Dxu
Dxu
Example 1
...
dx
1
...
y
Argsech x
1
1
Argsech x
Arg tanh x
2
1 x
dy
x 1 x2
2
dx
Argsech x
Required Exercises
Answer Exercises in TC7
...
9 (40-48) on page 535
Check your answers on A-158
...
6
Title: Calculus Derivatives and Integrals
Description: Derivatives of and Integrals yielding: + inverse circular functions + logarithmic functions + exponential functions + hyperbolic functions + inverse hyperbolic functions Plus, Logarithmic Differentiation. This is a comprehensive powerpoint-type PDF notes on these topics. It includes numerous examples and step-by-step solution. Text is large plus topic color-themed. College calculus. Mathematical Analysis
Description: Derivatives of and Integrals yielding: + inverse circular functions + logarithmic functions + exponential functions + hyperbolic functions + inverse hyperbolic functions Plus, Logarithmic Differentiation. This is a comprehensive powerpoint-type PDF notes on these topics. It includes numerous examples and step-by-step solution. Text is large plus topic color-themed. College calculus. Mathematical Analysis