Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Calculus Derivatives and Integrals
Description: Derivatives of and Integrals yielding: + inverse circular functions + logarithmic functions + exponential functions + hyperbolic functions + inverse hyperbolic functions Plus, Logarithmic Differentiation. This is a comprehensive powerpoint-type PDF notes on these topics. It includes numerous examples and step-by-step solution. Text is large plus topic color-themed. College calculus. Mathematical Analysis

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Unit 1
Derivatives of and
Integrals Yielding
Transcendental Functions

Unit 1
...
1
...

dx
1

y  2Arcsin x 3
dy
1
 2
dx
1
1 x 3

 

2

1  23
 x
3

Example 1
...
2

1

...
1
...

x 

 Arccsc x3 
Dx 

x 

1
1
2
3
x
 3x  Arccsc x 
3
3 2
2 x
x  x  1

2
x

 

Theorem



1
1 u

2

du  Arcsin u  C

1
 1  u 2 du  Arctan u  C

u

1
u 1
2

du  Arcsec u  C

Theorem



1

u
du  Arcsin  C
2
2
a
a u

1
1
u
 a2  u 2 du  a Arctan a  C
1

1
u
 u u 2  a2 du  a Arcsec a  C

Example 1
...
4
Evaluate the following
...

16  sin 2 x
cos x dx

2
2
4   sin x 


du

42  u 2
u
 Arcsin    C
4
 sin x 
 Arcsin 
C
 4 

Let

u  sin x
du  cos x dx

2
...
 2
x  2x  3
dx
 2
 x  2x   3
dx
 2
 x  2x  1  1  3
dx

2
 x  1  2


dx

 x  1

2



 2

2




dx

 x  1

2



 2

2

du
u 
2

 2

2

1
 u 

Arctan 
C
2
 2
1
 x 1

Arctan 
C
2
 2 

Let

u  x 1
du  dx

Required Exercises

Answer Exercises in TC7
...
7 (33-55) on page 505-507
Exercises 5
...


End of Unit 1
...
2
Derivatives of and Integrals
Yielding Logarithmic
Functions

First Fundamental Theorem of Calculus
Let the function f be continuous on  a, b and

let x be any number in  a, b
...

dx

Example 1
...
1
Use the First Fundamental Theorem of Calculus
dy
to find
...
y  

x

2

t  4 dt
2

2
...

dx
y  ln x
x1
y   dt
1 t
dy 1
 by the First FTC
...
2
...




1
...
y  ln x  5x  2
4

2

y  ln  x  5x  2 
4

2

1

2

1
4
2
y  ln  x  5x  2 
2

ln ab  b ln a

1
4
2
y  ln  x  5x  2 
2
dy 1
1
  4
  4 x3  10 x 
2
dx 2 x  5x  2
3
...
2
...

1
1
f ' x  

log5  tan  3x   ln 2  tan  3x   ln5





sec2  3x   3

Example 1
...
4
Find the derivative of the function given by





y  log  5x  3  2 x  7 
...
2
...

csc2  2 x 
1
...
 2
dx   2
dx   2
dx
x 9
x 9
x 9
x
For  2
dx,
x 9
2
x
Let
u  x 9
dx
 x2  9
du  2 xdx
1 du
 
du
 xdx
2 u
2
1
 ln u  C
2
1
 ln x2  9  C
2

Therefore,
x 1
x
1
 x2  9 dx   x2  9 dx   x2  9 dx
1
1
x
2
 ln x  9  Arctan  C
2
3
3

3
...
2
...




sec  Arcsin x 
1  x2

dx

  sec u du

Let

u  Arcsin x
dx
du 
1  x2

 ln sec u  tan u  C
 ln sec  Arcsin x   tan  Arcsin x   C

Required Exercises

Answer Exercises in TC7
...
2 (5-36) on page 449-450
Exercises 5
...


Reading Assignment

There is a READING ASSIGNMENT
found in the fb group
...
2

Unit 1
...
3
...


2x  1 x  1
5

y 

2

x 1

1

3

4

2

2x  1 x  1
5

ln y  ln

2

x 1

1

3

4

2
4

ln y  ln 2 x  1  ln x  1  ln x  1
5

2

3

1

2

1
ln y  5ln 2 x  1  4ln x  1  ln x3  1
2
1 dy
1
1
1 1
  5
2  4 2
 2 x   3  3x 2
y dx
2x  1
x 1
2 x 1
2

1 dy
1
1
1 1
  5
2  4 2
 2 x   3  3x 2
y dx
2x  1
x 1
2 x 1
2

1 dy
10
8x
3x
 
 2
 3
y dx 2 x  1 x  1 2 x  2
 10
dy
8x
3x 2 
 y
 2
 3

dx
 2x  1 x  1 2x  2 

dy  2 x  1  x  1  10
8x
3x 2 

 2
 3


3
dx
x 1
 2x  1 x  1 2x  2 
5

2

4

Logarithmic Differentiation
For y  f  x  ,
i
...

ii
...

iii
...

iv
...


Example 1
...
2
Differentiate the function given by y  x
y  x

cos  2 x 


...

Exercises 5
...
5 (14-20) on page 476
Check your answers on A-155 and A-156
...
4
Derivatives of and
Integrals Yielding
Exponential Functions

Exponential Function

Let a  0 and a  1
...

x

ya
x  log a y
1 dy
1

y ln a dx
dy
 y ln a
dx
dy
x
 a ln a
dx
x

Theorem

If u is a differentiable function of x then
Dx  a

u

a

u

ln a  Dxu

Dx  eu   eu  Dxu

Example 1
...
1

Find the derivative of the function defined

 
...
4
...

dx
x
y
x y
e e e
dy
dy 
x y 
e e
 e 1  
dx
 dx 
x
y dy
x y
x  y dy
e e
e e
dx
dx
dy y x  y
e  e   ex  y  ex

dx
dy e x  y  e x
 y x y
dx e  e
x

y

Theorem

 e du  e
u

u

C
u

a
 a du  ln a  C
u

Example 1
...
3

Evaluate the integrals
...


eArcsec x

x

x2  1

dx

  eu du
 eu  C
 eArcsec x  C

Let

u  Arcsec x
1
du 
dx
x x2  1

2
...
4
...

x

2x csc  2x  dx

1

 csc u du
ln 2
1

 ln csc u  cot u  C
ln 2
ln csc  2x   cot  2x 

C
ln 2

Let

u  2x
du  2x ln 2 dx
du
 2x dx
ln 2

Required Exercises

Answer Exercises in TC7
...
4 (5-53) on page 467-468
Exercises 5
...


End of Unit 1
...
5
Derivatives of and
Integrals Yielding
Hyperbolic Functions

Hyperbolic Functions

e e
sinh x 
2
x

x

e e
cosh x 
2
x

x

sinh x
tanh x 
cosh x

1
csch x 
sinh x

cosh x
coth x 
sinh x

1
sech x 
cosh x

Circular and Hyperbolic Functions

Properties of Hyperbolic Functions
y  sinh x
Domain 
Range 

y

5
4
3
2
1

-5

-4

-3

-2

-1

1
-1
-2
-3
-4
-5

2

3

4

5

x

y  cosh x
Domain 

y

5

4

Range  1,  

3

2

1

-3

-2

-1

1
-1

2

3

x

y  tanh x
Domain 
Range   1,1
y

1
...
0
0
...
5
-1
...
5

2

3

x

Hyperbolic Identities
x

  x

e e
sinh   x  
2
x
x
e e

2
x
x
e e

2
  sinh x

P  x    cosh x,sinh x 
cosh x  sinh x  1
2

2

2

2

cosh x sinh x
1


2
2
2
cosh x cosh x cosh x
2
2
1  tanh x  sech x

sinh   x    sinh x
cosh   x   cosh x
cosh x  sinh x  1
2

2

1  tanh 2 x  sech 2 x
coth x  1  csch x
2

2

y  sinh x
e x  e x
y
2
dy 1 x  x
   e  e  1 
dx 2
e x  e x

2
 cosh x

y  cosh x
e x  e x
y
2
dy 1 x  x
   e  e  1 
dx 2
e x  e x

2
 sinh x

Theorem
If u is a differentiable function of x then
Dx  sinh u   cosh u  Dxu
Dx  cosh u   sinh u  Dxu
Dx  tanh u   sech 2 u  Dxu
Dx  csch u    csch u coth u  Dxu
Dx  sech u    sech u tanh u  Dxu
Dx  coth u    csch u  Dxu
2

Example 1
...
1
Find the derivative of the function
...
y  sinh  e

Arccot x



dy
1
Arccot x
Arccot x
 cosh  e
  e  1  x2
dx
2
...
f  x   2 cosh x
x

3

f  x   2  cosh x 

3

x

f '  x   2x  3cosh 2 x  sinh x  cosh 3 x  2 x ln 2
4
...
5
...

sinh  log x 
1
...




coth

2

x

x

dx

 2 coth u du
2

 2  csch u  1 du
2

 2   coth u  u   C
 2coth x  2 x  C

Let u  x
du 

1

dx

2 x
1
2du 
dx
x

3
...




e

4dx
x

e



x 2
2

 2 
   x  x  dx
e e 
  sech x dx
2

 tanh x  C

Required Exercises

Answer Exercises in TC7
...
9 (1-32) on page 524
Check your answers on A-158
...
5

Unit 1
...


3

-2

-1

1
-1

-2

-3

2

3

x

Inverse Hyperbolic Sine Function

The inverse hyperbolic sine function is
defined as
y  Argsinh x if and only if x  sinh y

y  Argsinh x
Domain 
Range 

y

3

2

1

-3

-2

-1

1
-1

-2

-3

2

3

x

Hyperbolic Cosine Function
y

f  x   cosh x

4

3

Domain 
Range  1,  

2

1

f is not a 1-1
function
...


y  Argcosh x
Domain  1,  
Range  0,  

y

4

3

2

1

-2

-1

1

-1

2

3

4

x

Other Inverse Hyperbolic Functions

y  Arg tanh x if and only if x  tanh y
where  1  x  1 and y 
...


Other Inverse Hyperbolic Functions

y  Argsech x if and only if x  sech y
where 0  x  1 and y  0
...


y  Argsinh x
sinh y  x
dy
cosh y   1
dx
dy
1

dx cosh y
dy
1

dx
1  x2

cosh 2 y  sinh 2 y  1
cosh 2 y  1  sinh 2 y
cosh y  1  sinh 2 y

Theorem
If u is a differentiable function of x then
Dx  Argsinh u  

Dx  Argcosh u  

1
1 u

2

1
u2  1

Dxu

Dxu

1
Dxu
Dx  Arg tanh u  
2
1 u

Dx  Argcsch u   

Dx  Argsech u   

1
u 1 u
1
u 1 u

2

1
Dx  Argcoth u  
Dxu
2
1 u

2

Dxu

Dxu

Example 1
...

dx
1
...
y 
Argsech x
1
1
Argsech x 
 Arg tanh x 
2
1 x
dy
x 1  x2

2
dx
 Argsech x 

Required Exercises

Answer Exercises in TC7
...
9 (40-48) on page 535
Check your answers on A-158
...
6


Title: Calculus Derivatives and Integrals
Description: Derivatives of and Integrals yielding: + inverse circular functions + logarithmic functions + exponential functions + hyperbolic functions + inverse hyperbolic functions Plus, Logarithmic Differentiation. This is a comprehensive powerpoint-type PDF notes on these topics. It includes numerous examples and step-by-step solution. Text is large plus topic color-themed. College calculus. Mathematical Analysis