Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: 1st: Introduction to Evolution and Behavioural Ecology
Description: 1st year Introduction to Evolution and Behavioural Ecology notes, University of Exeter

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


1:​ ​HISTORY​ ​OF​ ​EVOLUTION

2

2:​ ​EVIDENCE​ ​FOR​ ​EVOLUTION

4

3:​ ​MECHANISMS​ ​FOR​ ​EVOLUTION

6

4:​ ​MAINTAINING​ ​VARIATION

9

5:​ ​FITNESS​ ​AND​ ​ADAPTATION

11

6:​ ​SEXUAL​ ​SELECTION

13

7:​ ​POST-COPULATORY​ ​SEXUAL​ ​SELECTION

16

8:​ ​INTRODUCTION​ ​TO​ ​BEHAVIOURAL​ ​ECOLOGY

19

9:​ ​SOCIAL​ ​BEHAVIOUR

21

10:​ ​REVISION

24

11:​ ​PARENTAL​ ​CARE

24

12:​ ​SPECIES

26

13:​ ​SPECIATION

29

14:​ ​COEVOLUTION

33

15:​ ​SIGNALLING​ ​AND​ ​DECEPTION

35

16:​ ​LIFE​ ​HISTORY​ ​STRATEGIES​ ​1

38

17:​ ​LIFE​ ​HISTORY​ ​STRATEGIES​ ​2

41

18:​ ​HUMAN​ ​EVOLUTION

43

19:​ ​HIV​ ​EVOLUTION

46

20:​ ​BATS​ ​AND​ ​INSECTS​ ​-​ ​WHERE​ ​EVOLUTION​ ​MEETS​ ​ECOLOGY

48

Joanna​ ​Griffith​ ​(2017)

1:​ ​HISTORY​ ​OF​ ​EVOLUTION
In​ ​the​ ​beginning
● Original​ ​understanding​ ​of​ ​the​ ​creation​ ​of​ ​animal​ ​forms​ ​came​ ​from​ ​the​ ​Bible
○ Idea​ ​that​ ​animal​ ​forms​ ​have​ ​not​ ​changed​ ​over​ ​time​ ​and​ ​that​ ​there​ ​have​ ​not
been​ ​any​ ​extinctions
○ Date​ ​of​ ​creation​ ​determined​ ​by​ ​James​ ​Usher​ ​to​ ​be​ ​4004​ ​BC,​ ​on​ ​the​ ​night​ ​of
the​ ​22nd​ ​of​ ​October
○ Species​ ​form​ ​remains​ ​constant​ ​over​ ​time
Ideas​ ​of​ ​evolution​ ​before​ ​Darwin
● Lamarck​ ​(1744-1829)
○ Believed​ ​that​ ​species​ ​form​ ​did​ ​change​ ​over​ ​time,​ ​but​ ​did​ ​not​ ​believe​ ​in
branching​ ​from​ ​a​ ​common​ ​ancestor​ ​or​ ​extinction
○ Believed​ ​that​ ​species​ ​change​ ​through​ ​an​ ​“internal​ ​force”​ ​(eg
...

amphibians​ ​are​ ​“better”​ ​than​ ​fish,​ ​birds​ ​are​ ​“better”​ ​than​ ​amphibians,
mammals​ ​are​ ​”better”​ ​than​ ​birds,​ ​and​ ​humans​ ​are​ ​“the​ ​best”)
■ Evolution​ ​is​ ​NOT​ ​progressive
○ Objections​ ​to​ ​Darwin’s​ ​theory
■ Due​ ​to​ ​the​ ​lack​ ​of​ ​a​ ​theory​ ​of​ ​heredity​ ​at​ ​the​ ​time,​ ​evolution​ ​was​ ​hard
to​ ​understand
● Assumption​ ​that​ ​heredity​ ​was​ ​by​ ​“blending”
○ Eg
...
​ ​Aa),​ ​genotypes​ ​do​ ​not​ ​blend
Fischer


Joanna​ ​Griffith​ ​(2017)




1918
Demonstrated​ ​that​ ​continuous​ ​variation​ ​in​ ​real​ ​populations​ ​could​ ​be​ ​derived​ ​from
Mendelian​ ​principles
● Fischer,​ ​Haldane​ ​and​ ​Wright​ ​independently​ ​showed​ ​that​ ​natural​ ​selection​ ​could
operate​ ​with​ ​Mendelian​ ​genetics
○ Led​ ​to​ ​neo-Darwinism,​ ​the​ ​synthetic​ ​theory​ ​of​ ​evolution,​ ​and​ ​modern
synthesis
● Modern​ ​synthesis
○ Gradual​ ​evolution​ ​results​ ​from​ ​small​ ​genetic​ ​changes​ ​that​ ​are​ ​acted​ ​upon​ ​by
natural​ ​selection
○ The​ ​origin​ ​of​ ​species​ ​and​ ​higher​ ​taxa​ ​(macroevolution)​ ​can​ ​be​ ​explained​ ​by
selection​ ​acting​ ​on​ ​individuals​ ​(microevolution)
○ Mayr,​ ​Dobzhansky,​ ​Simpson,​ ​Ford,​ ​and​ ​Huxley​ ​expanded​ ​on​ ​earlier​ ​work​ ​and
incorporated​ ​speciation,​ ​systematics,​ ​development,​ ​morphology,​ ​and
paleontology​ ​into​ ​the​ ​synthesis
Evolution
● Evolution​ ​occurs​ ​because:
○ Species​ ​have​ ​enormous​ ​reproductive​ ​potential,​ ​but​ ​resources​ ​are​ ​limited
○ Populations​ ​are​ ​relatively​ ​stable,​ ​which​ ​suggests​ ​that​ ​not​ ​all​ ​individuals
survive​ ​or​ ​reproduce
○ Variation​ ​is​ ​heritable​ ​(and​ ​favourable​ ​variation​ ​enables​ ​better
survival/reproduction)
Neo-Darwinian​ ​postulates
● There​ ​is​ ​variation​ ​within​ ​populations
○ Some​ ​of​ ​this​ ​variation​ ​is​ ​heritable
■ Variation​ ​makes​ ​some​ ​individuals​ ​better​ ​at​ ​surviving​ ​and​ ​reproducing
● These​ ​individuals​ ​pass​ ​on​ ​their​ ​genes
--------------------------------------------------------------------------------------------------------------------------2:​ ​EVIDENCE​ ​FOR​ ​EVOLUTION




Three​ ​possible​ ​theories​ ​for​ ​the​ ​history​ ​of​ ​life:
○ Evolution​ ​(Darwin,​ ​Wallace)
■ Common​ ​origin
■ Change​ ​in​ ​form​ ​through​ ​time
○ Transformationism​ ​(Lamarck)
■ Separate​ ​origin
■ Change​ ​in​ ​form​ ​through​ ​time
○ Separate​ ​creation​ ​(the​ ​Bible)
■ Separate​ ​origin
■ No​ ​change​ ​in​ ​form​ ​through​ ​time
Evolution:
○ Changes​ ​in​ ​the​ ​genetic​ ​composition​ ​of​ ​a​ ​population​ ​with​ ​the​ ​passage​ ​of​ ​each
generation
○ Change​ ​in​ ​allelic​ ​frequency​ ​in​ ​populations​ ​over​ ​time​ ​(alleles​ ​are​ ​different
versions​ ​of​ ​the​ ​same​ ​gene)
Joanna​ ​Griffith​ ​(2017)

Microevolution​ ​(small​ ​changes)​ ​eventually​ ​leads​ ​to​ ​macroevolution​ ​(large
changes)
Small​ ​scale​ ​patterns
● Artificial​ ​selection
○ Only​ ​certain​ ​individuals​ ​are​ ​allowed​ ​to​ ​breed​ ​in​ ​each​ ​generation
■ Removes​ ​individuals​ ​from​ ​the​ ​breeding​ ​population
■ Eg
...
​ ​Darwin’s​ ​pigeons
■ Darwin​ ​noted​ ​that​ ​collector’s​ ​pigeons​ ​were​ ​all​ ​the​ ​same​ ​species,
breeders​ ​had​ ​simply​ ​selected​ ​for​ ​diverse​ ​traits
○ Eg
...
​ ​dog​ ​breeds
● Experimental​ ​evolution
○ Eg
...
​ ​Dobler​ ​and​ ​Hosken​ ​(2010)
■ Increasing​ ​sperm​ ​length​ ​in​ ​dung​ ​flies
● Selection​ ​in​ ​the​ ​wild
○ Eg
...
​ ​link​ ​between​ ​birth​ ​weight​ ​and​ ​neonatal​ ​mortality
Large-scale​ ​patterns
● Living​ ​species
○ Vestigial​ ​organs:​ ​a​ ​useless​ ​or​ ​rudimentary​ ​version​ ​of​ ​a​ ​body​ ​part​ ​that​ ​has​ ​an
important​ ​function​ ​in​ ​other​ ​species
■ Eg
...
​ ​salamander​ ​ensatina,​ ​California
○ Adaptive​ ​radiation:​ ​a​ ​small​ ​number​ ​of​ ​ancestral​ ​species​ ​diversifies​ ​into​ ​a​ ​large
number​ ​of​ ​descendant​ ​species


Joanna​ ​Griffith​ ​(2017)



Eg
...
​ ​the​ ​Irish​ ​elk​ ​is​ ​over​ ​3m​ ​tall,​ ​we​ ​can’t​ ​have​ ​missed​ ​it
if​ ​it​ ​was​ ​alive
○ Succession
■ The​ ​law​ ​of​ ​succession:​ ​fossil​ ​and​ ​living​ ​organisms​ ​in​ ​the​ ​same
geographic​ ​region​ ​are​ ​related​ ​to​ ​each​ ​other​ ​and​ ​are​ ​significantly
different​ ​from​ ​organisms​ ​found​ ​in​ ​other​ ​areas
● Eg
...
​ ​the​ ​evolution​ ​of​ ​the​ ​horse
● Common​ ​ancestry
○ Phylogeny
■ The​ ​organisation​ ​of​ ​modern​ ​species​ ​into​ ​groups​ ​on​ ​the​ ​basis​ ​of
common​ ​features
■ Creates​ ​inclusive​ ​circles​ ​of​ ​resemblance​ ​which​ ​can​ ​be​ ​hierarchically
arranged
■ Darwin:​ ​similar​ ​species​ ​have​ ​a​ ​common​ ​ancestor
● Homology
○ Structure
■ Many​ ​animals​ ​have​ ​limbs​ ​with​ ​different​ ​functions,​ ​but​ ​with​ ​the​ ​same
sequence​ ​and​ ​arrangement​ ​of​ ​bones
○ Development
■ Most​ ​animals​ ​are​ ​triploblasts
■ Embryos​ ​of​ ​different​ ​species​ ​tend​ ​to​ ​be​ ​very​ ​similar
○ Molecular
■ The​ ​genetic​ ​code​ ​is​ ​universal
● Nucleotide​ ​sequences​ ​for​ ​specific​ ​amino​ ​acids​ ​are​ ​the​ ​same​ ​in
almost​ ​every​ ​organism
● Mammal​ ​genes​ ​can​ ​still​ ​work​ ​when​ ​transplanted​ ​into​ ​bacteria
--------------------------------------------------------------------------------------------------------------------------●

3:​ ​MECHANISMS​ ​FOR​ ​EVOLUTION
Evolution:​ ​changes​ ​in​ ​gene​ ​frequencies​ ​over​ ​time​ ​as​ ​a​ ​result​ ​of​ ​descent​ ​with
modification
Mutation
-

Joanna​ ​Griffith​ ​(2017)

A​ ​heritable​ ​change​ ​in​ ​the​ ​nucleotide​ ​sequence​ ​of​ ​a​ ​genetic​ ​nucleic​ ​acid,​ ​sometimes
resulting​ ​in​ ​an​ ​alteration​ ​in​ ​the​ ​products​ ​coded​ ​for​ ​by​ ​the​ ​gene
● Point​ ​mutation:​ ​a​ ​base​ ​is​ ​swapped​ ​for​ ​a​ ​different​ ​base
● Deletion:​ ​a​ ​base​ ​is​ ​deleted​ ​and​ ​is​ ​not​ ​replaced
● Insertion:​ ​a​ ​base​ ​is​ ​inserted
● Inversion:​ ​two​ ​bases​ ​or​ ​two​ ​groups​ ​of​ ​bases​ ​are​ ​swapped​ ​around
● Most​ ​mutations​ ​are​ ​either​ ​harmful​ ​or​ ​neutral​ ​(only​ ​2%​ ​of​ ​the​ ​mammalian​ ​genome
codes​ ​for​ ​proteins​ ​so​ ​mutations​ ​often​ ​have​ ​no​ ​effect),​ ​beneficial​ ​changes​ ​are​ ​rare​ ​as
it​ ​is​ ​unlikely​ ​that​ ​a​ ​mutation​ ​will​ ​result​ ​in​ ​a​ ​positive​ ​change
● Mutation​ ​rates​ ​are​ ​low​ ​(about​ ​10​-9​​ ​per​ ​base​ ​pair​ ​per​ ​generation),​ ​but​ ​the​ ​haploid
human​ ​genome​ ​is​ ​3x10​9​​ ​base​ ​pairs​ ​long,​ ​so​ ​each​ ​new​ ​human​ ​zygote​ ​can​ ​have​ ​6
new​ ​mutations
○ Adds​ ​up​ ​to​ ​a​ ​lot​ ​of​ ​mutation​ ​in​ ​a​ ​population
Gene​ ​flow
● Introduction​ ​or​ ​loss​ ​of​ ​new​ ​alleles​ ​into​ ​the​ ​population​ ​through​ ​immigration​ ​or
emigration
Genetic​ ​drift
● Variation​ ​in​ ​the​ ​relative​ ​frequency​ ​of​ ​different​ ​genotypes​ ​in​ ​a​ ​small​ ​population,​ ​due​ ​to
the​ ​chance​ ​disappearance​ ​of​ ​particular​ ​genes​ ​as​ ​individuals​ ​die​ ​or​ ​do​ ​not​ ​reproduce
○ Stochastic​ ​(random)​ ​shifts​ ​in​ ​allele​ ​frequencies​ ​in​ ​small​ ​populations
Selection
● Darwin’s​ ​postulates:
○ There​ ​is​ ​variation​ ​within​ ​populations
■ Some​ ​of​ ​this​ ​variation​ ​is​ ​heritable
● Individuals​ ​vary​ ​in​ ​their​ ​ability​ ​to​ ​survive​ ​and​ ​reproduce
○ Survival​ ​and​ ​reproduction​ ​are​ ​non-random
● Evolution​ ​via​ ​selection​ ​requires:
○ Variation​ ​within​ ​a​ ​population
○ Fitness​ ​differences​ ​associated​ ​with​ ​the​ ​variation
○ Heritability
● Variation
○ Identical​ ​individuals​ ​in​ ​a​ ​population​ ​lead​ ​to​ ​identical​ ​offspring
■ Evolution​ ​would​ ​be​ ​impossible,​ ​variation​ ​is​ ​essential
○ Variation​ ​is​ ​present​ ​at​ ​multiple​ ​levels
■ Morphological
● Structural​ ​features
● Can​ ​be​ ​continuous​ ​or​ ​discrete
● Eg
...
​ ​number​ ​and​ ​structure​ ​of​ ​chromosomes
■ Biochemical
● Eg
...
​ ​peppered​ ​moth​ ​morphs​ ​(affects​ ​survival)
○ Eg
...
3
■ Twinning​ ​=​ ​0
...
8-0
...
6-0
...
​ ​blackbirds​ ​choose​ ​the​ ​most​ ​common​ ​snail​ ​phenotype,​ ​reducing
numbers​ ​of​ ​that​ ​phenotype
● Resource​ ​use
○ Eg
...
​ ​in​ ​the​ ​asymmetrical-mouthed​ ​scale-eating​ ​cichlid,​ ​more​ ​common
left-mouthed​ ​cichlids​ ​feed​ ​on​ ​the​ ​right​ ​side​ ​of​ ​a​ ​host​ ​fish,​ ​so​ ​the​ ​host​ ​learns​ ​to
avoid​ ​cichlids​ ​on​ ​the​ ​right,​ ​giving​ ​rarer​ ​right-mouthed​ ​cichlids​ ​an​ ​advantage


Joanna​ ​Griffith​ ​(2017)



Behaviour
○ Eg
...
01,​ ​q​ ​is​ ​0
...
01:1
...
​ ​maize
○ Heterozygous​ ​individuals​ ​tend​ ​to​ ​be​ ​larger
● Eg
...
​ ​sickle-cell​ ​anemia
○ Homozygotes​ ​(either​ ​not​ ​at​ ​all​ ​affected​ ​or​ ​affected)​ ​either​ ​die​ ​of​ ​malaria​ ​or​ ​of
sickle-cell​ ​anemia
■ Heterozygotes​ ​are​ ​better​ ​able​ ​to​ ​survive​ ​malaria​ ​as​ ​their​ ​cells​ ​only
sickle​ ​when​ ​infected,​ ​killing​ ​the​ ​malaria​ ​parasite​ ​(maximal​ ​fitness)
● However,​ ​heterosis​ ​cannot​ ​occur​ ​in​ ​haploid​ ​organisms​ ​as​ ​they​ ​only​ ​have​ ​one​ ​allele
per​ ​locus
○ Haploid​ ​organisms​ ​(eg
...
​ ​white​ ​cats
○ 40%​ ​are​ ​deaf​ ​as​ ​the​ ​gene​ ​that​ ​produces​ ​lack​ ​of​ ​melanin​ ​also​ ​affects​ ​hearing
● Antagonistic​ ​pleiotropy​ ​hypothesis:
○ Alleles​ ​that​ ​enhance​ ​early​ ​life​ ​reproduction​ ​may​ ​be​ ​selected​ ​for​ ​even​ ​if​ ​they
lead​ ​to​ ​shorter​ ​lifespans
■ Possible​ ​hypothesis​ ​for​ ​ageing
● Genes​ ​are​ ​selected​ ​for​ ​several​ ​times​ ​in​ ​several​ ​different​ ​contexts
○ There​ ​is​ ​no​ ​net​ ​attraction,​ ​so​ ​variation​ ​is​ ​maintained
Environmental​ ​heterogeneity
● Fitness​ ​of​ ​a​ ​genotype​ ​or​ ​phenotype​ ​is​ ​related​ ​to​ ​environmental​ ​conditions
○ Phenotype​ ​=​ ​genotype​ ​x​ ​environment
○ The​ ​environment​ ​results​ ​in​ ​variation
Joanna​ ​Griffith​ ​(2017)

Eg
...
​ ​water​ ​deer​ ​having​ ​tusks,​ ​trees​ ​losing​ ​their​ ​leaves,​ ​the​ ​shape​ ​of​ ​bee
orchids,​ ​different​ ​eye​ ​colour​ ​in​ ​humans,​ ​leafcutter​ ​ant​ ​behaviour
The​ ​process​ ​of​ ​adaptation
○ Eg
...
​ ​the​ ​tusks​ ​of​ ​water​ ​deer
Adaptations
○ Complex​ ​(yet​ ​have​ ​evolved​ ​as​ ​tiny​ ​changes​ ​over​ ​time)
○ Designed​ ​for​ ​a​ ​purpose​ ​(but​ ​are​ ​they?)
Complex​ ​adaptations
○ Eg
...
​ ​the​ ​eye
■ Multiple​ ​adaptations,​ ​very​ ​complex
Gradual​ ​evolution
○ Lots​ ​of​ ​small​ ​steps​ ​over​ ​time
■ Every​ ​single​ ​step​ ​has​ ​to​ ​be​ ​advantageous
○ “Gradualist​ ​requirement”,​ ​Darwin
■ Each​ ​small​ ​change​ ​MUST​ ​improve​ ​fitness,​ ​otherwise​ ​the​ ​theory​ ​of
evolution​ ​breaks​ ​down
○ Occurs​ ​through​ ​mutation​ ​and​ ​then​ ​selection​ ​if​ ​the​ ​mutation​ ​increases​ ​fitness
○ Fisher's​ ​microscope​ ​analogy
Joanna​ ​Griffith​ ​(2017)












Could​ ​evolution​ ​occur​ ​through​ ​a​ ​few​ ​very​ ​large​ ​steps?
● Argued​ ​that​ ​small​ ​steps​ ​are​ ​more​ ​common​ ​as​ ​most​ ​living
things​ ​are​ ​already​ ​fairly​ ​well-adapted,​ ​otherwise​ ​they​ ​would​ ​be
dead
Most​ ​individuals​ ​are​ ​near​ ​the​ ​current​ ​state​ ​(optimal​ ​position)
● A​ ​small,​ ​random​ ​mutation​ ​may​ ​have​ ​a​ ​50%​ ​chance​ ​of
increasing​ ​or​ ​decreasing​ ​character​ ​state,​ ​and​ ​therefore​ ​a​ ​50%
chance​ ​of​ ​increasing​ ​or​ ​decreasing​ ​fitness
● A​ ​large,​ ​random​ ​mutation​ ​still​ ​has​ ​a​ ​50%​ ​chance​ ​of​ ​increasing
or​ ​decreasing​ ​character​ ​state,​ ​but​ ​may​ ​result​ ​in​ ​overshooting
the​ ​optima,​ ​making​ ​fitness​ ​worse​ ​either​ ​way
Can​ ​be​ ​more​ ​complex​ ​than​ ​a​ ​single​ ​optima
● In​ ​this​ ​case,​ ​large​ ​mutations​ ​have​ ​a​ ​50%​ ​chance​ ​of​ ​getting​ ​an
organism​ ​closer​ ​to​ ​the​ ​global​ ​optima
● Small​ ​changes​ ​would​ ​keep​ ​an​ ​organism​ ​around​ ​a​ ​local​ ​optima
The​ ​optima​ ​may​ ​change​ ​due​ ​to​ ​changes​ ​in​ ​the​ ​environment
We​ ​are​ ​assuming​ ​that​ ​all​ ​organisms​ ​are​ ​close​ ​to​ ​the​ ​fitness​ ​peak
● Small​ ​mutations​ ​are​ ​still​ ​more​ ​likely​ ​to​ ​improve​ ​fitness,​ ​but
large​ ​mutations​ ​can​ ​also​ ​move​ ​fitness​ ​closer​ ​to​ ​the​ ​peak
The​ ​contribution​ ​of​ ​a​ ​mutation​ ​to​ ​evolution​ ​depends​ ​on:
● Chance​ ​that​ ​the​ ​mutation​ ​occurs​ ​x​ ​chance​ ​that​ ​the​ ​mutation​ ​is
advantageous​ ​x​ ​selective​ ​advantage​ ​of​ ​the​ ​mutation

Lack​ ​of​ ​perfection
● Selection​ ​is​ ​occurring​ ​all​ ​the​ ​time,​ ​so​ ​why​ ​do​ ​we​ ​not​ ​have​ ​“perfect”​ ​organisms?
● Time​ ​lags
○ Eg
...
​ ​gomphotheres)​ ​that​ ​could​ ​eat
them​ ​and​ ​disperse​ ​their​ ​seeds,​ ​but​ ​they​ ​are​ ​now​ ​extinct
○ There​ ​has​ ​been​ ​a​ ​time​ ​lag​ ​in​ ​evolution,​ ​leaving​ ​them
less​ ​well​ ​adapted​ ​(a​ ​change​ ​in​ ​the​ ​environment​ ​has​ ​led
to​ ​a​ ​change​ ​in​ ​the​ ​optima)
● Genetic​ ​constraints
○ Heterosis​ ​(heterozygote​ ​advantage)
○ Eg
...
​ ​recurrent​ ​laryngeal​ ​nerve​ ​in​ ​fish​ ​and​ ​mammals
Joanna​ ​Griffith​ ​(2017)






In​ ​fish,​ ​the​ ​vagus​ ​nerve​ ​goes​ ​around​ ​the​ ​dorsal​ ​and​ ​ventral​ ​aorta​ ​to
reach​ ​the​ ​gills,​ ​via​ ​direct​ ​branches
In​ ​mammals,​ ​due​ ​to​ ​stepwise​ ​evolution,​ ​the​ ​vagus​ ​nerve​ ​has​ ​to​ ​travel
from​ ​the​ ​brain​ ​to​ ​the​ ​larynx​ ​via​ ​the​ ​dorsal​ ​aorta​ ​(near​ ​the​ ​heart)
● Travels​ ​further​ ​than​ ​it​ ​needs​ ​to,​ ​not​ ​efficient

Trade-offs
- Eg
...
​ ​peacock​ ​tails
○ Go​ ​against​ ​Darwin’s​ ​theory​ ​of​ ​natural​ ​selection​ ​as​ ​they​ ​are​ ​actually
detrimental​ ​to​ ​fitness
■ Less​ ​maneuverable
■ Visible​ ​to​ ​predators
○ If​ ​the​ ​tail​ ​of​ ​a​ ​peacock​ ​is​ ​beneficial​ ​to​ ​survival,​ ​why​ ​don’t​ ​peahens​ ​have​ ​them?
Darwin’s​ ​postulates
○ There​ ​is​ ​variation​ ​within​ ​populations
■ Some​ ​of​ ​this​ ​variation​ ​is​ ​heritable
● Individuals​ ​vary​ ​in​ ​their​ ​ability​ ​to​ ​survive​ ​and​ ​reproduce
○ Survival​ ​and​ ​reproduction​ ​are​ ​non-random

Joanna​ ​Griffith​ ​(2017)

Darwin​ ​produced​ ​the​ ​idea​ ​of​ ​sexual​ ​selection​ ​in​ ​order​ ​to​ ​accommodate​ ​fasts
that​ ​did​ ​not​ ​fit​ ​his​ ​theory​ ​of​ ​natural​ ​selection
● Mate​ ​choice​ ​(female​ ​choice)
○ Being​ ​more​ ​noticed​ ​by,​ ​more​ ​attractive​ ​to,​ ​or​ ​more​ ​persuasive​ ​towards​ ​the
opposite​ ​sex,​ ​and​ ​so​ ​gaining​ ​a​ ​mating​ ​advantage
● Mate​ ​competition​ ​(male​ ​competition)
○ Out-competing​ ​other​ ​members​ ​of​ ​the​ ​same​ ​sex​ ​in​ ​contests​ ​whose​ ​outcome
determines​ ​mating​ ​success
Identifying​ ​sexually​ ​selected​ ​traits
● Age
○ Juvenile​ ​vs
...
​ ​juvenile​ ​mandrills​ ​don’t​ ​have​ ​colourful​ ​faces,​ ​but​ ​adults​ ​do
● Sex
○ Male​ ​vs
...
​ ​male​ ​mallards​ ​are​ ​colourful,​ ​females​ ​are​ ​not
○ Eg
...
​ ​all​ ​year​ ​round
■ If​ ​a​ ​trait​ ​is​ ​only​ ​found​ ​in​ ​the​ ​breeding​ ​season,​ ​it​ ​is​ ​likely​ ​sexually
selected​ ​for
○ Eg
...
​ ​superb​ ​birds​ ​of​ ​paradise​ ​only​ ​fan​ ​their​ ​wings​ ​when​ ​in​ ​front​ ​of​ ​a​ ​female
Bateman’s​ ​principle
● We​ ​typically​ ​see​ ​choosy​ ​females​ ​and​ ​displaying​ ​males
● Reproductive​ ​success
○ In​ ​males,​ ​reproductive​ ​success​ ​is​ ​dependent​ ​on​ ​access​ ​to​ ​females​ ​(=
competitive)
○ In​ ​females,​ ​reproductive​ ​success​ ​is​ ​dependent​ ​on​ ​available​ ​resources​ ​for​ ​egg
production​ ​and​ ​the​ ​rearing​ ​of​ ​young​ ​(=​ ​choosy)
● Females​ ​tend​ ​to​ ​have​ ​greater​ ​potential​ ​investment​ ​than​ ​males
○ Females​ ​therefore​ ​have​ ​longer​ ​reproductive​ ​time-outs​ ​than​ ​males
○ Leads​ ​to​ ​a​ ​male-biased​ ​operational​ ​sex​ ​ratio​ ​(the​ ​ratio​ ​of​ ​reproductively​ ​active
males​ ​and​ ​females)​ ​and​ ​thus​ ​greater​ ​competition​ ​between​ ​males​ ​for​ ​females
■ Females​ ​are​ ​relatively​ ​rare
■ The​ ​law​ ​of​ ​supply​ ​and​ ​demand
● Sperm​ ​are​ ​plentiful,​ ​eggs​ ​are​ ​rare
● Variation​ ​in​ ​reproductive​ ​success
○ Can​ ​be​ ​huge​ ​in​ ​males
■ Large​ ​potential​ ​to​ ​father​ ​offspring


Joanna​ ​Griffith​ ​(2017)

■ Eg
...
​ ​tusks,​ ​body​ ​size,​ ​sharp​ ​teeth
● Female​ ​choice
○ Adaptations
■ Eg
...
​ ​male​ ​bush​ ​crickets​ ​provide​ ​females​ ​with​ ​a​ ​nutritious
spermatophore
○ The​ ​larger​ ​the​ ​spermatophore,​ ​the​ ​more​ ​eggs​ ​the
female​ ​can​ ​lay
■ Parental​ ​ability
● Will​ ​a​ ​male​ ​help​ ​to​ ​care​ ​for​ ​the​ ​offspring,​ ​giving​ ​them​ ​a​ ​greater
chance​ ​of​ ​survival
■ Territory​ ​quality
■ Avoiding​ ​disease
○ Indirect​ ​benefits​ ​of​ ​choice
■ Good​ ​genes​ ​(heritable​ ​viability)
● Trait​ ​size​ ​may​ ​indicate​ ​male​ ​quality/health
■ Fisherian​ ​benefits/sexy​ ​sons​ ​(heritable​ ​attractiveness)
● An​ ​attractive​ ​male​ ​will​ ​produce​ ​attractive​ ​sons​ ​which​ ​will​ ​then
go​ ​on​ ​to​ ​be​ ​more​ ​likely​ ​to​ ​reproduce
■ Genetic​ ​compatibility
● Eg
...
​ ​seahorses
Constraints​ ​on​ ​sexual​ ​selection
● Predation
○ Larger​ ​traits​ ​=​ ​more​ ​at​ ​risk
--------------------------------------------------------------------------------------------------------------------------7:​ ​POST-COPULATORY​ ​SEXUAL​ ​SELECTION
Darwin​ ​invented​ ​sexual​ ​selection​ ​to​ ​accommodate​ ​certain​ ​facts​ ​that​ ​did​ ​not​ ​fit​ ​his
theory​ ​of​ ​natural​ ​selection
● Mechanisms​ ​for​ ​sexual​ ​selection:
○ Male-male​ ​competition
○ Female​ ​choice
○ Mechanisms​ ​can​ ​continue​ ​after​ ​copulation
Sperm​ ​competition
● The​ ​competition​ ​between​ ​the​ ​ejaculates​ ​of​ ​two​ ​or​ ​more​ ​males​ ​for​ ​the​ ​fertilisation​ ​of​ ​a
given​ ​set​ ​of​ ​ova
● Can​ ​occur​ ​internally​ ​or​ ​externally
● Why​ ​is​ ​sperm​ ​competition​ ​important?
○ Determines​ ​gene​ ​flow
■ Superior​ ​males​ ​fertilise​ ​more​ ​eggs,​ ​and​ ​thus​ ​their​ ​genes​ ​are​ ​more
present​ ​in​ ​the​ ​next​ ​generation
○ Allows​ ​the​ ​evolution​ ​of​ ​two​ ​sexes
■ Sperm​ ​competition​ ​creates​ ​a​ ​need​ ​for​ ​smaller,​ ​faster,​ ​more​ ​abundant
gametes​ ​to​ ​reach​ ​a​ ​nutrient-rich​ ​gamete
○ Affects​ ​the​ ​strength​ ​of​ ​sexual​ ​selection
○ Allows​ ​post-copulatory​ ​female​ ​choice
● Why​ ​do​ ​males​ ​produce​ ​so​ ​much​ ​sperm?
○ Lottery​ ​principle
■ The​ ​more​ ​sperm,​ ​the​ ​greater​ ​the​ ​probability​ ​of​ ​fertilising​ ​an​ ​egg
● Thus​ ​it​ ​makes​ ​sense​ ​to​ ​produce​ ​lots​ ​of​ ​small​ ​(reducing
energetic​ ​cost)​ ​sperm
○ Exception​ ​to​ ​this​ ​rule:
■ Drosophila​ ​bifurca​ ​have​ ​sperm​ ​that​ ​are​ ​5
...
​ ​in​ ​butterflies,​ ​testes​ ​size​ ​increases​ ​with​ ​sperm​ ​competition
risk​ ​(Gage,​ ​1994)
● Eg
...
​ ​salmon
○ Two​ ​male​ ​phenotypes
■ Guarders​ ​aggressively​ ​guard​ ​females
● At​ ​less​ ​risk​ ​of​ ​sperm​ ​competition,​ ​so
invest​ ​energy​ ​into​ ​fewer,​ ​stronger​ ​sperm
■ Sneakers​ ​mate​ ​with​ ​females​ ​when​ ​guarders​ ​are
not​ ​looking
● Risk​ ​of​ ​sperm​ ​competition​ ​is​ ​much
higher,​ ​so​ ​they​ ​produce​ ​lots​ ​of​ ​small
sperm
● Experimental​ ​evidence​ ​shows​ ​that​ ​polyandry​ ​selects​ ​on​ ​testes
size
Sperm​ ​competition​ ​selects​ ​for:
○ Increases​ ​testes​ ​size
○ Strategic​ ​ejaculation
■ Eg
...
​ ​in​ ​humans,​ ​ejaculate​ ​size​ ​increases​ ​with​ ​time​ ​spent​ ​away​ ​from
partner,​ ​independently​ ​of​ ​ejaculation​ ​frequency
○ Mate​ ​guarding
○ Mating​ ​plugs
■ Eg
...
​ ​the​ ​aedeagus,​ ​found​ ​in​ ​many​ ​insects,​ ​is​ ​used​ ​as​ ​a
rival-sperm-removing​ ​device
● Effective,​ ​eg
...
​ ​in​ ​Callosobruchus​ ​beetles,​ ​the​ ​male’s​ ​spiny​ ​penis​ ​can​ ​damage​ ​the
female’s​ ​genital​ ​tract,​ ​causing​ ​early​ ​death
■ More​ ​damaging​ ​males​ ​are​ ​better​ ​sperm​ ​competitors
● Anchor​ ​male,​ ​help​ ​to​ ​position​ ​penis,​ ​may​ ​be​ ​used​ ​to​ ​scrape​ ​out
the​ ​sperm​ ​of​ ​rival​ ​males
○ Females​ ​are​ ​the​ ​arena​ ​in​ ​which​ ​sperm​ ​competition​ ​occurs
■ Leads​ ​to​ ​the​ ​evolution​ ​of​ ​complex​ ​structures
● Factors​ ​influencing​ ​fertilisation​ ​success​ ​during​ ​sperm​ ​competition
○ Sperm​ ​number​ ​(ejaculate​ ​size/frequency)
○ Ejaculate​ ​quality​ ​(percentage​ ​alive,​ ​speed,​ ​size,​ ​motility,​ ​etc
...
​ ​in​ ​chickens,​ ​females​ ​eject​ ​more​ ​sperm​ ​from​ ​subordinate​ ​males
● Dominance​ ​is​ ​inherited,​ ​so​ ​dominant​ ​fathers​ ​=​ ​dominant​ ​chicks
● Most​ ​copulations​ ​are​ ​coerced,​ ​but​ ​females​ ​can​ ​choose​ ​to​ ​eject
the​ ​sperm
○ Selective​ ​sperm​ ​transportation/storage
○ Selective​ ​sperm​ ​use
■ Eg
...
​ ​young​ ​geese​ ​form​ ​an​ ​image​ ​of​ ​their​ ​“parent”​ ​just​ ​after​ ​hatching,​ ​even​ ​if
the​ ​first​ ​thing​ ​they​ ​see​ ​is​ ​a​ ​human
Von​ ​Frisch​ ​(1886-1982)
● Pioneered​ ​studies​ ​in​ ​bee​ ​communication​ ​and​ ​foraging
○ Demonstrated​ ​that​ ​honey​ ​bees​ ​have​ ​colour​ ​vision
○ Honey​ ​bees​ ​use​ ​the​ ​“waggle​ ​dance”​ ​to​ ​communicate​ ​the​ ​location​ ​of​ ​resources
to​ ​other​ ​bees
Tinbergen​ ​(1907-1988)
● Formulated​ ​a​ ​method​ ​of​ ​studying​ ​animal​ ​behaviour
○ Strong​ ​Darwinian​ ​influence,​ ​trying​ ​to​ ​understand​ ​the​ ​ultimate​ ​(evolutionary)
reasons​ ​for​ ​behaviour
● Four​ ​questions:
○ Function​ ​(adaptation)
○ Phylogeny​ ​(evolution)
○ Causation​ ​(mechanism)
○ Development​ ​(ontogeny​ ​-​ ​genetics​ ​or​ ​environment)
● Proximate
○ The​ ​mechanics​ ​of​ ​behaviour
■ What​ ​triggers​ ​a​ ​behaviour?
■ How,​ ​mechanically,​ ​does​ ​a​ ​behaviour​ ​take​ ​place?
■ How​ ​do​ ​nerves​ ​and​ ​muscles​ ​generate​ ​the​ ​behaviour?
■ How​ ​do​ ​the​ ​animal’s​ ​genes​ ​affect​ ​the​ ​behaviour?
○ Mechanisms​ ​that​ ​cause/enable​ ​behaviour
■ Physiological
■ Sensory
■ Motor
■ Genetic
■ Developmental
● Ultimate
○ Why​ ​is​ ​this​ ​trait​ ​advantageous?
○ Evolutionary​ ​reasons​ ​and​ ​selective​ ​processes​ ​that​ ​have​ ​resulted​ ​in​ ​the
expression​ ​of​ ​behaviour
■ What​ ​is​ ​the​ ​purpose​ ​of​ ​the​ ​behaviour?


Joanna​ ​Griffith​ ​(2017)

In​ ​what​ ​way​ ​does​ ​the​ ​behaviour​ ​increase​ ​an​ ​individual’s​ ​reproductive
success?
■ Does​ ​the​ ​behaviour​ ​increase​ ​an​ ​individual’s​ ​prospects​ ​of​ ​survival?
● Beewolf​ ​homing
○ How​ ​do​ ​beewolves​ ​find​ ​their​ ​way​ ​home?​ ​(a​ ​proximate​ ​question)
■ Beewolves​ ​nest​ ​in​ ​sandy​ ​areas,​ ​and​ ​bury​ ​their​ ​nests​ ​in​ ​sand​ ​before
going​ ​out​ ​hunting
■ Beewolves​ ​circle​ ​the​ ​nest​ ​before​ ​leaving​ ​-​ ​are​ ​they​ ​remembering
landmarks?
○ Tinbergen​ ​cleared​ ​objects​ ​from​ ​around​ ​the​ ​nest​ ​when​ ​the​ ​beewolf​ ​left,​ ​and
she​ ​struggled​ ​to​ ​locate​ ​it
○ Tinbergen​ ​set​ ​up​ ​landmarks​ ​around​ ​the​ ​nest​ ​for​ ​the​ ​beewolf​ ​to​ ​use,​ ​then
moved​ ​them​ ​once​ ​she​ ​left,​ ​and​ ​she​ ​searched​ ​for​ ​the​ ​“nest”​ ​where​ ​the
landmarks​ ​were
■ Second​ ​experiment​ ​is​ ​more​ ​powerful​ ​than​ ​the​ ​first,​ ​because​ ​there​ ​is​ ​a
more​ ​specific​ ​prediction
● ​ ​Black-headed​ ​gulls
○ Why​ ​do​ ​black-headed​ ​gulls​ ​remove​ ​eggshells​ ​from​ ​their​ ​nests?​ ​(an​ ​ultimate
question)
■ Tinbergen​ ​hypothesised​ ​that​ ​broken​ ​eggshells​ ​draw​ ​attention​ ​to​ ​the
nest​ ​and​ ​attract​ ​predators
● Therefore,​ ​removing​ ​the​ ​eggshells​ ​should​ ​reduce​ ​predation
risk
○ Tinbergen​ ​placed​ ​broken​ ​eggshells​ ​at​ ​different​ ​distances​ ​from​ ​intact​ ​gull
eggs,​ ​and​ ​found​ ​that​ ​the​ ​closer​ ​the​ ​eggshells​ ​were​ ​to​ ​the​ ​eggs,​ ​the​ ​more
often​ ​the​ ​eggs​ ​were​ ​predated​ ​upon
○ Removing​ ​eggshells​ ​reduces​ ​egg​ ​loss​ ​to​ ​predators,​ ​and​ ​increases
reproductive​ ​success
○ How​ ​did​ ​egg-removing​ ​behaviour​ ​evolve?
■ Darwin’s​ ​postulates
● There​ ​is​ ​variation​ ​within​ ​populations
○ Some​ ​of​ ​this​ ​variation​ ​is​ ​heritable
■ Individuals​ ​vary​ ​in​ ​their​ ​ability​ ​to​ ​survive​ ​and
reproduce
● Survival​ ​and​ ​reproduction​ ​are
non-random
■ A​ ​genetic​ ​mutation​ ​made​ ​a​ ​gull​ ​more​ ​likely​ ​to​ ​remove​ ​eggshells​ ​from
its​ ​nest
● This​ ​gull​ ​had​ ​a​ ​higher​ ​reproductive​ ​success​ ​than​ ​others​ ​in​ ​the
population,​ ​so​ ​the​ ​gene​ ​became​ ​more​ ​common​ ​in​ ​the
population​ ​and​ ​eventually​ ​became​ ​fixed
○ Process​ ​of​ ​evolution​ ​by​ ​natural​ ​selection
What​ ​is​ ​behavioural​ ​ecology?
● The​ ​study​ ​of​ ​the​ ​survival​ ​and​ ​reproductive​ ​value​ ​of​ ​behaviour,​ ​and​ ​its​ ​relationship
with​ ​ecology​ ​and​ ​evolution
○ How​ ​behaviour​ ​influences​ ​fitness


Joanna​ ​Griffith​ ​(2017)

Traditional​ ​animal​ ​behaviour​ ​research​ ​asked​ ​HOW​ ​questions​ ​and​ ​sought​ ​proximate
explanations
○ Behavioural​ ​ecologists​ ​ask​ ​WHY​ ​questions​ ​and​ ​seek​ ​ultimate​ ​explanations
● Testing​ ​hypotheses
○ Comparison​ ​within​ ​species
■ How​ ​are​ ​confounding​ ​variables​ ​controlled?
○ Experiments
■ Allow​ ​one​ ​variable​ ​to​ ​be​ ​changed​ ​at​ ​a​ ​time
■ Field​ ​or​ ​lab
■ May​ ​influence​ ​behaviours​ ​so​ ​that​ ​they​ ​are​ ​no​ ​longer​ ​natural
○ Comparison​ ​between​ ​species
■ Gives​ ​insight​ ​into​ ​evolutionary​ ​history
■ Limitations:
● Alternative​ ​hypotheses
● Cause​ ​and​ ​effect
○ What​ ​is​ ​correlation​ ​and​ ​what​ ​is​ ​causation?
● Independent​ ​data
● Alternative​ ​adaptive​ ​peaks​ ​or​ ​non-adaptive​ ​differences
○ Different​ ​species​ ​may​ ​have​ ​different​ ​reasons​ ​for
exhibiting​ ​a​ ​behaviour
● Economics​ ​of​ ​behaviour
○ For​ ​a​ ​behaviour​ ​to​ ​evolve,​ ​the​ ​benefit​ ​of​ ​the​ ​behaviour​ ​must​ ​be​ ​greater​ ​than
the​ ​cost​ ​of​ ​the​ ​behaviour
■ Eg
...
​ ​group
○ There​ ​is​ ​no​ ​action​ ​‘for​ ​the​ ​good​ ​of​ ​the​ ​species’
○ Evolution​ ​and​ ​selection​ ​is​ ​related​ ​to​ ​survival​ ​of​ ​the​ ​individual,​ ​not​ ​survival​ ​of
the​ ​species
■ Eg
...
​ ​bee​ ​eaters
○ Adults​ ​will​ ​hang​ ​around​ ​the​ ​nests​ ​of​ ​the​ ​young​ ​of​ ​other​ ​individuals​ ​and​ ​feed
their​ ​young
■ Number​ ​of​ ​adults​ ​at​ ​the​ ​nest​ ​is​ ​correlated​ ​with​ ​number​ ​of​ ​young​ ​that
survive​ ​to​ ​fledglings
○ Food​ ​is​ ​variable,​ ​so​ ​it​ ​can​ ​be​ ​difficult​ ​for​ ​a​ ​single​ ​pair​ ​to​ ​feed​ ​their​ ​young,
making​ ​helpers​ ​crucial
How​ ​can​ ​altruistic​ ​behaviour​ ​evolve​ ​and​ ​persist?
○ DNA​ ​analysis​ ​shows​ ​that​ ​individuals​ ​demonstrating​ ​altruistic​ ​behaviour​ ​to
each​ ​other​ ​are​ ​related
■ Altruistic​ ​behaviour​ ​is​ ​therefore​ ​genetically​ ​selfish
Relatedness​ ​coefficients:​ ​the​ ​probability​ ​of​ ​an​ ​allele​ ​being​ ​shared​ ​between​ ​two
individuals
○ Parents​ ​to​ ​offspring
■ Half​ ​of​ ​the​ ​genes​ ​of​ ​each​ ​parent​ ​are​ ​passed​ ​on​ ​to​ ​the​ ​offspring
● Relatedness​ ​between​ ​parent​ ​and​ ​child​ ​=​ ​0
...
5x0
...
25
■ 50%​ ​chance​ ​of​ ​same​ ​genes​ ​from​ ​father​ ​=​ ​0
...
5=0
...
25+0
...
5
Eg
...
​ ​worker​ ​bees
● Do​ ​not​ ​reproduce​ ​-​ ​how​ ​is​ ​this​ ​advantageous​ ​and​ ​evolve​ ​via
selection?
● Females​ ​are​ ​diploid,​ ​males​ ​are​ ​haploid,​ ​so​ ​sisters​ ​are​ ​more
related​ ​to​ ​their​ ​sisters​ ​than​ ​they​ ​would​ ​be​ ​to​ ​their​ ​own​ ​offspring
(sister​ ​-​ ​sister​ ​=​ ​0
...
5)
○ Helping​ ​sisters​ ​is​ ​good​ ​as​ ​they​ ​will​ ​be​ ​future​ ​queens
● Similar​ ​scenario​ ​(analogous​ ​to)​ ​in​ ​somatic​ ​vs
...
​ ​related​ ​individuals​ ​all​ ​have​ ​green​ ​beards,​ ​so​ ​they​ ​only​ ​help
others​ ​with​ ​green​ ​beards
■ However,​ ​unlikely​ ​hypothesis​ ​as​ ​there​ ​are​ ​very​ ​few​ ​examples​ ​in
nature,​ ​recognition​ ​traits​ ​would​ ​be​ ​difficult​ ​to​ ​evolve,​ ​and​ ​the​ ​system
would​ ​be​ ​easy​ ​to​ ​cheat
○ Direct​ ​genetic​ ​cues
■ Eg
...
​ ​location-based​ ​or​ ​imprinting
--------------------------------------------------------------------------------------------------------------------------10:​ ​REVISION
--------------------------------------------------------------------------------------------------------------------------11:​ ​PARENTAL​ ​CARE
Methods​ ​of​ ​parental​ ​care:
○ Providing​ ​food​ ​items
○ Lactation
○ Gestation
○ Grooming
○ Defending​ ​from​ ​predators
○ Teaching​ ​learnt​ ​behaviours
● Parental​ ​care​ ​increases​ ​the​ ​survival​ ​of​ ​offspring,​ ​thus​ ​allowing​ ​parents​ ​to​ ​increase
their​ ​own​ ​reproductive​ ​success
○ Both​ ​sexes​ ​want​ ​to​ ​increase​ ​reproductive​ ​success​ ​-​ ​however​ ​there​ ​is​ ​often​ ​an
imbalance​ ​in​ ​parental​ ​care
■ Mammals:​ ​primarily​ ​female​ ​care,​ ​sometimes​ ​joint,​ ​never​ ​just​ ​male
■ Fish:​ ​primarily​ ​male​ ​care,​ ​sometimes​ ​joint​ ​or​ ​just​ ​female
■ Invertebrates:​ ​primarily​ ​female​ ​care,​ ​sometimes​ ​joint,​ ​rarely​ ​just​ ​male
■ Birds:​ ​primarily​ ​joint,​ ​sometimes​ ​just​ ​female,​ ​rarely​ ​just​ ​male
■ Reptiles:​ ​primarily​ ​just​ ​female​ ​or​ ​joint,​ ​never​ ​just​ ​male
■ Amphibians:​ ​primarily​ ​just​ ​female​ ​or​ ​just​ ​male,​ ​sometimes​ ​joint
○ If​ ​reproductive​ ​success​ ​is​ ​limited​ ​by,​ ​eg
...
​ ​bluegill​ ​sunfish
● Three​ ​types​ ​of​ ​males,​ ​with​ ​different​ ​roles
○ Parental,​ ​build​ ​nests​ ​and​ ​defend​ ​territory
○ Sneakers
○ Female​ ​impersonators
○ Both​ ​sneakers​ ​and​ ​female​ ​impersonators​ ​sneak
matings​ ​from​ ​defended​ ​females
● Parental​ ​males​ ​cannot​ ​be​ ​sure​ ​of​ ​their​ ​paternity
○ Invest​ ​less​ ​care​ ​into​ ​eggs​ ​and​ ​fry​ ​when​ ​other​ ​males​ ​are
nearby
● Gamete​ ​release​ ​order


Joanna​ ​Griffith​ ​(2017)

Internal​ ​fertilisation
■ Enables​ ​the​ ​male​ ​to​ ​leave,​ ​forcing​ ​female​ ​care
○ External​ ​fertilisation
■ Dawkins​ ​and​ ​Carlisle,​ ​1976
● Sperm​ ​is​ ​lighter​ ​than​ ​eggs,​ ​so​ ​males​ ​have​ ​to​ ​wait​ ​for​ ​eggs​ ​to
be​ ​released​ ​before​ ​fertilising,​ ​allowing​ ​the​ ​female​ ​to​ ​swim​ ​away
and​ ​forcing​ ​the​ ​male​ ​to​ ​care
○ However,​ ​there​ ​is​ ​often​ ​simultaneous​ ​release,​ ​and
some​ ​males​ ​release​ ​first
■ Hypothesis​ ​rejected
● Association​ ​with​ ​offspring
○ The​ ​sex​ ​with​ ​the​ ​closest​ ​association​ ​to​ ​the​ ​offspring​ ​is​ ​more​ ​likely​ ​to​ ​care
○ Internal​ ​fertilisation
■ Female​ ​carries​ ​young,​ ​so​ ​she​ ​is​ ​more​ ​closely​ ​associated
○ External​ ​fertilisation
■ Eggs​ ​are​ ​often​ ​left​ ​in​ ​the​ ​male’s​ ​territory,​ ​so​ ​he​ ​is​ ​more​ ​closely
associated
Conflicts
● Sexual​ ​conflict
○ Between​ ​the​ ​male​ ​and​ ​female​ ​parent
○ Who​ ​should​ ​care?
■ Constraints​ ​(eg
...
​ ​food​ ​availability)
■ Opportunities​ ​for​ ​further​ ​matings
■ What​ ​is​ ​the​ ​other​ ​parent​ ​doing?
○ How​ ​much​ ​care​ ​should​ ​a​ ​parent​ ​give?
■ Depends​ ​on​ ​how​ ​much​ ​the​ ​other​ ​parent​ ​does
● In​ ​joint​ ​care​ ​scenarios,​ ​if​ ​a​ ​partner​ ​is​ ​removed,​ ​the​ ​remaining
partner​ ​CAN​ ​work​ ​harder
○ If​ ​there​ ​is​ ​compensation​ ​of​ ​care​ ​in​ ​the​ ​absence​ ​of​ ​one
of​ ​the​ ​parents,​ ​why​ ​don’t​ ​parents​ ​cheat?
■ IF​ ​loss​ ​of​ ​effort​ ​by​ ​one​ ​parent​ ​is​ ​equal​ ​to​ ​gain​ ​in
effort​ ​by​ ​the​ ​other​ ​parent,​ ​biparental​ ​care​ ​is
unstable,​ ​so​ ​uniparental​ ​care​ ​is​ ​a​ ​more​ ​stable
strategy
● However​ ​the​ ​best​ ​strategy​ ​is​ ​for​ ​partial
compensation,​ ​so​ ​biparental​ ​care​ ​is
stable
● Parent-offspring​ ​conflict
○ Parents​ ​will​ ​allocate​ ​enough​ ​resources​ ​to​ ​offspring​ ​to​ ​ensure​ ​survival​ ​and
thus​ ​maximise​ ​their​ ​reproductive​ ​success,​ ​with​ ​enough​ ​resources​ ​for​ ​future
offspring,​ ​while​ ​offspring​ ​want​ ​to​ ​take​ ​all​ ​available​ ​resources​ ​to​ ​maximise​ ​their
reproductive​ ​success
○ Within​ ​broods,​ ​there​ ​is​ ​no​ ​genetic​ ​reason​ ​for​ ​parents​ ​to​ ​favour​ ​one​ ​offspring
○ Between​ ​broods,​ ​parents​ ​need​ ​to​ ​stop​ ​caring​ ​for​ ​one​ ​set​ ​of​ ​offspring​ ​in​ ​order
to​ ​save​ ​resources​ ​for​ ​future​ ​batches


Joanna​ ​Griffith​ ​(2017)

Conflict​ ​between​ ​maximum​ ​investment​ ​for​ ​offspring​ ​and​ ​parents
■ Benefit​ ​to​ ​parents​ ​is​ ​half​ ​that​ ​of​ ​offspring​ ​because​ ​they​ ​have​ ​a
relatedness​ ​of​ ​0
...
​ ​Galapagos​ ​fur​ ​seals
○ If​ ​the​ ​first​ ​pup​ ​is​ ​born​ ​in​ ​good​ ​environmental​ ​conditions,
it​ ​will​ ​be​ ​weaned​ ​quickly,​ ​and​ ​the​ ​pup​ ​born​ ​after​ ​will​ ​not
be​ ​a​ ​rival
○ If​ ​the​ ​first​ ​pup​ ​is​ ​born​ ​in​ ​poor​ ​environmental​ ​conditions,
it​ ​will​ ​not​ ​be​ ​weaned​ ​before​ ​the​ ​second​ ​pup​ ​is​ ​born,​ ​so
they​ ​will​ ​come​ ​into​ ​direct​ ​conflict,​ ​and​ ​the​ ​older​ ​pup​ ​will
kill​ ​the​ ​younger​ ​pup
■ Obligate
● Eg
...
​ ​piglets​ ​have​ ​teeth​ ​that​ ​they​ ​can​ ​use​ ​to​ ​displace​ ​other​ ​piglets​ ​from
teats​ ​if​ ​the​ ​litter​ ​is​ ​too​ ​large
● Teeth​ ​change​ ​orientation​ ​as​ ​the​ ​piglets​ ​age
--------------------------------------------------------------------------------------------------------------------------○

12:​ ​SPECIES






What​ ​is​ ​a​ ​species?
○ Many​ ​different​ ​definitions,​ ​utility​ ​of​ ​these​ ​different​ ​definitions​ ​depends​ ​on​ ​what
you​ ​are​ ​studying
○ There​ ​are​ ​species​ ​that​ ​can​ ​be​ ​very​ ​difficult​ ​to​ ​differentiate
■ Expected,​ ​if​ ​different​ ​species​ ​share​ ​common​ ​ancestors,​ ​but​ ​with
different​ ​divergence​ ​times
Speciation​ ​is​ ​a​ ​process
○ A​ ​species​ ​will​ ​start​ ​with​ ​the​ ​normal​ ​distribution​ ​of​ ​a​ ​trait​ ​(character​ ​state)
■ Over​ ​time,​ ​there​ ​may​ ​be​ ​some​ ​divergence,​ ​but​ ​the​ ​two​ ​separate
optima​ ​will​ ​have​ ​some​ ​overlap
● There​ ​remains​ ​an​ ​ambiguous​ ​zone​ ​where​ ​individuals​ ​with
different​ ​versions​ ​of​ ​the​ ​character​ ​state​ ​can​ ​still​ ​be​ ​seen​ ​as​ ​the
same​ ​species
■ As​ ​the​ ​two​ ​versions​ ​of​ ​the​ ​character​ ​state​ ​get​ ​further​ ​apart,​ ​overlap
decreases,​ ​and​ ​two​ ​different​ ​species​ ​are​ ​created
At​ ​a​ ​practical​ ​level,​ ​species​ ​can​ ​often​ ​be​ ​identified​ ​through​ ​morphological​ ​differences
Joanna​ ​Griffith​ ​(2017)

○ Clusters​ ​of​ ​individuals​ ​with​ ​similar​ ​traits​ ​tend​ ​to​ ​be​ ​a​ ​species
● Defining​ ​what​ ​a​ ​species​ ​is​ ​is​ ​often​ ​more​ ​of​ ​a​ ​theoretical​ ​issue
○ Huge​ ​range​ ​of​ ​different​ ​definitions
Species​ ​definitions
● Phenetic​ ​or​ ​phenotypic​ ​species​ ​concept
○ Species​ ​are​ ​groups​ ​of​ ​organisms​ ​that​ ​are​ ​more​ ​similar​ ​phenotypically​ ​to​ ​one
another​ ​than​ ​they​ ​are​ ​to​ ​other​ ​groups
○ Disadvantages:
■ How​ ​do​ ​we​ ​objectively​ ​decide​ ​if​ ​a​ ​difference​ ​is​ ​important?
● Using​ ​different​ ​measures,​ ​we​ ​can​ ​get​ ​different​ ​species​ ​from
the​ ​same​ ​group
● Eg
...
​ ​melpomene​ ​and​ ​H
...
​ ​sibling​ ​species
○ Pipistrelle​ ​bats
○ Tree​ ​creepers
● Recognition​ ​species​ ​concept
○ Species​ ​are​ ​groups​ ​that​ ​share​ ​a​ ​common​ ​method​ ​of​ ​mate​ ​recognition
■ Eg
...
​ ​the​ ​common
ancestor​ ​of​ ​more​ ​recently-evolved​ ​species)
■ Defines​ ​species​ ​through​ ​time
○ Disadvantages:
■ It​ ​can​ ​be​ ​difficult​ ​to​ ​identify​ ​when​ ​the​ ​change​ ​occurred
● Which​ ​species​ ​is/was​ ​the​ ​common​ ​ancestor?
■ It​ ​is​ ​time-consuming​ ​and​ ​expensive​ ​to​ ​draw​ ​up​ ​a​ ​complete​ ​phylogeny
● Biological​ ​species​ ​concept
○ Species​ ​are​ ​groups​ ​of​ ​interbreeding​ ​populations​ ​that​ ​are​ ​reproductively
isolated​ ​from​ ​other​ ​populations
■ Species​ ​share​ ​a​ ​common​ ​gene​ ​pool
Joanna​ ​Griffith​ ​(2017)

This​ ​definition​ ​explains​ ​WHY​ ​members​ ​of​ ​a​ ​species​ ​resemble
each​ ​other
■ Important​ ​concept,​ ​as​ ​it​ ​merges​ ​taxonomy​ ​with​ ​genetics
■ Most​ ​commonly​ ​used​ ​definition
○ Disadvantages:
■ Ring​ ​species
● Eg
...
​ ​different​ ​host​ ​plants)
○ Mating​ ​requires​ ​different​ ​cues​ ​(olfactory,​ ​acoustic,​ ​visual)
○ Mating​ ​requires​ ​appropriate​ ​behaviour
○ Mechanical​ ​isolation​ ​(genital​ ​coupling​ ​is​ ​not​ ​possible)
○ Eg
...
​ ​Drosophila​ ​females​ ​reject​ ​the​ ​courtship​ ​of​ ​males​ ​from​ ​the​ ​wrong​ ​species
● Postmating,​ ​prezygotic​ ​reproductive​ ​isolation​ ​barriers
○ Foreign​ ​sperm/pollen​ ​die​ ​in​ ​female
○ Foreign​ ​ejaculate​ ​fails​ ​to​ ​induce​ ​oviposition
○ Foreign​ ​sperm/pollen​ ​are​ ​not​ ​transported​ ​within​ ​the​ ​female
○ Foreign​ ​sperm/pollen​ ​are​ ​inferior​ ​competitors
■ Eg
...
​ ​mules
■ Haldane’s​ ​rule
● In​ ​crosses​ ​where​ ​one​ ​sex​ ​is​ ​inviable​ ​or​ ​infertile,​ ​it​ ​is​ ​the
heterogametic​ ​sex​ ​in​ ​19/20​ ​cases​ ​(XY,​ ​males,​ ​for​ ​mammals,
and​ ​ZW,​ ​females,​ ​for​ ​birds)
○ F​1​​ ​are​ ​behavioural​ ​intermediates
○ F​1​ have​ ​behavioural​ ​defects



Joanna​ ​Griffith​ ​(2017)

○ F​2​​ ​or​ ​backcross​ ​have​ ​reduced​ ​viability
○ F​2​​ ​or​ ​backcross​ ​have​ ​reduced​ ​fertility
Why​ ​are​ ​there​ ​species?
● Why​ ​do​ ​we​ ​have​ ​separate​ ​groups​ ​as​ ​opposed​ ​to​ ​a​ ​continuum?
● Why​ ​do​ ​organisms​ ​form​ ​discrete​ ​clusters,​ ​and​ ​why​ ​are​ ​there​ ​discontinuities​ ​between
species?
○ Discreteness​ ​is​ ​inevitable
■ Species​ ​represent​ ​stable​ ​states
● This​ ​theory​ ​does​ ​not​ ​seem​ ​correct,​ ​because​ ​it​ ​does​ ​not​ ​explain
why​ ​new​ ​stable​ ​states​ ​emerge,​ ​does​ ​not​ ​provide​ ​any
mechanism​ ​to​ ​explain​ ​the​ ​origin​ ​of​ ​these​ ​states,​ ​and​ ​species
do​ ​not​ ​seem​ ​to​ ​be​ ​stable
○ Species​ ​can​ ​be​ ​highly​ ​variable
■ Stable​ ​states​ ​suggests​ ​little​ ​or​ ​no​ ​variation
■ Species​ ​exist​ ​because​ ​they​ ​fill​ ​discrete​ ​niches​ ​(Wright’s​ ​adaptive
landscape/trade-offs)
■ They​ ​exist​ ​because​ ​reproductive​ ​isolation​ ​is​ ​an​ ​inevitable​ ​part​ ​of
population​ ​divergence
--------------------------------------------------------------------------------------------------------------------------13:​ ​SPECIATION





Normal​ ​distribution​ ​of​ ​one​ ​version​ ​of​ ​a​ ​trait​ ​diverges​ ​into​ ​two​ ​different​ ​variations​ ​of
that​ ​trait​ ​(two​ ​different​ ​species)
○ Ambiguous​ ​zone,​ ​where​ ​two​ ​traits​ ​can​ ​still​ ​be​ ​seen​ ​as​ ​the​ ​same​ ​species
○ Speciation​ ​is​ ​a​ ​process,​ ​happens​ ​over​ ​time
The​ ​key​ ​step​ ​to​ ​speciation​ ​is​ ​reproductive​ ​isolation
○ Two​ ​separate​ ​gene​ ​pools
How​ ​many​ ​genes​ ​are​ ​involved​ ​in​ ​reproductive​ ​isolation?
○ Varies:
■ One​ ​or​ ​very​ ​few​ ​genes​ ​(eg
...
​ ​single​ ​gene​ ​mutation​ ​affecting​ ​shell​ ​chirality​ ​in​ ​snails
■ Makes​ ​mating​ ​impossible​ ​between​ ​two​ ​different​ ​shell​ ​spirals
○ Eg
...
​ ​melanogaster​ ​and​ ​D
...
​ ​plants),​ ​or​ ​other
tetraploid​ ​organisms,​ ​but​ ​no
diploid​ ​organisms
■ Can​ ​also​ ​occur​ ​in​ ​fish
○ Causes​ ​very​ ​rapid​ ​speciation
■ Physical​ ​barriers
● Halts​ ​gene​ ​flow​ ​between​ ​two​ ​separated​ ​populations
● Dispersal​ ​(eg
...
​ ​river/lava​ ​flow​ ​separates​ ​two​ ​populations,
preventing​ ​them​ ​from​ ​coming​ ​into​ ​contact)
● Eg
...
​ ​species​ ​of​ ​snapping​ ​shrimp​ ​separated​ ​by​ ​the​ ​isthmus​ ​of
Panama​ ​(reduced​ ​migration)
○ Pacific​ ​and​ ​Caribbean​ ​species​ ​are​ ​closely​ ​linked
■ Allopatric​ ​speciation
● Divergence​ ​of​ ​two​ ​populations​ ​of​ ​the​ ​same​ ​species​ ​due​ ​to
geographical​ ​isolation
■ Parapatric​ ​speciation
● No​ ​physical​ ​barrier​ ​to​ ​gene​ ​flow,​ ​but​ ​ecological​ ​barriers​ ​result
in​ ​the​ ​separation​ ​of​ ​two​ ​populations​ ​of​ ​the​ ​same​ ​species
● Strong​ ​environmental​ ​gradient
○ Eg
...
​ ​mining​ ​waste​ ​affecting​ ​plants
■ One​ ​population​ ​adapted​ ​to​ ​living​ ​on​ ​mining
waste,​ ​one​ ​did​ ​not
■ Sympatric​ ​speciation
● No​ ​separation​ ​of​ ​populations
● Much​ ​more​ ​conscientious
● Eg
...
​ ​flies​ ​raised​ ​on​ ​different​ ​types​ ​of​ ​food
● Ecological​ ​speciation,​ ​disruptive​ ​selection
○ Eg
...
​ ​apple​ ​maggot​ ​fly
○ Sympatric​ ​speciation
○ Used​ ​to​ ​feed​ ​on​ ​hawthorn​ ​fruits,​ ​one​ ​population​ ​started
to​ ​feed​ ​on​ ​introduced​ ​apple​ ​trees
○ 95%​ ​of​ ​matings​ ​occur​ ​within​ ​host​ ​races​ ​(apple​ ​or
hawthorn)




Joanna​ ​Griffith​ ​(2017)

Sexual​ ​selection
● Can​ ​cause​ ​allopatric,​ ​parapatric,​ ​and​ ​sympatric​ ​speciation
● Can​ ​cause​ ​rapid​ ​divergence
● Eg
...
​ ​sperm​ ​acrosomal​ ​protein​ ​lysin​ ​in​ ​abalone
● Eg
...
​ ​male​ ​genitals​ ​(fastest-evolving​ ​morphological​ ​trait)
● Reproductive​ ​genes​ ​are​ ​involved,​ ​so​ ​divergence​ ​can​ ​occur
rapidly
● Striking​ ​differences​ ​in​ ​secondary​ ​male​ ​characteristics​ ​between
closely-related​ ​species
How​ ​is​ ​secondary​ ​contact​ ​prevented?
○ Reinforcement
■ Hybrids​ ​are​ ​less​ ​fit​ ​than​ ​parents
● Selection​ ​favours​ ​matings​ ​between​ ​members​ ​of​ ​the​ ​same
species
■ Eg
...
​ ​hooded​ ​crows​ ​and​ ​carrion​ ​crows
■ Outcomes:
● Hybrid​ ​fitness​ ​lower​ ​than​ ​parental​ ​=​ ​narrow​ ​and​ ​short-lived
hybrid​ ​zone​ ​=​ ​reinforcement
● Hybrid​ ​fitness​ ​equal​ ​to​ ​parental​ ​=​ ​wider​ ​and​ ​longer-lived​ ​hybrid
zone​ ​=​ ​parentals​ ​coalesce
● Hybrid​ ​fitness​ ​higher​ ​than​ ​parental​ ​=​ ​hybrid​ ​zone​ ​depends​ ​on
where​ ​fitness​ ​is​ ​greater​ ​(eg
...
​ ​bustard​ ​mate​ ​choice
■ Bustards​ ​evolve​ ​more​ ​attractive​ ​features,​ ​female​ ​bustards​ ​evolve
greater​ ​choosiness​ ​in​ ​response
Coevolution​ ​between​ ​species
○ Mutualism​ ​(coevolution​ ​and​ ​coadaptations)
■ Eg
...
​ ​the​ ​myxoma​ ​virus​ ​was​ ​introduced​ ​to​ ​Australia​ ​in​ ​the​ ​1950s​ ​to
control​ ​the​ ​invasive​ ​rabbit​ ​population
● Initially​ ​100%​ ​successful​ ​in​ ​killing​ ​hosts,​ ​so​ ​population​ ​declined
rapidly
● Soon,​ ​kill​ ​rate​ ​declined
○ Increase​ ​in​ ​host​ ​resistance,​ ​or​ ​decrease​ ​in​ ​viral
virulence?
■ Infected​ ​constant​ ​lab​ ​rabbits​ ​with​ ​viruses​ ​taken
from​ ​the​ ​wild​ ​in​ ​successive​ ​years
● Virulence​ ​of​ ​the​ ​virus​ ​declined​ ​with​ ​time
■ Infected​ ​wild​ ​rabbits​ ​with​ ​a​ ​standardised​ ​strain
of​ ​the​ ​virus
● Hosts​ ​were​ ​becoming​ ​more​ ​resistant
over​ ​time
○ Competition
■ Different​ ​organisms​ ​competing​ ​with​ ​each​ ​other​ ​to​ ​fill​ ​different​ ​niches
■ Eg
...
​ ​sticklebacks
● Nematic​ ​and​ ​benthic​ ​forms​ ​of​ ​the​ ​same​ ​species
○ Predation​ ​(evolutionary​ ​arms​ ​race)
Joanna​ ​Griffith​ ​(2017)

Evolutionary​ ​arms​ ​races​ ​are​ ​likely​ ​to​ ​result​ ​in​ ​strong​ ​directional
selection
● Faster​ ​predator​ ​=​ ​faster​ ​prey​ ​=​ ​faster​ ​predator​ ​=​ ​faster​ ​prey
○ No​ ​one​ ​ever​ ​gets​ ​“better”
○ Evolutionary​ ​escalation,​ ​until​ ​a​ ​trade-off​ ​is​ ​reached
■ No​ ​progress​ ​is​ ​made
What​ ​is​ ​needed​ ​for​ ​coevolution​ ​to​ ​occur?
● Two​ ​or​ ​more​ ​species​ ​must​ ​affect​ ​each​ ​other​ ​in​ ​some​ ​way
○ Geographic​ ​overlap
○ Reciprocal​ ​effect​ ​on​ ​traits
● Eg
...
​ ​hawkmoth​ ​caterpillar​ ​(harmless​ ​mimic)​ ​and​ ​green​ ​parrot​ ​snake
(harmful​ ​model)
● Batesian​ ​mimicry
○ Model​ ​cannot​ ​escape​ ​its​ ​mimic,​ ​because​ ​by​ ​changing,
it​ ​loses​ ​the​ ​protection​ ​of​ ​its​ ​own​ ​species
■ Coevolutionary​ ​chase​ ​is​ ​an​ ​unlikely​ ​outcome
■ Eg
...
​ ​plants​ ​tend​ ​to​ ​have​ ​many​ ​insects​ ​eating​ ​them,​ ​whereas​ ​insects​ ​tend​ ​to
stick​ ​to​ ​one​ ​preferred​ ​type​ ​of​ ​plant
■ If​ ​a​ ​plant​ ​evolves​ ​a​ ​particular​ ​trait,​ ​it​ ​will​ ​have​ ​a​ ​huge​ ​effect​ ​on​ ​the
insects,​ ​but​ ​the​ ​evolution​ ​of​ ​a​ ​trait​ ​in​ ​an​ ​insect​ ​will​ ​have​ ​little​ ​effect​ ​on
the​ ​plant
Independent​ ​effect
● No​ ​evolutionary​ ​influence,​ ​but​ ​both​ ​species​ ​are​ ​affected​ ​by​ ​an​ ​independent​ ​force
● Eg
...

Honest​ ​signalling
● Two​ ​individuals​ ​have​ ​access​ ​to​ ​different​ ​information
○ They​ ​could​ ​both​ ​gain​ ​if​ ​they​ ​honestly​ ​share​ ​this​ ​information
■ However,​ ​their​ ​interests​ ​do​ ​not​ ​coincide​ ​entirely,​ ​so​ ​each​ ​has​ ​an
incentive​ ​to​ ​deceive​ ​the​ ​other
■ How​ ​can​ ​honest​ ​communication​ ​be​ ​ensured?
● Signalling​ ​is​ ​costly
○ Conspicuous​ ​to​ ​predators
○ Time​ ​spent​ ​signalling​ ​rather​ ​than​ ​feeding
○ Growth​ ​of​ ​signalling​ ​structures​ ​(eg
...
​ ​benefits​ ​to​ ​relatives​ ​when​ ​an​ ​individual​ ​meerkat​ ​alarm​ ​calls
● Signalling​ ​as​ ​an​ ​arms​ ​race
○ Sender​ ​signals​ ​to​ ​own​ ​advantage,​ ​at​ ​cost​ ​to​ ​receiver
■ Selection​ ​on​ ​receiver
■ Receiver​ ​improves​ ​at​ ​discriminating​ ​signals,​ ​at​ ​cost​ ​to​ ​sender
● Selection​ ​on​ ​sender
○ Selective​ ​pressures​ ​on​ ​signaller
■ To​ ​maximise​ ​benefit
● Detectable​ ​in​ ​the​ ​physical​ ​environment
● Detectable​ ​by​ ​and​ ​conspicuous​ ​to​ ​the​ ​receiver
● Needs​ ​to​ ​be​ ​clear​ ​and​ ​different​ ​from​ ​other​ ​signals
■ To​ ​minimise​ ​cost
● Signal​ ​should​ ​not​ ​be​ ​conspicuous​ ​to​ ​predator​ ​or​ ​prey
-

Joanna​ ​Griffith​ ​(2017)



● Reduce​ ​energetic​ ​cost
○ Selective​ ​pressures​ ​on​ ​receiver
■ Distinguish​ ​informative​ ​from​ ​uninformative​ ​signals
■ Identify​ ​false​ ​signals
Types​ ​of​ ​signalling
○ Interspecific
■ Deterring​ ​predators
■ Alarm​ ​calls
■ pollination/nectar​ ​source
○ Intraspecific
■ Recognition​ ​of​ ​group​ ​members
■ Territory​ ​ownership
■ Mate​ ​choice
■ Intrasexual​ ​competition
■ Begging
■ Recognition​ ​of​ ​kin
■ Alarm​ ​calls
■ Foraging​ ​information
○ Eg
...
​ ​paper​ ​wasps
■ More​ ​dominant​ ​individuals​ ​have​ ​more​ ​broken​ ​colouration​ ​with​ ​more
black​ ​facial​ ​spots
● Dominance​ ​affects​ ​how​ ​much​ ​they​ ​get​ ​to​ ​breed
● Why​ ​don’t​ ​individuals​ ​cheat​ ​by​ ​increasing​ ​the​ ​number​ ​of​ ​spots
they​ ​have?
○ Investigation​ ​where​ ​the​ ​faces​ ​of​ ​wasps​ ​were​ ​painted
■ Wasps​ ​battled​ ​for​ ​dominance,​ ​with​ ​the​ ​winner
identified​ ​by​ ​“mount​ ​displays”

Joanna​ ​Griffith​ ​(2017)

No​ ​difference​ ​in​ ​behaviour​ ​of​ ​the
manipulated​ ​wasp,​ ​but​ ​if​ ​they​ ​lost,​ ​they
received​ ​more​ ​aggression
○ Punishment​ ​for​ ​showing​ ​dominance​ ​levels​ ​that​ ​weren’t
true
■ Enforcement​ ​of​ ​social​ ​hierarchies​ ​seems​ ​to​ ​be
socially​ ​controlled
Maintenance​ ​of​ ​honest​ ​signals
○ The​ ​handicap​ ​principle
■ High-quality​ ​individuals​ ​can​ ​afford​ ​the​ ​cost​ ​of​ ​signalling
● Assumes​ ​that​ ​cost​ ​declines​ ​as​ ​male​ ​quality​ ​increases
● Assumes​ ​that​ ​benefit,​ ​if​ ​the​ ​trait​ ​were​ ​displayed,​ ​would​ ​be​ ​the
same​ ​regardless​ ​of​ ​quality
● For​ ​low-quality​ ​males,​ ​cost​ ​would​ ​outweigh​ ​the​ ​benefits​ ​of
displaying​ ​the​ ​trait
Parent-offspring​ ​conflict​ ​in​ ​begging
○ Honest​ ​signalling​ ​models​ ​of​ ​offspring​ ​begging​ ​would​ ​predict​ ​that:
■ Begging​ ​intensity​ ​should​ ​reflect​ ​offspring​ ​need
■ Parents​ ​should​ ​provision​ ​young​ ​in​ ​relation​ ​to​ ​begging​ ​intensity
■ Begging​ ​should​ ​be​ ​costly
○ Benefits​ ​to​ ​offspring
■ More​ ​food
○ Costs​ ​to​ ​offspring
■ Increased​ ​predation​ ​risk
○ Constraints​ ​to​ ​parents
■ Invest​ ​into​ ​hungry​ ​chicks​ ​=​ ​more​ ​offspring
■ Invest​ ​into​ ​bigger​ ​chicks​ ​=​ ​a​ ​few​ ​really​ ​good​ ​offspring
Honest​ ​signals
○ There​ ​is​ ​some​ ​incentive​ ​for​ ​signallers​ ​to​ ​either​ ​represent​ ​or​ ​misrepresent​ ​their
signal
■ Benefits​ ​to​ ​the​ ​receiver​ ​if​ ​the​ ​signal​ ​is​ ​honest,​ ​costs​ ​if​ ​it​ ​is​ ​dishonest
○ Signals​ ​are​ ​more​ ​likely​ ​to​ ​be​ ​honest​ ​if:
■ There​ ​is​ ​no​ ​conflict​ ​of​ ​interest​ ​between​ ​signaller​ ​and​ ​receiver
■ There​ ​are​ ​physical​ ​constraints​ ​on​ ​deceit
■ Dishonest​ ​signals​ ​are​ ​costly​ ​(handicap​ ​principle)
Deception
○ ‘As​ ​a​ ​result​ ​of​ ​the​ ​behaviour​ ​of​ ​the​ ​signaller,​ ​the​ ​receiver​ ​registers​ ​a​ ​certain
situation​ ​that​ ​is​ ​not​ ​occurring​ ​-​ ​as​ ​a​ ​result​ ​of​ ​the​ ​interaction,​ ​the​ ​signaller
benefits​ ​which​ ​the​ ​receiver​ ​pays​ ​a​ ​cost’
○ Selective​ ​pressures​ ​of​ ​deception
■ Receiver​ ​benefits​ ​or​ ​pays​ ​no​ ​cost
● Deceptive​ ​signal​ ​retained
■ Receiver​ ​pays​ ​a​ ​cost
● Cost​ ​of​ ​detecting​ ​cheats​ ​is​ ​high,​ ​or​ ​cost​ ​of​ ​being​ ​deceived​ ​is
low










Joanna​ ​Griffith​ ​(2017)

Deceptive​ ​signal​ ​maintained​ ​by​ ​frequency-dependent
selection
● Cost​ ​of​ ​being​ ​deceived​ ​is​ ​high
○ Increased​ ​receiver​ ​response​ ​threshold​ ​=​ ​exaggeration
of​ ​deceptive​ ​signal​ ​=​ ​increased​ ​receiver​ ​response
threshold​ ​=​ ​etc
...
​ ​bee​ ​orchids)
● Predator​ ​avoidance
● Brood​ ​parasitism​ ​(eg
...
​ ​fork-tailed​ ​drongos​ ​and​ ​meerkats)
■ Intraspecific
● Mate​ ​attraction
● Intrasexual​ ​competition
--------------------------------------------------------------------------------------------------------------------------○

16:​ ​LIFE​ ​HISTORY​ ​STRATEGIES​ ​1
-

-

-

The​ ​problem:
- The​ ​ultimate​ ​goal​ ​of​ ​an​ ​organism’s​ ​life​ ​is​ ​to​ ​survive​ ​and​ ​reproduce​ ​as​ ​much​ ​as
possible
- The​ ​way​ ​they​ ​go​ ​about​ ​this​ ​varies​ ​massively
- Variation​ ​in​ ​age​ ​at​ ​first​ ​production,​ ​longevity,​ ​and​ ​number​ ​of
offspring
Life​ ​history:​ ​the​ ​schedule​ ​of​ ​an​ ​organism’s​ ​life
- Age​ ​and​ ​size​ ​at​ ​maturity
- Number​ ​and​ ​size​ ​of​ ​offspring
- Energy​ ​allocation​ ​to​ ​reproduction
- Timing​ ​of​ ​growth
- Dispersal​ ​patterns
- Number​ ​of​ ​reproductive​ ​events
- Lifespan​ ​and​ ​ageing
Influences​ ​of​ ​life​ ​history
- Body​ ​plan​ ​and​ ​lifestyle​ ​(phylogeny/evolutionary​ ​history)
- Evolutionary​ ​responses​ ​to:
- Physical​ ​conditions
Joanna​ ​Griffith​ ​(2017)

-

Food​ ​supply
Predation
Competition
Mortality​ ​risk

Mortality​ ​risk
- If​ ​your​ ​risk​ ​of​ ​dying​ ​is​ ​high,​ ​there​ ​is​ ​no​ ​point​ ​in​ ​waiting​ ​to​ ​reproduce
- The​ ​fast-slow​ ​continuum
- Population​ ​growth​ ​curve
- Rapid​ ​initial​ ​growth​ ​rate,​ ​flattens​ ​out​ ​at​ ​carrying​ ​capacity
- dN/dt​ ​(change​ ​in​ ​population​ ​size)​ ​=​ ​rN​ ​(intrinsic​ ​rate​ ​of​ ​increase
dependent​ ​on​ ​previous​ ​population​ ​size)​ ​x​ ​(k-N/K)​ ​(scaled​ ​dependent
on​ ​how​ ​close​ ​to​ ​carrying​ ​capacity)
- Life-history​ ​traits​ ​are​ ​generally​ ​organised​ ​along​ ​a​ ​continuum
- At​ ​the​ ​r​ ​end​ ​are​ ​organisms​ ​with:
- Short​ ​life
- Fast​ ​development
- Rapid​ ​maturity
- Low​ ​parental​ ​investment
- High​ ​reproductive​ ​rates
- The​ ​population​ ​is​ ​r-selected,​ ​so​ ​exists​ ​on​ ​the​ ​rising​ ​growth​ ​rate
part​ ​of​ ​the​ ​curve
- At​ ​the​ ​k​ ​end​ ​are​ ​organisms​ ​with:
- Long​ ​life
- Slow​ ​development
- Delayed​ ​maturity
- High​ ​parental​ ​investment
- Low​ ​reproductive​ ​rates
- The​ ​population​ ​is​ ​k-selected,​ ​so​ ​is​ ​at​ ​maximum​ ​carrying
capacity
- Hypothetical​ ​cause​ ​of​ ​survivorship
- For​ ​fast​ ​species,​ ​risk​ ​of​ ​death​ ​is​ ​high​ ​at​ ​all​ ​ages
- Reproduce​ ​as​ ​fast​ ​as​ ​you​ ​can,​ ​as​ ​often​ ​as​ ​you​ ​can
- For​ ​slow​ ​species,​ ​risk​ ​of​ ​death​ ​is​ ​lower​ ​in​ ​early​ ​life
- Time​ ​to​ ​get​ ​big​ ​and​ ​spread​ ​out​ ​the​ ​risk​ ​over​ ​reproductive
events
- Survival​ ​(mortality​ ​risk)​ ​vs
...
​ ​kiwis
■ One​ ​egg​ ​at​ ​a​ ​time,​ ​takes​ ​up​ ​25%​ ​of​ ​the​ ​female’s​ ​body​ ​mass
■ Female​ ​only​ ​produces​ ​two​ ​eggs​ ​in​ ​her​ ​lifetime
■ Male​ ​incubates​ ​the​ ​egg,​ ​can​ ​lose​ ​20%​ ​of​ ​body​ ​mass
■ Chick​ ​quickly​ ​becomes​ ​independent
Survival​ ​vs
...
​ ​future​ ​reproduction
○ High​ ​investment​ ​in​ ​one​ ​breeding​ ​season​ ​=​ ​less​ ​investment​ ​in​ ​the​ ​next
Reproduction​ ​vs
...
​ ​douglas​ ​fir
■ The​ ​more​ ​pinecones​ ​are​ ​produced​ ​in​ ​a​ ​year,​ ​the​ ​smaller​ ​the​ ​growth
ring​ ​for​ ​that​ ​year
Genes​ ​that​ ​make​ ​larger​ ​clutches​ ​also​ ​produce​ ​shorter​ ​lifespans​ ​(pleiotropy)
○ Resources​ ​going​ ​towards​ ​a​ ​large​ ​clutch​ ​cannot​ ​be​ ​spent​ ​on​ ​lengthening
lifespan
Trade-offs​ ​and​ ​mortality​ ​risk​ ​play​ ​a​ ​part​ ​in​ ​maximising​ ​fitness
○ Optimal​ ​offspring​ ​number
■ Trade-off​ ​between​ ​clutch​ ​size​ ​and​ ​offspring​ ​survival
● Lack​ ​clutch​ ​assumes​ ​that​ ​this​ ​trade-off​ ​is​ ​important
● One​ ​would​ ​expect​ ​to​ ​see​ ​the​ ​evolution​ ​of​ ​a​ ​clutch​ ​size​ ​that
maximises​ ​offspring​ ​survival
○ Age​ ​and​ ​size​ ​at​ ​maturity
■ Maturity:​ ​age​ ​at​ ​which​ ​first​ ​reproduction​ ​occurs
■ Fitness​ ​is​ ​often​ ​more​ ​sensitive​ ​to​ ​changes​ ​in​ ​age​ ​at​ ​maturity​ ​than​ ​to
changes​ ​in​ ​other​ ​life​ ​history​ ​traits
● At​ ​equilibrium,​ ​increases​ ​or​ ​decreases​ ​reduce​ ​fitness
■ Huge​ ​variation​ ​in​ ​age​ ​at​ ​maturity
■ Age​ ​at​ ​maturity​ ​has​ ​an​ ​effect​ ​on​ ​r
● R​ ​is​ ​approximated​ ​by​ ​generation​ ​time​ ​(average​ ​time​ ​between
birth​ ​and​ ​production​ ​of​ ​own​ ​offspring)​ ​and​ ​average​ ​number​ ​of
offspring​ ​per​ ​individual
■ Early​ ​maturity
● Greater​ ​survival​ ​to​ ​maturity
● Shorter​ ​generations
■ Late​ ​maturity
● High​ ​fecundity
● Higher​ ​late​ ​fecundity
■ Size​ ​at​ ​maturity
● Greater​ ​size​ ​=​ ​greater​ ​fecundity,​ ​so​ ​why​ ​aren’t​ ​all​ ​organisms
big?
Joanna​ ​Griffith​ ​(2017)

Small​ ​organisms​ ​aren’t​ ​small​ ​because​ ​their​ ​size
increases​ ​fecundity​ ​of​ ​lowers​ ​mortality,​ ​they​ ​are​ ​small
because​ ​it​ ​takes​ ​time​ ​to​ ​grow
■ If​ ​there​ ​is​ ​a​ ​high​ ​risk​ ​of​ ​mortality,​ ​the​ ​investment
in​ ​growth​ ​would​ ​never​ ​be​ ​paid​ ​back​ ​in​ ​increased
fecundity
○ It​ ​takes​ ​time​ ​to​ ​get​ ​big
■ Important​ ​costs​ ​to​ ​early​ ​maturity
● Delay​ ​increases​ ​size​ ​and​ ​fecundity,​ ​delayed​ ​maturity​ ​may
mean​ ​higher​ ​quality​ ​offspring,​ ​a​ ​longer​ ​life,​ ​and​ ​more
reproductive​ ​events
○ Balanced​ ​by​ ​fitness​ ​loss​ ​through​ ​longer​ ​generation​ ​time
and​ ​lower​ ​survival​ ​to​ ​maturity
● Life​ ​history​ ​traits​ ​are​ ​closely​ ​related​ ​to​ ​fitness,​ ​therefore​ ​they​ ​are​ ​important​ ​in
evolution,​ ​conservation​ ​and​ ​ecology
--------------------------------------------------------------------------------------------------------------------------○

17:​ ​LIFE​ ​HISTORY​ ​STRATEGIES​ ​2
Despite​ ​evolution,​ ​there​ ​is​ ​no​ ​such​ ​thing​ ​as​ ​a​ ​‘Darwinian​ ​demon’
○ Trade-offs​ ​prevent​ ​them​ ​from​ ​occurring
■ Egg​ ​size​ ​vs
...
53​ ​eggs
○ Found​ ​that​ ​the​ ​highest​ ​number​ ​of​ ​surviving​ ​offspring​ ​was​ ​for​ ​clutches​ ​of​ ​12
eggs
■ Great​ ​tits​ ​could​ ​maximise​ ​their​ ​reproductive​ ​success​ ​by​ ​laying​ ​more
eggs
● Is​ ​this​ ​evidence​ ​against​ ​Lack’s​ ​hypothesis?
● Are​ ​Lack’s​ ​assumptions​ ​the​ ​issue​ ​with​ ​the​ ​hypothesis?
○ No​ ​association​ ​between​ ​the​ ​current​ ​and​ ​future​ ​reproduction​ ​of​ ​parents
■ Linden​ ​and​ ​Moller​ ​(1989)


Joanna​ ​Griffith​ ​(2017)

​ ​26/60​ ​studies​ ​show​ ​a​ ​trade-off​ ​between​ ​current​ ​and​ ​future
reproduction
○ When​ ​reproduction​ ​is​ ​costly,​ ​selection​ ​favours
withholding​ ​some​ ​reproductive​ ​investment​ ​for​ ​the
following​ ​years
○ Offspring​ ​reproductive​ ​success​ ​is​ ​not​ ​influenced​ ​by​ ​the​ ​clutch​ ​size​ ​that​ ​they
experienced
■ When​ ​a​ ​large​ ​clutch​ ​means​ ​lower​ ​offspring​ ​reproductive​ ​success,
optimal​ ​size​ ​of​ ​the​ ​offspring​ ​clutches​ ​will​ ​be​ ​smaller​ ​than​ ​the​ ​most
numerically​ ​productive​ ​clutch​ ​(being​ ​in​ ​a​ ​large​ ​clutch​ ​=​ ​lower​ ​offspring
reproductive​ ​success)
Deviations​ ​from​ ​Lack
○ Parent-offspring​ ​conflict
■ When​ ​there​ ​are​ ​siblings,​ ​reproductive​ ​investment​ ​of​ ​parents​ ​is​ ​split
● ½○ When​ ​this​ ​occurs,​ ​there​ ​is​ ​a​ ​conflict​ ​between​ ​parent
and​ ​offspring
■ Mothers​ ​will​ ​want​ ​to​ ​stop​ ​investing​ ​when​ ​the
costs​ ​to​ ​future​ ​generations​ ​exceed​ ​the​ ​benefits
to​ ​current​ ​offspring​ ​(when​ ​B/C<1),​ ​but​ ​the
current​ ​offspring​ ​will​ ​want​ ​investment​ ​to
continue​ ​until​ ​the​ ​cost​ ​to​ ​future​ ​generations​ ​is
twice​ ​that​ ​of​ ​the​ ​benefits​ ​to​ ​itself​ ​(B/C=½<1),
because​ ​it​ ​is​ ​related​ ​to​ ​itself​ ​by​ ​1​ ​but​ ​to​ ​future
offspring​ ​by​ ​0
...
​ ​procellariiformes​ ​only​ ​ever​ ​have​ ​one​ ​egg
● For​ ​example,​ ​albatrosses​ ​fly​ ​long​ ​foraging​ ​routes,​ ​feeding​ ​of
chicks​ ​is​ ​delayed,​ ​so​ ​they​ ​cannot​ ​provision​ ​more​ ​than​ ​one
chick
○ Offspring​ ​size
■ We​ ​have​ ​more​ ​or​ ​less​ ​assumed​ ​fixed​ ​size​ ​previously
■ While​ ​clutch/brood​ ​size​ ​can​ ​vary​ ​considerably,​ ​typically​ ​offspring​ ​size
is​ ​far​ ​less​ ​variable
● Due​ ​to​ ​a​ ​trade-off​ ​between​ ​offspring​ ​number​ ​and​ ​offspring​ ​size
● Assumption​ ​that​ ​individual​ ​offspring​ ​will​ ​have​ ​a​ ​better​ ​chance
of​ ​surviving​ ​if​ ​they​ ​are​ ​larger




Joanna​ ​Griffith​ ​(2017)

There​ ​is​ ​a​ ​minimum​ ​size​ ​below​ ​which​ ​offspring​ ​do​ ​not
have​ ​a​ ​chance​ ​of​ ​survival
○ As​ ​offspring​ ​get​ ​larger,​ ​their​ ​probability​ ​of​ ​surviving
increases
■ The​ ​parental​ ​fitness​ ​gained​ ​from​ ​a​ ​particular​ ​clutch​ ​of​ ​offspring​ ​of​ ​a
given​ ​size​ ​is​ ​the​ ​number​ ​of​ ​offspring​ ​that​ ​survive​ ​from​ ​this​ ​particular
clutch
● If​ ​we​ ​multiply​ ​the​ ​number​ ​of​ ​offspring​ ​in​ ​the​ ​clutch​ ​by​ ​the
probability​ ​that​ ​any​ ​individual​ ​offspring​ ​will​ ​survive,​ ​we​ ​get
parental​ ​fitness
○ This​ ​tells​ ​us​ ​optimal​ ​size​ ​from​ ​the​ ​parent’s​ ​perspective
○ Optimal​ ​compromise​ ​between​ ​size​ ​and​ ​number​ ​of
offspring
■ Individual​ ​offspring​ ​would​ ​do​ ​better​ ​if​ ​they​ ​were
bigger,​ ​but​ ​parents​ ​can​ ​do​ ​better​ ​with​ ​more,
smaller​ ​offspring​ ​(generates​ ​parent-offspring
conflict)
■ So​ ​optimal​ ​offspring​ ​size​ ​depends​ ​on​ ​the​ ​size-number​ ​trade-off​ ​and
how​ ​survival​ ​scales​ ​with​ ​size
○ Lifetime​ ​reproductive​ ​investment
■ Lack​ ​was​ ​only​ ​thinking​ ​about​ ​single​ ​clutches
■ How​ ​often​ ​should​ ​an​ ​organism​ ​reproduce?
● The​ ​once-many​ ​continuum
○ Some​ ​organisms​ ​reproduce​ ​once,​ ​some​ ​a​ ​few​ ​times,
and​ ​some​ ​very​ ​many​ ​times
● Semelparous​ ​organisms
○ ‘Big​ ​bang’​ ​breeders
○ Produce​ ​all​ ​of​ ​their​ ​offspring​ ​in​ ​a​ ​single​ ​reproductive
event​ ​over​ ​one​ ​relatively​ ​short​ ​period
● Iteroparous​ ​organisms
○ ‘Investment’​ ​breeders
○ Produce​ ​their​ ​offspring​ ​over​ ​a​ ​series​ ​of​ ​reproductive
events
● Selection​ ​for​ ​breeding​ ​strategies
○ Semelparity​ ​is​ ​favoured​ ​by​ ​environmental​ ​uncertainty
(bet​ ​hedging)
■ Chance​ ​to​ ​reproduce​ ​again​ ​is​ ​very​ ​low
○ Iteroparity​ ​is​ ​favoured​ ​by​ ​environmental​ ​stability
--------------------------------------------------------------------------------------------------------------------------○

18:​ ​HUMAN​ ​EVOLUTION


Humans​ ​evolved​ ​from​ ​the​ ​great​ ​apes
○ Changes​ ​in​ ​posture
○ Changes​ ​in​ ​length​ ​of​ ​limbs
○ Changes​ ​in​ ​the​ ​rotation​ ​of​ ​the​ ​ankles​ ​and​ ​knees
Joanna​ ​Griffith​ ​(2017)





Different​ ​position​ ​of​ ​attachment​ ​of​ ​the​ ​foramen​ ​magnum​ ​(bipedalism)
Changes​ ​in​ ​skull​ ​shape/size​ ​of​ ​brain​ ​(flatter​ ​face​ ​=​ ​larger​ ​brain)
The​ ​differences​ ​between​ ​old-world​ ​monkeys​ ​and​ ​humans​ ​are​ ​greater​ ​than
those​ ​between​ ​apes​ ​and​ ​humans
■ However,​ ​chimpanzee​ ​skulls​ ​look​ ​more​ ​similar​ ​to​ ​the​ ​skulls​ ​of​ ​other
primates​ ​than​ ​to​ ​human​ ​skulls
● Are​ ​humans​ ​neotenous​ ​chimpanzees?
○ Selective​ ​reduction​ ​in​ ​development​ ​in​ ​particular​ ​cases
● Human​ ​skulls​ ​are​ ​taller,​ ​with​ ​a​ ​shorter​ ​face,​ ​and​ ​are​ ​less​ ​ridged
for​ ​muscle​ ​attachment

Hominins
● The​ ​group​ ​consisting​ ​of​ ​modern​ ​humans,​ ​extinct​ ​humans​ ​species,​ ​and​ ​all​ ​our
immediate​ ​ancestors
● Evolution​ ​of​ ​bipedalism
○ Apes​ ​are​ ​quadrupeds
○ Australopithecus
■ Possible​ ​direct​ ​ancestor​ ​of​ ​humans
■ Found​ ​in​ ​Africa
■ Lucy
● Australopithecus​ ​afarensis
● 3
...
5​ ​million​ ​years​ ​ago
■ By​ ​walking​ ​upright,​ ​the​ ​hands​ ​were​ ​free
● Darwin​ ​suggested​ ​that​ ​it​ ​was​ ​this​ ​freeing​ ​of​ ​the​ ​hands​ ​that
resulted​ ​in​ ​big​ ​brains,​ ​complex​ ​language​ ​and​ ​culture,​ ​tool​ ​use,
etc
...
​ ​a​ ​nursing​ ​Homo​ ​erectus​ ​would​ ​need​ ​2500​ ​calories
per​ ​day
○ One​ ​solution​ ​is​ ​to​ ​intake​ ​more​ ​high-quality​ ​food
■ Usually,​ ​increases​ ​in​ ​body​ ​size​ ​are
accompanied​ ​by​ ​increases​ ​in​ ​the​ ​amount​ ​of
low-quality​ ​food​ ​consumed
■ Evidence​ ​of​ ​simple​ ​tool​ ​use​ ​and​ ​carnivory​ ​from
2
...
​ ​if​ ​selective​ ​pressures​ ​are​ ​small,
response​ ​is​ ​likely​ ​to​ ​be​ ​slow
○ Usually,​ ​we​ ​don’t​ ​see​ ​evolutionary​ ​change​ ​in​ ​real-time
■ HIV​ ​evolves​ ​very​ ​fast
Human​ ​Immunodeficiency​ ​Virus​ ​(HIV)
● Retrovirus​ ​(genetic​ ​material​ ​is​ ​RNA)
○ Use​ ​reverse​ ​transcriptase​ ​to​ ​turn​ ​RNA​ ​into​ ​DNA​ ​when​ ​infecting​ ​a​ ​host
○ Very​ ​high​ ​mutation​ ​rates
■ Reverse​ ​transcriptase​ ​is​ ​not​ ​very​ ​precise
● Can​ ​lead​ ​to​ ​AIDS
● High​ ​recombination​ ​rates
○ Sequential​ ​or​ ​simultaneous​ ​infection​ ​by​ ​multiple​ ​viral​ ​strains
○ Can​ ​lead​ ​to​ ​a​ ​combination​ ​of​ ​different​ ​traits​ ​(eg
...
8%​ ​of​ ​the​ ​population)
○ Greater​ ​rates​ ​in​ ​Africa​ ​and​ ​the​ ​Americas
○ 1
...
​ ​selection​ ​for​ ​drug​ ​resistance
Treatment
Joanna​ ​Griffith​ ​(2017)

Inhibitors​ ​of​ ​reverse​ ​transcriptase
Inhibit​ ​budding
Inhibit​ ​viral​ ​entry
Inhibit​ ​integration​ ​of​ ​viral​ ​DNA​ ​into​ ​host​ ​cell​ ​DNA
No​ ​drug​ ​is​ ​resistance-proof
■ Selective​ ​pressure​ ​=​ ​evolution
● An​ ​evolutionary​ ​battle
○ High​ ​mutation​ ​rate
○ Selection​ ​to​ ​avoid​ ​detection
○ Selection​ ​to​ ​resist​ ​anti-viral​ ​drugs
○ In​ ​humans:
■ Selection​ ​to​ ​avoid​ ​risky​ ​behaviour
■ Selection​ ​for​ ​resistance​ ​to​ ​HIV
● CD4​ ​receptors​ ​are​ ​necessary​ ​for​ ​infection
○ CCRS-32​ ​deletion,​ ​almost​ ​complete​ ​resistance​ ​in​ ​the
homozygous​ ​state
■ Commonly​ ​found​ ​in​ ​Europe​ ​-​ ​may​ ​have​ ​been
intensely​ ​selected​ ​for​ ​in​ ​Europe
■ Recent​ ​origin
■ HIV​ ​has​ ​not​ ​existed​ ​long​ ​enough​ ​for​ ​this
mutation​ ​to​ ​have​ ​evolved​ ​in​ ​response​ ​to​ ​it
● May​ ​have​ ​actually​ ​been​ ​a​ ​response​ ​to
smallpox
○ We​ ​cannot​ ​“beat”​ ​the​ ​virus,​ ​but​ ​we​ ​can​ ​minimise​ ​risky​ ​behaviour​ ​that​ ​allows​ ​it
to​ ​spread
○ HIV​ ​may​ ​be​ ​evolving​ ​into​ ​a​ ​milder​ ​from
■ Human​ ​Leukocyte​ ​Antigens​ ​(HLA-B)​ ​helps​ ​distinguish​ ​proteins​ ​made
by​ ​foreign​ ​invaders
● HIV​ ​adapts​ ​to​ ​effective​ ​HLA​ ​molecules,​ ​at​ ​a​ ​cost​ ​of​ ​reduced
virulence
○ Trade-off​ ​between​ ​transmission​ ​time​ ​and​ ​virulence
Evolution​ ​must​ ​be​ ​understood
● Antibiotic​ ​resistance
● Insecticide​ ​resistance
● GM​ ​crops






--------------------------------------------------------------------------------------------------------------------------20:​ ​BATS​ ​AND​ ​INSECTS​ ​-​ ​WHERE​ ​EVOLUTION​ ​MEETS​ ​ECOLOGY


Chiroptera​ ​(order)
○ Second-largest​ ​mammalian​ ​order​ ​(about​ ​1000​ ​species)
○ Megachiroptera
■ Fruit​ ​bats,​ ​flying​ ​foxes
■ Tend​ ​to​ ​be​ ​large
■ Frugivores​ ​and​ ​nectarivores
Joanna​ ​Griffith​ ​(2017)

Don’t​ ​echolocate,​ ​except​ ​one​ ​genus
● Crude​ ​echolocation,​ ​don’t​ ​use​ ​it​ ​to​ ​find​ ​food
Microchiroptera
■ Many​ ​use​ ​echolocation​ ​to​ ​forage
● Chase​ ​food
Exploit​ ​lots​ ​of​ ​niches​ ​throughout​ ​the​ ​environment
■ Body​ ​and​ ​wing​ ​shape​ ​affects​ ​how​ ​they​ ​can​ ​forage​ ​and​ ​hunt
● Wing​ ​load​ ​=​ ​bat​ ​weight​ ​/​ ​area​ ​of​ ​bat
○ As​ ​wing​ ​load​ ​decreases,​ ​they​ ​have​ ​a​ ​lower​ ​minimum
speed​ ​but​ ​are​ ​more​ ​maneuverable
● Aspect​ ​ratio​ ​=​ ​wing​ ​span/wing​ ​width
○ As​ ​aspect​ ​ratio​ ​increases,​ ​flight​ ​becomes​ ​more​ ​efficient
○ Bats​ ​with​ ​high​ ​aspect​ ​ratio​ ​tend​ ​to​ ​have​ ​higher​ ​wing
loading
● Wing​ ​tip​ ​indices
○ Pointed​ ​or​ ​rounded
■ Rounded​ ​tips​ ​allow​ ​hovering
● Bats​ ​living​ ​in​ ​dense​ ​woodland​ ​need​ ​to​ ​be​ ​more​ ​maneuverable,
bats​ ​living​ ​in​ ​the​ ​open​ ​need​ ​longer,​ ​more​ ​efficient​ ​wings






Sonograms
● Show​ ​how​ ​bats​ ​use​ ​echolocation
● Frequency-modulated​ ​components​ ​(FM)
○ The​ ​frequency​ ​of​ ​the​ ​noise​ ​changes​ ​rapidly
○ Gives​ ​detailed​ ​information​ ​about​ ​the​ ​environment
○ Attenuate​ ​quickly​ ​(don’t​ ​travel​ ​very​ ​far)
○ Allow​ ​accurate​ ​targeting​ ​of​ ​prey
■ Often​ ​used​ ​at​ ​the​ ​last​ ​second
● Constant​ ​frequency​ ​components​ ​(CF)
○ Frequency​ ​stays​ ​the​ ​same​ ​(usually​ ​for​ ​a​ ​short​ ​period)
○ Carry​ ​further
○ Provide​ ​less​ ​detailed​ ​information
○ Allow​ ​detection​ ​of​ ​prey​ ​from​ ​a​ ​greater​ ​distance​ ​and​ ​navigation​ ​in​ ​an​ ​open
area
● The​ ​foraging​ ​ecology​ ​of​ ​a​ ​bat​ ​determines​ ​which​ ​echolocation​ ​calls​ ​will​ ​serve​ ​it​ ​the
best
○ Open-space​ ​aerial​ ​foragers
■ Need​ ​to​ ​detect​ ​prey​ ​at​ ​long​ ​distances
● More​ ​constant​ ​frequency​ ​calls
■ Lower​ ​frequency,​ ​lower​ ​bandwidth,​ ​longer​ ​duration,​ ​with​ ​long​ ​intervals
between​ ​calls
○ Edge​ ​space,​ ​intermediate​ ​clutter
■ Need​ ​to​ ​be​ ​able​ ​to​ ​detect​ ​prey​ ​against​ ​a​ ​background
● FM​ ​sweep​ ​followed​ ​by​ ​CF
○ FM​ ​helps​ ​to​ ​localise​ ​prey​ ​against​ ​the​ ​background,​ ​CF
helps​ ​to​ ​locate​ ​the​ ​target
○ Cluttered​ ​aerial​ ​foragers

Joanna​ ​Griffith​ ​(2017)

Very​ ​difficult​ ​problem​ ​to​ ​solve,​ ​sophisticated​ ​echolocation
● Long​ ​CF​ ​followed​ ​by​ ​broadband​ ​FM​ ​sweep
● Use​ ​Doppler​ ​shift
○ Cluttered​ ​gleaners
■ Pick​ ​prey​ ​off​ ​the​ ​surface​ ​of​ ​leaves
■ Use​ ​prey​ ​noise​ ​to​ ​detect​ ​their​ ​target
■ Use​ ​short-duration​ ​broad-band​ ​FM​ ​for​ ​spatial​ ​orientation
● Tuttle​ ​and​ ​Ryan​ ​(1981)
○ Investigated​ ​how​ ​bats​ ​respond​ ​to​ ​the​ ​sound​ ​of​ ​prey
○ Frog-eating​ ​bats​ ​responded​ ​more​ ​to​ ​the​ ​sounds​ ​of​ ​edible​ ​frogs
○ As​ ​frog​ ​calls​ ​increase​ ​in​ ​complexity,​ ​there​ ​is​ ​increased​ ​investigation​ ​by​ ​bats
■ Trade-offs
● Female​ ​frogs​ ​prefer​ ​more​ ​complex​ ​calls
● Bats​ ​are​ ​able​ ​to​ ​adapt​ ​their​ ​calls​ ​depending​ ​on​ ​the​ ​situation
○ Faster​ ​clicks​ ​when​ ​closer​ ​to​ ​an​ ​insect
■ FM​ ​calls​ ​attenuate​ ​quickly
● Bats​ ​need​ ​to​ ​be​ ​able​ ​to​ ​detect​ ​faint​ ​echos,​ ​so​ ​create​ ​louder
calls​ ​(up​ ​to​ ​110dB)
○ Muscles​ ​contract​ ​to​ ​close​ ​and​ ​protect​ ​the​ ​ears
Eavesdropping
● Prey​ ​may​ ​be​ ​listening​ ​to​ ​bat​ ​calls
● Can​ ​insects​ ​hear?
○ Different​ ​species​ ​have​ ​tympanal​ ​organs​ ​in​ ​different​ ​places
■ Suggests​ ​that​ ​they​ ​evolved​ ​multiple​ ​times,​ ​so​ ​it​ ​was​ ​important​ ​for
these​ ​different​ ​groups​ ​to​ ​evolve​ ​tympanal​ ​organs
■ Evolved​ ​independently​ ​at​ ​least​ ​six​ ​times​ ​in​ ​Lepidoptera
○ Hearing​ ​is​ ​more​ ​sensitive​ ​at​ ​the​ ​frequency​ ​at​ ​which​ ​most​ ​bats​ ​echolocate
○ Diurnal​ ​moths​ ​don’t​ ​hear​ ​bats,​ ​but​ ​nocturnal​ ​moths​ ​do
● Anti-bat​ ​adaptations
○ Fall​ ​to​ ​the​ ​ground
○ Fold​ ​a​ ​wing
○ May​ ​jam​ ​the​ ​radar​ ​by​ ​producing​ ​a​ ​clicking​ ​noise


Joanna​ ​Griffith​ ​(2017)


Title: 1st: Introduction to Evolution and Behavioural Ecology
Description: 1st year Introduction to Evolution and Behavioural Ecology notes, University of Exeter