Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: BIOLOGY OCR F214
Description: OCR Board A2 Level Biology F214 SECTION 1: COMMUNICATION AND HOMEOSTASIS

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


BIOLOGY  
 
F214:  Communication,  Homeostasis  and  Energy      
1) Communication  and  Homeostasis  
a) Communication  
i) Outline   the   need   for   communication   systems   within   multicellular   organisms,   with  
reference   to   the   need   to   respond   to   changes   in   the   internal   and   external   environment  
and  to  co-­‐  ordinate  the  activities  of  different  organs  
(1) Stimulus  –  any  change  in  the  internal  or  external  environment  that  causes  a  response  
(2) Response   –   any   change   in   behaviour   or   physiology   as   a   result   of   a   change   in   the  
environment  
(3) Changes   in   external   environment   place   stress   on   a   living   organism   and   need   to   be  
accommodated  for  eg
...
 build  up  of  CO2  
(5) All   living   things   need   to   maintain   a   certain,   limited   set   of   conditions   inside   their   cells  
–  their  cells  rely  on  enzymes  
(6) Multicellular  organisms  are  more  efficient  than  single  celled  organisms    
(a) Cells  are  differentiated  à  specialised  tissues  à  specialised  organs  
(b) Good  communication  system  –  so  different  parts  of  the  body  work  together  eg
...
 glucose  and  CO2  
(c) Concentration  of  salts  and  other  electrolytes  
(d) Temperature  of  the  internal  environment  
(e) pH  of  the  internal  environment  
(3) Negative  feedback  –  control  mechanism/process  essential  for  homeostasis  reverses  
any  change  in  conditions  so  an  optimum  steady  state  is  maintained  
(a) Conditions  change  from  the  optimum/set  point  
(b) Change  detected  by  receptors  
(c) Change  signalled  to  other  cells  (effectors)  
(d) Corrective  mechanism  response  of  effectors  to  return  conditions  to  set  point  
(e) When  set  point  reached,  corrective  mechanism  is  switched  off  
(f) Continuous  cycle  of  events  with  structures  coordinated  through  cell  signalling  
(i) Sensory   receptors   eg
...
 nervous  or  hormonal  –  transmits  messages  using  
cell  signalling  from  the  receptor  cells  to  the  effector  cells  
(iii) Coordination  centre  eg
...
  liver   or   muscle   cells   –   will   bring   about   a   response   that  
reverses  the  change  detected  by  the  receptor  cells  
(g) NB:  Conditions  will  never  remain  perfectly  constant  –  always  be  some  variation  
(i) Conditions  will  always  remain  within  a  relatively  narrow  range  
(ii) Conditions  acceptable  as  long  as  variation  isn’t  too  great  

(4) Positive   feedback   –   mechanism   that   increases   any   change   detected   by   the   receptors  
(does  not  lead  to  homeostasis)  
(a) Usually  harmful  as  it  destabilises  the  system  
(b) Body  gets  too  cold  
(i) Below  a  certain  core  body  temperature,  enzymes  become  less  active  
(ii) Exergonic  reactions  (release  heat)  are  slower  and  release  less  heat  
(iii) Body  cools  further  
(iv) Enzyme-­‐controlled  reactions  slow  down  even  more  
(v) Body  temperature  spirals  downwards  
(c) Dilation  of  cervix  –  fully  dilated  cervix  allows  the  baby  to  be  born  
(i) Cervix  begins  to  stretch  
(ii) Change  is  signalled  to  the  anterior  pituitary  gland  
(iii) Anterior  pituitary  gland  is  stimulated  to  secrete  the  hormone  –  oxytocin  
(iv) Increases  uterine  contractions  
(v) Cervix  stretched  more  
(vi) So  more  oxytocin  is  released  
(d) Breast  feeding  
 
vi) Describe  the  physiological  and  behavioural  responses  that  maintain  a  constant  core  body  
temperature   in   ectotherms   and   endotherms,   with   reference   to   peripheral   temperature  
receptors,  the  hypothalamus  and  effectors  in  skin  and  muscles  
(1) Changes  in  body  temperature  
(a) Enzymes  –  globular  proteins  with  a  specific  structures  and  functions  
(b) Temperature  can  have  a  dramatic  effect  upon  tertiary  structure  of  such  proteins  
(c) Therefore  activity  of  enzymes  dramatically  effected  
(d) Overall  level  of  activity  that  can  be  achieved  by  the  organism  affected  
(e) Core  temperature  most  important  –  all  vital  organs  found  in  main  part  of  body  
(f) Peripheral  temperature  –  allowed  to  increase  or  decrease  in  temperature  without  
affecting  the  survival  of  the  individual  
(2) Endotherms   –   organisms   that   can   maintain   the   temperature   of   their   body   within  
fairly   strict   limits   (largely   independent   of   external   temperature),   using   internal  
sources  of  heat  eg
...
  night,  early  in  the  
morning  or  during  winter  months  
(iii) Wider  geographical  range  –  able  to  inhabit  colder  parts  of  the  planes  
(b) Disadvantages  
(i) Significant  part  of  energy  intake  used  to  maintain  body  temperature  in  cold  
(ii) More  food  is  required  eg
...
 snake  can  last  several  weeks  between  meals  
(iii) Great  proportion  of  the  energy  obtained  from  food  can  be  used  for  growth  
(c) Disadvantages  
(i) Less  active  in  cooler  temperatures  
(ii) Greater  risk  of  predation  –  may  need  to  warm  up  in  the  morning  before  can  
be   active   eg
...
 through  less  muscular  contraction  
(v) Less  heat  generated  and  more  heat  lost  to  the  environment  
(vi) Temperature  falls  
(b) Fall  in  core  temperature  
(i) Thermoregulatory  centre  (thermoreceptors)  in  hypothalamus  detects  change  
(ii) Hypothalamus  sends  signals  to  reverse  the  change  
(iii) Nervous  system  and  hormonal  system  carry  signal  to  skin,  liver  and  muscles  
(iv) Increased  rate  of  metabolism  eg
...
 respiration  
(vi) Skeletal  muscles  –  no  spontaneous  contractions  
(c) Core  body  temperature  is  too  low  
(i) Less   or   no   sweating   –   less   sweat   evaporates   so   less   heat   energy   is   taken   away  
with  it  (less  loss  of  latent  heat)  
(ii) Hairs  stand  up  –  allows  a  layer  of  air  to  get  trapped  between  the  hair  and  skin,  
which  has  an  insulator  effect  and  reduces  loss  of  heat  from  the  skin  
(iii) Vasoconstriction   –   all   the   surface   blood   capillaries   become   narrower   which  
restricts   the   blood   flow   through   capillaries   at   the   surface,   reducing   the   loss   of  
heat  energy  to  the  environment  by  radiation  from  the  skin  
(iv) No  panting  –  less  water  evaporates  
(v) Rate  of  metabolism  (liver  cells)  increased  –  respiration  generates  more  heat,  
which  is  transferred  to  the  blood    
(vi) Shivering   –   muscles   contracting   and   relaxing   means   muscle   cells   require  
energy  which  comes  from  respiration,  which  also  produces  thermal  energy  as  
a  by-­‐product  
(6) Metabolic  rate  linked  to  energy  release  
(a) Endotherm  
(i) Lower  temperature  
(ii) More  heat  is  lost    
(iii) Higher  metabolic  rate  
(iv) Release  more  heat  energy  
(v) Replace  heat  loss  
(b) Ectotherm  
(i) Lower  temperature  
(ii) Enzyme  action  is  lower  
(iii) Lower  metabolic  rate  
(iv) Stay  still  through  inertia  
(7) Behavioural  mechanisms  to  maintain  body  temperature  (ectotherms  and  endo
...
 
Horned  lizard  –  expands  rib  cage  to  increase  exposed  surface  area  
(v) Locusts   –   increase   their   abdominal   breathing   movements   to   increase  
evaporation  of  water  and  aid  cooling  
(b) Core  body  temperature  is  too  low  
(i) Move  into  sunlight  –  bask  in  the  sun  or  lie  on  a  warm  surface  
(ii) Orientate  body  side-­‐on  to  increase  surface  area  exposed  to  solar  radiation  
(iii) Move  about  to  generate  heat  in  muscles  
(iv) Roll  into  a  ball  to  reduce  surface  area  and  heat  loss  from  skin  
(v) Frilled  lizard  –  uses  its  frill  to  help  absorb  heat  in  the  form  of  solar  radiation  
 
b) Nerves  
i) Outline   the   roles   of   sensory   receptors   in   mammals   in   converting   different   forms   of  
energy  into  nerve  impulses  
(1) Central  Nervous  System  –  spinal  cord  and  the  brain  
(2) Peripheral  Nervous  System  –  nerves  that  connect  the  CNS  with  sensory  organs,  other  
organs,  muscles,  blood  vessels  and  glands  
(3) Sensory  receptors  –  specialised  cells  which  detect  changes  in  our  surrounding  
(a) Energy  transducers  –  convert  energy  from  one  form  to  another  
(b) Each  type  is  adapted  to  detect  changes  in  a  particular  form  of  energy  
(4) Stimulus  –  any  disturbance  in  the  internal/external  environment  which  changes  the  
potential  difference  across  a  membrane  (change  in  energy  levels)  
(5) Nerve   impulse   –   form   of   electrical   energy   that   sensory   receptors   are   stimulated   to  
convert  other  forms  of  energy  into  
(a) When  the  resting  potential  across  the  membrane  of  a  neurone  has  a  stimulus  
(b) Created  by  altering  the  permeability  of  the  nerve  cell  membrane  to  sodium  ions  
(6) Action  potential  –  depolarisation/complete  reversal  of  charge  across  the  membrane  
so  the  potential  difference  across  the  membrane  is  +40mV,  lasting  7ms  
(a) Can  be  transmitted  along  the  axon  or  dendron  plasma  membrane  
(7) Summation   –   interaction   of   several   small   potential   changes   to   combine   and   produce  
one   larger   change   in   potential   difference   across   the   membrane   that   may   pass   the  
threshold  potential  and  create  an  action  potential  
(a) Temporal  –  a  series  of  action  potentials,  not  only  one,  is  required  to  produce  an  
action  potential  in  the  post-­‐synaptic  neurone  (small  EPSPs  act  together)  
(b) Spatial   –   several   presynaptic   neurones   may   each   contribute   to   producing   an  
action  potential  in  the  post-­‐synaptic  neurone  
(8) Six  senses  –  sight,  smell,  taste,  touch,  hearing,  balance    

(a) Light   sensitive   cells   (rods   and   cones)   in   the   retina   –   light   intensity   and   range   of  
wavelengths  (colour)  
(b) Olfactory  cells  lining  the  inner  surface  in  the  nasal  cavity  –  volatile  chemicals  
(c) Taste   buds   in   the   tongue,   hard   palate,   epiglottis   and   the   first   part   of   the  
oesophagus  –  soluble  chemicals  
(d) Pressure  receptors  (pacinian  corpuscles)  in  the  skin  –  pressure  on  skin  
(e) Sound  receptors  in  the  inner  ear  (cochlea)  –  vibrations  in  air  
(f) Muscle  spindles  (proprioceptors)  –  length  of  muscle  fibres  
 
ii) Describe,   with   the   aid   of   diagrams,   the   structure   and   functions   of   sensory   and   motor  
neurons  
(1) Function  of  a  neurone  –  transmit  impulses  in  the  form  of  action  potentials  from  one  
part  of  the  body  to  another  
(a) Long  –  transmit  action  potential  over  a  long  distance  
(b) Cell   body   containing   the   nucleus,   many   mitochondria   and   ribosomes   –  
metabolically  active  and  carries  out  lots  of  protein  synthesis  
(c) Many  voltage-­‐gated  ion  channels  in  plasma  membrane  
(i) Allow  the  passage  of  charged  particles  or  ions  –  Na+,  K+  and  Ca2+  
(ii) Have   a   mechanism   called   a   gate   which   can   open   and   close   the   channel   –  
respond  to  changes  in  potential  difference  across  the  membrane  
(d) Sodium/potassium  ion  pumps  –  use  ATP  to  actively  transport  sodium  ions  out  of  
the  cell  and  potassium  ions  into  the  cell  
(i) Maintains  a  potential  difference  across  their  cell  surface  membrane  
(e) Myelin  sheath  –  fatty  sheath  consisting  of  a  series  of  Schwann  cells  
(i) Insulates  the  neurone  from  electrical  activity  in  nearby  cells  
(f) Nodes  of  Ranvier  –  gaps  between  sections  of  myelin  sheath/Schwann  cells  
(g) Many  dendrites  –  connect  to  other  neurons  
(2) Sensory   neurons   –   carry   out   an   action   potential   from   a   sensory   receptor   to   the  
central  nervous  system  
(a) Cell  body  positioned  just  outside  the  CNS  
(b) Short  axon  –  carries  the  action  potential  into  the  central  nervous  system  
(c) Long  dendron  –  carrying  that  action  potential  away  from  the  sensory  receptor  to  
the  cell  body  
(3) Relay  neurons  –  connect  sensory  and  motor  neurons  
(4) Motor   neurons   –   carry   an   action   potential   from   the   CNS   to   an   effector   eg
...
 EPSP’s  –  excitatory  post-­‐synaptic  potentials  
(ii) Caused   by   some   sodium   ions   entering   the   cell   as   one   or   two   sodium   ion  
voltage-­‐gated  channels  open  
(iii) Will  have  no  effect  on  the  voltage-­‐gated  channels  if  too  small  
(c) Threshold  potential  –  potential  difference  across  the  membrane  of  about  -­‐50mV  
(i) Action   potential   only   occurs   when   the   depolarisation   is   large   enough   to   reach  
the  threshold  potential  
(ii) The  larger  the  stimulus,  the  more  nearby  gated  channels  will  open  
(iii) Large  influx  of  sodium  ions  occurs  –  depolarisation  reaches  +40mV  
(2) Depolarisation  –  temporary  reversal  of  charge  on  the  neuron  surface  membrane,  loss  
of  polarisation  across  the  membrane  when  sodium  ions  are  entering  the  cell  
(a) Arrival  of  a  stimulus  where  stimulus  is  strong  enough,  exceeding  threshold  levels  
of  around  -­‐50mV  
(b) In   the   generator   region,   receptor   cells   of   sodium   voltage-­‐gated   channels   are  
opened  by  energy  changes  in  the  environment  
(c) Eg
...
  from  
sensory  receptors  to  the  CNS  and  from  the  CNS  to  effectors  
(a) Myelinated  –  insulated  by  an  individual  myelin  sheath  

(b) Myelin  produced  by  series  of  Schwann  cells  wrapped  around  the  neuron  
(c) Sheath   consists   of   several   layers   of   membrane   and   thin   cytoplasm   from   the  
Schwann  cell  
(d) Nodes  of  Ranvier  (gaps  in  the  myelin  sheath)  at  1-­‐3mm  intervals  along  the  neuron  
–  2-­‐3  micrometres  long  
(e) Action  potential  moves  along  ion  by  ‘jumping’  
(f) Where  rapid  response  to  a  stimulus  is  necessary  
(3) Speed   of   transmission   of   a   nerve   impulse  is   faster   in   a   myelinated   neurone   than   in   a  
non-­‐myelinated  neurone  as  action  potentials  can  only  occur  at  Nodes  of  Ranvier  
(a) Saltatory   conduction   –   jumping   conduction   whereby   the   action   potential   jumps  
from  one  node  of  Ranvier  to  another  
(b) Myelin  sheath  of  fatty  material  acts  as  an  electrical  insulator  
(c) Myelin  sheath  is  impermeable  to  both  sodium  and  potassium  ions  
(d) Therefore   depolarisation   can   only   occur   at   the   Nodes   of   Ranvier   where   there   is  
no  myelin  –  where  ionic  movements  that  create  action  potentials  can  occur  
(e) Increase   in   concentration   at   one   point   causes   faster   diffusion   away   from   the  
region  of  higher  concentration  
(f) Longer  local  circuits  are  established  –  sodium  ions  diffuse  along  the  neurone  from  
one  node  of  Ranvier  to  the  next  
 
vii) Outline  the  significance  of  the  frequency  of  impulse  transmission  
(1) Once  it  has  been  set  up,  a  neuron  will  conduct  an  action  potential  from  one  end  to  
the  other,  without  any  change  in  size  or  intensity  
(2) Higher  frequency  of  signals  means  a  more  intense  stimulus    
(a) Stimulus  is  at  a  higher  intensity  
(b) The  sensory  receptor  will  produce  more  generator  potentials  
(c) More  frequent  action  potentials  in  the  sensory  neurone  
(d) More  vesicles  released  at  synapses  
(e) (More)  higher  frequency  of  post-­‐synaptic  action  potentials  
(f) Brain  can  process  this  
(3) Factors  affecting  the  transmission  of  action  potentials  
(a) Myelin  sheath  –  speed  of  transmission  of  a  nerve  impulse  is  faster  in  a  myelinated  
neurone  than  in  a  non-­‐myelinated  neurone  
(i) Electric   insulator   preventing   an   action   potential   from   forming   in   part   of   the  
axon  covered  in  myelin  
(ii) Action  potential  jumps  from  Node  of  Ranvier  to  Node  of  Ranvier  by  saltatory  
conduction  
(iii) Transmission  is  sped  up  by  60ms-­‐1  from  30ms-­‐1  to  90ms-­‐1  
(b) Diameter  of  the  axon  –  the  greater  the  diameter  of  the  axon,  the  faster  the  speed  
of  transmission  
(i) Leakage  makes  membrane  potentials  harder  to  maintain  

(ii) Less   leakage   of   ions   from   a   larger   axon   so   membrane   potentials   controlled  
and  maintained  more  effectively  
(c) Temperature  –  the  higher  the  temperature,  the  faster  the  speed  of  transmission  
(i) Higher  the  temperature,  the  faster  the  rate  of  diffusion  
(ii) Faster  the  movement  of  ions  through  the  axon  plasma  membrane  and  along  
axon,  the  faster  the  transmission  of  the  nerve  impulse  
(d) Refractory   period   –   the   longer   the   refractory   period,   the   slower   the   speed   of  
transmission  
(i) Where  the  resting  potential  needs  to  be  restored  once  an  action  potential  has  
been  created  
(ii) No  movement  of  sodium  ions  into  the  neurone  as  the  channels  are  closed  
(iii) During  this  time,  its  not  possible  for  a  further  action  potential  to  be  generated  
 
viii) Interpret   graphs   of   the   voltage   changes   taking   place   during   the   generation   and  
transmission  of  an  action  potential    
 

 
ix) Describe,  with  the  aid  of  diagrams,  the  structure  of  a  cholinergic  synapse  
x) Outline  the  role  of  neurotransmitters  in  the  transmission  of  action  potentials  
(1) Neurotransmitter/transmitter   substance  –   chemical   that   diffuses   across   the   cleft   of  
the  synapse  to  transmit  a  signal  to  the  postsynaptic  neurone  
(2) Cholinergic  –  associated  with  the  neurotransmitter  acetylcholine  
(a) Acetylcholine  found  in  junctions  between  the  muscles  and  those  in  the  brain  
(3) Synapse   –   junction   between   two   or   more   neurones   where   one   neurone   can  
communicate  with,  or  signal  to,  another  neurone  
(a) Excitatory  
(b) Inhibitory   –   noradrenaline   neurotransmitter   substance   is   found   in   synapses   as  
part  of  the  sympathetic  nervous  system  
(4) Synaptic  cleft  –  small  gap  between  two  neurones,  approximately  20nm  wide  
(5) Pre-­‐synaptic  knob  –  swelling  that  the  pre-­‐synaptic  neuron  ends  in  

(a) Many  mitochondria  –  metabolically  active  eg
...
 EPSP  is  created    
(e) If  sufficient  generator  potentials  combine,  the  potential  across  the  post-­‐synaptic  
membrane  reaches  the  threshold  potential  
(f) New  action  potential  is  created  in  post-­‐synaptic  neurone  as  depolarisation  occurs  
(g) Once  an  action  potential  is  achieved,  it  will  pass  down  the  post-­‐synaptic  neurone  
(9) Transmitter  substance  is  then  quickly  broken  down  by  acetylcholinesterase  enzyme  
(a) Acetylcholinesterase  enzyme  found  in  the  synaptic  cleft  
(b) Acetylcholine  is  hydrolysed  to  choline  and  ethanoic  acid  

(i) Reabsorbed  back  into  the  pre-­‐synaptic  knob  by  diffusion    
(ii) Recombined  to  acetylcholine  using  ATP  from  respiration  in  the  mitochondria    
(iii) Recycled  acetylcholine  is  stored  in  the  synaptic  vesicles  for  future  use  
(c) Stops   the   transmission   of   signals   so   the   synapse   doesn’t   continue   to   produce  
action  potentials  in  the  post-­‐synaptic  neurone  
 
xi) Outline  the  roles  of  synapses  in  the  nervous  system  
(1) Connect  two  neurons  together  so  a  signal  can  be  passed  from  one  to  another  
(2) Ensure  signals  are  transmitted  in  one  direction  only  
(a) Only  the  pre-­‐synaptic  knob  has  acetylcholine  
(b) Only  the  post-­‐synaptic  membrane  has  sodium  channels  
(3) Filter  out  low-­‐level  signals  
(a) Action  potential  in  the  pre-­‐synaptic  neurone  is  unlikely  to  pass  across  the  synapse  
(b) Insufficient  releases  of  acetylcholine  will  not  create  action  potential  in  the  post-­‐
synaptic  neurone  
(4) Low-­‐level  signals  can  be  amplified  by  summation  
(a) A  persistent  low-­‐level  stimulus  will  generate  several  successive  action  potentials  
(b) Many  vesicles  in  pre-­‐synaptic  neurone  will  be  released  over  a  short  period  of  time  
(c) Enables  generator  potentials  to  combine  together  to  produce  an  action  potential  
(5) Acclimatisation  –  due  to  a  fatigued  synapse  
(a) After   repeated   summation,   synapse   may   run   out   of   vesicles   containing   the    
transmitter  substance  
(b) Nervous  system  no  longer  responds  to  a  stimulus  
(c) People  become  accustomed  to  smells/noises  
(d) Prevents  over-­‐stimulation  of  effectors  which  could  damage  them  
(6) Signals   from   different   parts   of   the   nervous   system   can   be   registered   together   to  
create  the  same  response  
(a) Several  pre-­‐synaptic  neurons  may  converge  to  one  post-­‐synaptic  neuron  
(b) Several   pre-­‐synaptic   neurones   each   release   a   small   number   of   vesicles   into   one  
synapse  
(c) Eg
...
 Reflex  arc  where  one  post-­‐synaptic  neuron  elicits  the  response  while  another  
informs  the  brain  
(8) Creation  of  specific  pathways  by  the  synapses  within  the  nervous  system    
(a) The  basis  of  conscious  thought  and  memory  
(b) Enables  the  nervous  system  to  convey  a  wide  range  of  messages  
(c) Brain   ‘knows’   where   the   signals   are   coming   from   because   the   neurones   from  
specific  receptors  always  connect  to  specific  regions  of  the  brain  
(d) Eg
...
 Salivary  gland  secretes  saliva  into  a  duct  which  then  flows  into  the  mouth  
(4) Hormones   –   molecules   that   are   released   by   endocrine   glands   directly   into   blood,   act  
as  chemical  messengers  carrying  a  signal  from  the  gland  to  a  target  organ/tissue  
(a) Protein  and  peptide  hormones  eg
...
  oestrogen,   progesterone,   testosterone   –   lipid   soluble   and  
so  can  diffuse  through  the  phospholipid  bilayer,  enter  the  cell  and  have  a  direct  
effect  on  the  DNA  in  the  nucleus  
(5) How  hormones  signal  to  the  cell  
(a) Target   cells   –   cells   receiving   the   specific   hormone   signal   that   possess   a   specific,  
complementary  receptor  to  the  hormone  on  the  cell  surface  membrane  
(b) Target   tissues   –   tissues   receiving   the   specific   hormone   signal   with   cells   that  
possess  specific,  complementary  receptors  on  their  cell  surface  membranes  
(c) Specific,  complementary  hormone  binds  to  this  receptor  
(d) Response  will  be  carried  out  
(e) –  Why  a  hormone  carried  around  in  the  blood  will  only  affect  specific  cells  
(f) If  all  the  cells  in  the  body  possess  such  a  receptor,  then  all  the  cells  can  respond  
to  the  signal  
 
ii) Explain   the   meaning   of   the   terms   first   messenger   and   second   messenger,   with   reference  
to  adrenaline  and  cyclic  AMP  (cAMP)  
(1) Adenyl   cyclase   –   enzyme   found   on   the   inner   surface   of   the   cell   surface   membrane  
that  is  associated  with  the  receptor  for  many  hormones  eg
...
  aldosterone   –   help   to   control   the   concentration   of   sodium  
and  potassium  in  the  blood  
(b) Glucocorticoids   eg
...
 pain  or  shock  (preparation  for  fight  or  flight)  
(a) Relax  smooth  muscle  in  the  bronchioles  
(b) Increase  stroke  volume  of  the  heart  
(c) Increase  heart  rate  
(d) Cause  general  vasoconstriction  to  raise  blood  pressure  
(e) Stimulate  conversion  of  glycogen  to  glucose  
(f) Dilate  the  pupils  
(g) Increase  mental  awareness  
(h) Inhibit  action  of  the  gut  
(i) Cause  body  hair  to  erect  
 
iv)  Describe,  with  the  aid  of  diagrams  and  photographs,  the  histology  of  the  pancreas,  and  
outline  its  role  as  an  endocrine  and  exocrine  gland  

(1) Lies  just  below  the  stomach  
(a) Pancreatic  Acinar  cells  –  cells  that  secrete  enzymes  
(b) Duct  –  tubule  in  centre  of  a  group  of  enzyme-­‐secreting  cells  
(2) Endocrine  functions  
(a) Islets  of  Langerhans  –  small  patches  of  tissue  in  the  pancreas  

(b) Well  supplied  with  blood  capillaries  as  the  islets  are  metabolically  active  and  the  
hormones  are  secreted  directly  into  the  blood  
(c) Alpha  cells  –  manufacture  and  secrete  glucagon  
(d) Glucagon   –   hormone,   released   from   the   pancreas,   that   causes   blood   glucose  
levels  to  rise  
(e) Beta  cells  –  manufacture  and  secrete  insulin  
(f) Insulin  –  hormone,  released  from  the  pancreas,  that  causes  blood  glucose  levels  
to  go  down  
(3) Exocrine  functions  
(a) Pancreatic   Acinar   cells   –   exocrine   cells   found   in   small   groups   surrounding   tiny  
tubules  which  secrete  pancreatic  juice  which  drains  into  the  duct  
(b) Manufacture  and  secrete  digestive  enzymes  into  these  tiny  tubules  
(c) Triggered  by  nervous  and  hormonal  stimulation  
(d) Pancreatic  tubules  join  to  make  pancreatic  duct  
(e) Pancreatic  duct  –  main  tube  that  collects  all  secretions  from  exocrine  cells  in  the  
pancreas  and  carries  the  pancreatic  fluid  to  the  duodenum  
(f) Pancreatic  fluid  contains  
(i) Amylase  –  carbohydrase    
(ii) Tripsinogen  –  inactive  protease  
(iii) Lipase  
(iv) NaHCO3   –   alkaline   to   neutralise   chyme   (contents   of   the   digestive   system)  
which  has  just  left  the  acid  environment  of  the  stomach  
 
v) Explain  how  blood  glucose  concentration  is  regulated,  with  reference  to  insulin,  glucagon  
and  the  liver  
(1) Cells  in  the  islets  of  Langerhans  monitor  the  concentration  of  glucose  in  the  blood  
(2) Normal  blood  glucose  concentration  –  90mg100cm-­‐3  or  4-­‐6mmoldm-­‐3  
(3) High  blood  glucose  concentration  
(a) Detected  by  the  beta  cells  
(b) Beta  cells  respond  by  secreting  insulin  into  the  blood  stream  
(c) Alpha  cells  respond  by  stopping  glucagon  secretion  
(d) Target   cells   –   hepatocytes   in   the   liver,   muscle   cells,   brain   cells   and   other   body  
cells  that  possess  specific  membrane-­‐bound  receptors  for  insulin  
(e) Insulin  binds  as  the  blood  containing  insulin  passes  the  target  cells    
(f) Adenyl  cyclase  is  activated  inside  the  target  cells  
(g) Adenyl  cyclase  converts  ATP  to  cAMP  (cyclic  AMP)  
(h) cAMP  activates  a  series  of  enzyme  controlled  reactions  inside  the  target  cell  
(i) Effect  of  insulin  on  the  cell    
(i) More   glucose   channels   placed   into   the   cell   surface   membrane   so   more  
glucose  enters  the  cell  
(ii) Glycogenesis   –   soluble   glucose   in   the   cell   is   converted   to   insoluble   glycogen  
for  storage  

(iii) More  glucose  is  converted  to  fats  
(iv) More  glucose  is  used  in  respiration  
(j) Blood  glucose  concentration  is  reduced  
(k) Insulin  secretion  stops  
(4) Low  blood  glucose  concentration  
(a) Detected  by  the  alpha  cells  
(b) Alpha  cells  respond  by  releasing  glucagon  into  the  blood  stream  
(c) Beta  cells  respond  by  stopping  insulin  secretion  
(d) Target   cells   –   hepatocytes   in   the   liver   possess   specific   membrane-­‐bound  
receptors  for  glucagon  
(e) Glucagon  binds  as  the  blood  containing  glucagon  passes  the  target  cells    
(f) Adenyl  cyclase  is  activated  inside  the  target  cells  
(g) Adenyl  cyclase  converts  ATP  to  cAMP  (cyclic  AMP)  
(h) cAMP  activates  a  series  of  enzyme  controlled  reactions  inside  the  target  cell  
(i) Effect  of  glucagon  on  the  cell    
(i) Glycogenolysis  –  conversion  of  insoluble  glycogen  to  soluble  glucose  
(ii) Gluconeogenesis   –   production   of   glucose   by   conversion   of   amino   acids   and  
fats  in  hepatocytes  
(iii) Use  of  more  fatty  acids  in  respiration  
(j) Blood  glucose  concentration  is  increased  
(k) Glucagon  secretion  stops  
 
vi) Outline   how   insulin   secretion   is   controlled,   with   reference   to   potassium   channels   and  
calcium  channels  in  beta  cells  
(1) High  blood  glucose  concentration  
(2) Glucose  concentration  higher  in  the  blood  than  in  the  beta  cell  
(3) Glucose  moves  by  diffusion  into  the  beta  cell  down  the  diffusion  gradient  
(4) Glucose  is  metabolised  to  produce  ATP  
(5) Potassium  ion  channels  in  the  cell  surface  membrane  stimulated  to  close  by  the  ATP  
(6) Potassium  ions  in  the  cells  do  not  leave,  but  accumulate  in  the  cell  
(7) Accumulation   of   potassium   ions   alters   the   potential   difference   across   the   cell  
membrane  –  usually  potential  difference  across  the  cell  membrane  is  about  -­‐70mV  
(8) Inside  of  the  cells  becomes  less  negative  compared  to  the  outside  than  usual  
(9) Change  in  potential  difference  opens  the  calcium  ion  channels  
(10) Calcium  ions  enter  the  cell  by  facilitated  diffusion  
(11) Calcium   ions   cause   the   vesicles   of   insulin   to   move   towards   and   fuse   with   the   cell  
surface  membrane  
(12) Vesicles  of  insulin  release  insulin  by  exocytosis  
(13) Insulin  counteracts  the  high  blood  glucose  concentration  
 
vii) Compare  and  contrast  the  causes  of  Type  1  (insulin-­‐dependent)  and  Type  2  (non-­‐  insulin-­‐
dependent)  diabetes  mellitus  

(1) Diabetes  mellitus  –  disease  in  which  the  body  is  no  longer  able  to  control  its  blood  
sugar  concentration  effectively  
(a) Excess  soluble  glucose  cannot  be  stored  as  insoluble  glycogen  
(b) Negative   feedback   mechanism,   which   maintains   blood   glucose   concentrations  
within  certain  limits,  is  not  used  effectively  
(c) Hyperglycaemia  –  state  in  which  the  blood  glucose  concentration  is  too  high  eg
...
 
after  exercise  or  fasting  
(2) Signs  and  symptoms  of  diabetes  
(a) Urinating  often  
(b) Feeling  very  thirsty  
(c) Feeling  very  hungry  or  tired  
(d) Losing  weight  without  trying  
(e) Having  sores  that  heal  slowly  
(f) Dry,  itchy  skin  
(g) Losing  the  feeling  in  your  feet/tingling  
(h) Blurry  eyesight  
(3) Type  I  Diabetes  –  insulin-­‐dependent  diabetes/juvenile  onset  diabetes  
(a) Onset  in  childhood  
(b) Symptoms  develop  quickly  eg
...
 pigs  –  close-­‐match  to  human  insulin  
(2) Now   produced   by   genetically   engineered   bacteria   –   bacteria   with   altered   DNA   ie
...
 glucose,  fatty  acids  and  
amino  acids  
(b) Blood  removes  waste  products  eg
...
 during  vigorous  exercise  
(i) Detected   by   stretch   receptors   in   the   carotid   sinus   –   small   swelling   in   the  
carotid  artery  
(ii) Stretch  receptors  signal  to  the  cardiovascular  centre  
(iii) Heart  rate  tends  to  decline  
(e) Less/stop  exercise  
(i) Less  CO2  is  produced    
(ii) Activity  of  the  accelerator  pathway  is  reduced  
(iii) Heart  rate  declines  
(5) Hormonal  and  nervous  control  of  the  heart  beat  in  humans  
(a) Hormonal  
(i) Release  of  adrenaline  increases  heart  rate  
(b) Nervous  
(i) Increase   in   HCO3-­‐   /   H+   detected   by   chemoreceptors   in   the   carotid   arteries,  
aorta  and  the  brain  
(ii) Increased  frequency  of  impulses  along  accelerator  nerves  
(iii) To  diaphragm  and  intercostal  muscles  –  faster  and  deeper  breathing  
(iv) To  SAN  –  heart  beats  faster  
(c) Effect  –  negative  feedback  mechanism  
(i) Stronger  contractions  by  heart  
(ii) Increased  stroke  volume  of  heart  
(iii) Faster  removal  of  CO2  
(iv) More  removal  of  CO2  
(v) Blood  CO2  falls  and  returns  to  set  point  
(6) Artificial  pacemakers  –  device  that  delivers  an  electrical  impulse  to  the  heart  muscle  
when  the  mechanism  controlling  the  heart  rate  in  an  individual  fails  
(a) Needle   electrode   inserted   into   the   heart   wall   –   not   portable   and   needed   to   be  
connected  to  a  light  fitting  
(b) Deliver   impulses   via   an   electrode   pad   on   the   skin   –   complaints   of   pain   and  
needed  mains  circuit  electricity  to  function  (similar  to  functions  of  electric  chairs)  
(c) 1950s  small  plastic  box  with  wires  inserted  through  the  skin  to  act  as  electrodes  
on  the  heart  muscle  
(d) Now   only   about   4cm   long,   implanted   under   the   skin   and   fat   on   the   chest   –  
capable  of  responding  to  the  activity  of  the  patient  
(e) Delivers   impulses   to   the   ventricle   walls   –   deals   with   conditions   where   the   SAN  
functions  but  the  AVN  is  not  relaying  the  impulse  from  the  atria  to  the  ventricles  
 


Title: BIOLOGY OCR F214
Description: OCR Board A2 Level Biology F214 SECTION 1: COMMUNICATION AND HOMEOSTASIS