Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: BIOLOGY OCR F215
Description: OCR Board A2 Level Biology F215 SECTION 2: BIOTECHNOLOGY AND GENE TECHNOLOGIES

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


BIOLOGY  
 
F215:  Control,  Genomes  and  Environment  
1) Biotechnology  and  Gene  Technologies  
a) Cloning  in  Plants  and  Animals  
i) Outline  the  differences  between  reproductive  and  non-­‐reproductive  cloning  
(1) Clone  –  a  gene,  cell  or  whole  organism  that  carries  identical  genetic  material  because  
they  are  derived  from  the  same  original  DNA    
(2) Eg
...
 animal  with  the  same  genotype  as  the  donor  organism  
(7) Asexual   reproduction   –   mitosis   in   eukaryotes,   binary   fission   in   prokaryotes   (all   the  
resulting  bacteria  are  clones  of  the  original  bacterium)  
(a) Advantages  
(i) Quick  –  organisms  can  take  advantage  of  resources  in  the  environment  
(ii) Can  be  completed  if  sexual  reproduction  fails  eg
...
 therapeutic  cloning  –  using  embryonic,  undifferentiated  
stem  cells  to  create  cloned  cells  (rather  than  a  complete  organism)  
(a) Generate  cells,  tissues  and  organs  to  replace  those  damaged  eg
...
Nerve   cells   could   be   grown   to   repair   those   damaged   in   an   accident   or  
those  destroyed  by  diseases  such  as  multiple  sclerosis  
2
...
Spinal   cord   can   be   repaired   of   those   paralysed   by   an   accident   that   has  
resulted  in  a  broken  back  or  neck  
(e) Disadvantages  of  therapeutic  cloning  
(i) Risk  of  rejection  –  stem  cells  would  be  genetically  different  to  host’s  
(ii) Ethical  objections  –  use  of  human  embryonic  material  
(iii) Scientific   concerns   –   lack   of   understanding   of   how   cloned   cells   will   behave  
over  time  
 
ii) Describe   the   production   of   natural   clones   in   plants   using   the   example   of   vegetative  
propagation  in  elm  trees  
(1) Vegetative   propagation   –   production   of   structures   in   an   organism   that   can   grow   into  
new,   individual   clones   as   they   contain   the   same   genetic   information   as   the   parent,  
asexual  reproduction  in  plants  without  production  of  seeds  or  spores  
(2) English  elm  (Ulmus  procera)  –  adapted  to  reproduce  asexually  following  damage  to  
the  parent  plant  which  allows  it  to  survive  catastrophes  such  as  disease  or  burning  
(a) Root   suckers/basal   sprouts   –   grow   from   meristem   tissue   in   the   trunk   close   to   the  
ground  (least  likely  area  to  be  damaged)  within  2  months  of  main  destruction  
(b) Root  suckers  grow  all  around  the  original  trunk  –  help  the  elm  spread  
(c) Clonal   patch   –   circle   of   new   elms   the   suckers   grow   into   when   the   tree   is   stressed  
or  dies  eg
...
 potatoes  
(5) Bulbs   –   condensed   shoots   containing   nutrients   with   very   short   stems,   fleshy   leaf  
bases  and  buds  at  the  sides  that  develop  into  new  buds  eg
...
 strawberries  
 
iii) Describe  the  production  of  artificial  clones  of  plants  from  tissue  culture  
(1) Grafting  (for  rosebushes  or  fruit  trees)  
(a) Shoot  section  of  a  woody  plant  is  joined  to  an  already  growing  root  and  stem  
(b) Side-­‐grafting  –  rootstock  is  cut  to  match  the  wedge-­‐shaped  stem  to  be  grafted    
(c) Scion   –   part   of   the   plant   taken   which   is   a   portion   of   the   stem   with   many   buds,  
selected  for  the  quality  of  its  fruit  

(d) Rootstock  –  stump  to  which  the  scion  is  attached,  selected  for  qualities  such  as  
disease  resistance  and  hardiness  
(e) Vascular  tissue  is  linked  up  
(f) Bindings   are   wrapped   around   the   graft   area   to   hold   it   in   place   until   growth  
supports  the  grafted  section    
(g) Graft   grows   genetically   identical   to   the   parent   plant,   but   the   rootstock   is  
genetically  different  
(2) Cuttings  
(a) Section  of  parent  plant  removed  
(b) Plant  it  into  a  suitable  growth  medium  
(c) Treat  it  with  plant  hormones  eg
...
 root/shoot  tips  
(c) Explant  –  small  piece  of  meristem  tissue    
(i) Explant   is   taken   from   the   parent   plant   eg
...
 between  leaf  joints  
(d) Explants  are  sterilised  using  sodium  hypochlorite,  bleach  or  an  alcohol  
(e) Explants   are   placed   on   a   suitable,   nutrient   growth   medium   with   optimal  
concentrations  of  amino  acids,  proteins,  glucose,  nitrates  and  phosphate  
(f) Callus  –  mass  of  undifferentiated  but  dividing  cells  from  the  explant  tissue  
(g) Single  callus  cells  removed  from  mass  and  placed  on  another  growing  medium  
(h) Sub-­‐culturing  –  callus  can  be  subdivided  to  grow  on  different  media  
(i) Medium  has  plant  hormones  (auxin  and  cytokinins)  to  encourage  shoot  growth  
(j) Growing   shoots   are   transferred   onto   a   different   growing   medium   containing  
different  hormone  concentrations  that  encourage  root  growth  
(k) Hormone   concentration   ratios   can   be   changed   eg
...
  sodium   hypochlorite,   bleach   or   an  
alcohol,  before  being  transferred  to  the  agar  medium  
(n) Advantages  of  micropropagation    
(i) Larger-­‐scale  cloning  than  cutting  and  grafting  
(ii) Plants  reproduce  better  than  in  cutting  and  grafting  
(iii) Only  a  very  small  amount  of  plant  material  is  needed  
(iv) Easy  to  do  
(v) Fast  process  
(vi) Genetically-­‐identical  –  so  can  be  disease-­‐free  
 
iv) Discuss   the   advantages   and   disadvantages   of   plant   cloning   in   agriculture   (HSW6a,   6b,  
7c)  
(1) Advantages  of  tissue  culture  –  a  ‘refinement’  of  selective  breeding  
(a) Clones  generated  with  the  best  qualities  eg
...
 
pests,  disease  or  environmental  change  (1845-­‐51  potato  famine)  
(b) Attempts   to   minimise   the   risks   are   limited   eg
...
 mammary  cell  from  cow’s  udder  
(ii) Remove  the  nucleus  of  an  ovum  (egg  cell)  

(iii) Place  the  differentiated  cell’s  nucleus  in  the  enucleated  egg  cell  
(iv) Fuse  the  cell  to  stimulate  growth    
(v) Allow   the   egg   to   go   through   the   stages   of   development   using   the   genetic  
information  inserted  into  the  nucleus  
(vi) Implant  reconstructed  cell  ‘culture’  into  a  tied  oviduct  of  a  surrogate  mother  
(vii) Recover  the  early  embryo  and  check  for  successful  development  
(viii) Implant  the  embryo  into  a  surrogate  mother’s  uterus  with  exactly  the  correct  
balance  of  hormones  
(ix) Offspring  is  a  clone  of  the  adult  whose  differentiated  cell  was  donated  
(x) Cow  has  been  genetically  engineered  to  produce  a  human  growth  hormone  in  
milk   and   two   more   have   been   produced   via   cloning   (only   15   are   needed   to  
supply  the  world’s  requirement  for  this  hormone)  
(xi) Fusion  cell  was  not  transplanted  directly  into  the  surrogate  mother  
1
...
Oviduct  was  used  a  culture  medium  
(xii) Only  one  out  of  277  attempts  were  successful  in  Dolly  the  Sheep’s  case  
1
...
Some   failed   to   develop   into   early   embryos   –   perhaps   due   to   difficulty   in  
reprogramming  the  embryo  to  behave  as  a  zygote  
3
...
  skin   cells   into  
pluripotent  cells  and  almost  identical  to  embryonic  stem  cells  
(a) Uses  four  essential  regulator  genes  
(b) Advantages   –   could   replace   the   more   controversial   nuclear   transfer   method   used  
by  scientist  working  on  therapeutic  cloning  (see  disadvantages  above)  
(c) Disadvantages  –  increased  risk  of  developing  cancers  eg
...
 
sheep  that  produce  pharmaceutical  chemicals  in  their  milk  
(b) Large  numbers  of  high-­‐value  animals  can  be  produced  quickly  

(c) Preservation  of  endangered  species    
(d) Used  for  animals  with  low  reproductive  rates  eg
...
 Aspergillus  
(d) Healthcare  and  medical  processes  –  production  of  drugs  by  microorganisms,  gene  
therapy  to  treat  some  genetic  disorders  
(i) Penicillin   antibiotic   –   fungus   Penicillium   grown   in   culture   produces   the  
antibiotic  as  a  by-­‐product  of  its  normal  metabolism  
(ii) Insulin   hormone   –   bacteria   E
...
  niger   can   be   grown   in  
certain  conditions  to  produce  and  secrete  pectinase  enzyme  
(ii) Calcium  citrate  used  in  detergents  –  fungus  A
...
 waste  water  treatment  –  bacteria  and  fungi  
use  organic  waste  in  their  water  as  nutrients  and  make  the  waste  harmless  
(g) Bacterium  Clostridium  acetobutylicum  –  produced  acetone  for  WWI  explosives  
(4) Blue  biotechnology  –  biotechnology  applied  to  marine  and  aquatic  environments  
 
ii) Explain   why   microorganisms   eg
...
  proteins   or   chemicals   that   are   given   out   into   the  
surrounding  medium  and  can  be  harvested  
(4) Can  be  genetically  engineered  to  produce  specific  products  
(5) Can   often   be   grown   using   nutrient   materials   that   would   otherwise   be   useless,   or  
even  toxic,  to  humans    
(6) Grow  well  at  relatively  low  temperature  (more  economic)  –  much  lower  than  those  
required  in  chemical  engineering  of  similar  processes  
(7) Tend  to  generate  products  that  are  in  a  purer  form  than  chemical  engineering  
(8) Cells  themselves  can  be  harvested  and  processed    
 
iii) Describe,   with   the   aid   of   diagrams,   and   explain   the   standard   growth   curve   of   a  
microorganism  in  a  closed  culture  
(1) Key  definitions  
(a) Culture  –  growth  of  microorganisms  
(b) Pure  broth  culture  –  single  of  species  of  microorganism  grown  in  nutrient  broth  
(c) Mixed  culture  –  more  than  one  species  of  microorganism  grown  in  nutrient  broth  
(d) Closed   culture   –   growth   of   microorganisms   in   an   environment   where   all  
conditions  are  fixed  
(i) No  new  materials  added  
(ii) No  waste  products  or  organisms  are  removed  
(e) Petri  dish  of  nutrient  agar  –  nutrient  broth  in  a  solid  surface  of  agar  
(2) Growth   rate   of   microbes   (see   ecosystems   and   sustainability   for   graph)   –   only   in   a  
fresh  and  ‘closed’  culture  
(a) Lag/latent/initial  phase  
(i) Little  or  no  increase  in  cell  number  –  little  or  no  reproduction  
(ii) Acclimatisation  –  cells  are  adjusting  to  the  surrounding  conditions  

(iii) Cell  shows  intense  metabolic  activity  –  exploiting  culture  medium  
1
...
Cell  expansion  
3
...
Cells  induce  enzymes  
5
...
 
Every  20-­‐30  minutes,  dependent  on  the  species  
(v) Length   of   the   phase   is   variable   –   dependent   on   how   quickly   the   organisms  
reproduce  and  take  up  the  available  nutrients  and  space  
(vi) Cannot  be  maintained  indefinitely  (unless  system  isn’t  closed)  
(c) Stationary  phase  
(i) Birth   rate   =   death   rate   –   individual   organisms   die   at   the   same   rate   at   which  
new  individuals  are  being  produced  
(ii) Slight   fluctuations   when   birth   rate   is   greater   than   death   rate   at   some   points  
and  death  rate  is  greater  than  birth  rate  at  others  
(iii) Nutrient  levels  decrease  
(iv) Metabolites  (including  waste  products)  build  up  –  may  have  a  toxic  effect  eg
...
 porous  carbon,  glass  beads,  collagen,  resins  
(e) Covalent  Bonding  –  binding  enzymes  to  a  support    
(i) Formation  of  a  covalent  bond  between  the  enzyme  and  the  support  medium  
(ii) Enzyme   molecules   are   covalently   bonded   to   each   other   and   to   a   support  
(insoluble  material)  

(iii) Can   use   a   cross-­‐linking   agent   to   cross-­‐link   enzymes   molecules   to   each   other  
eg
...
 Carboxymethylcellulose,  clay  particles  
(f) Entrapment  –  hold  enzymes  in  place  without  binding  
(i) Enzymes  trapped  in  a  network,  eg
...
 not  bound  to  another  molecule  
(ii) Enzyme  molecules  are  free  in  solution  
(iii) Enzyme  molecules  are  restricted  in  movement  by  the  lattice  structure  of  the  
support  medium  
(iv) Porosity   of   the   lattice/semi-­‐permeable   membrane   is   controlled   so   that  
enzyme  leakage  is  prevented,  but  substrate  and  product  can  move  freely  
(v) Accessibility   of   active   sites   is   reduced   –   substrate   molecules   need   to   get  
through  the  trapping  barrier  so  reaction  rates  are  reduced  
(vi) Eg
...
 Nylon,  cellulose  nitrate,  erythrocytes  (red  blood  cell  ‘ghosts’)  or  liposomes  
 
v) Explain  why  immobilised  enzymes  are  used  in  large-­‐scale  production  
(1) Features  of  enzyme  molecules  that  make  them  advantageous  to  use  
(a) Specificity  
(i) Higher   rates   of   reaction   –   can   catalyse   reactions   between   specific   chemicals  
(even  in  mixtures)  
(ii) Higher  yields  
(iii) Fewer  by-­‐products  are  formed  
(iv) Less  purification  of  products  is  necessary  

(v) Can  be  reused  as  it  is  not  used  up  in  the  reaction  itself  
(b) Temperature  of  enzyme  reaction  
(i) Lower   temperatures   and   pressures   can   be   used   than   for   industrial   chemical  
processes  –  more  economic  as  you  save  money  on  fuel  costs  
(ii) Thermophilic   bacteria   –   thrive   at   high   temperatures   and   can   be   used   in  
reactions  that  need  a  high  temperature  
(c) More  efficient  –  product  of  only  a  single  chemical  reaction  is  needed  so  it  is  more  
efficient   to   use   isolated   enzymes   rather   than   growing   a   whole   organism/using   an  
inorganic  catalyst  
(2) Advantages  of  immobilised  enzymes  
(a) Purification/Downstreaming  process  costs  reduced  –  to  separate  soluble  enzymes  
from  the  product  at  the  end  of  an  industrial  fermentation  process  is  expensive    
(b) Enzymes  are  immediately  available  for  reuse  –  particularly  useful  in  allowing  for  
continuous  culture/processes  
(c) More  stable  because  the  immobilising  matrix  protects  the  enzyme  molecules  
(3) Disadvantages  of  immobilised  enzymes  (usually  offset  by  considerable  advantage)  
(a) Time  (and  therefore  money)  spent  immobilising  enzyme    
(b) Expensive  equipment  and  materials  required  for  the  immobilisation  procedure  
(c) Any  contamination  is  costly  to  deal  with  –  whole  system  would  need  to  stopped  
(d) Could   decrease   the   effectiveness   of   the   enzyme   (rate   of   reaction)   –  
immobilisation  may  affect  the  shape  and  properties  of  the  enzyme  molecule  
(i) Especially  true  in  covalent  bonding  attachment  which  is  near  the  active  site  
(e) Immobilised  enzymes  less  active  because  they  do  not  mix  freely  with  substrate  –  
transport  of  substrates  to  enzyme  slows  down  the  reaction  
(f) NB:  Impossible  to  predict  effect  immobilisation  will  have  on  a  particular  enzyme  
(4) Producing  new  antibiotics  
(a) Increase  in  the  number  of  antibiotic-­‐resistant  strains  of  pathogenic  bacteria  
(b) Focus  on  changing  the  structure  of  available  antibiotics  –  form  new  antibiotics  
(c) Target  microorganisms  will  no  longer  be  resistant  
(d) Eg
...
 cheese  and  yoghurts  
(c) Disadvantages  
(i) Growth  rate  is  slower  –  nutrient  levels  decline  with  time  
(ii) Less  efficient  –  fermenter  is  not  in  operation  all  of  the  time  
(iii) Tedious  –  sterilization  process  needs  to  be  carried  out  after  each  run  
(iv) Catalyst  for  an  enzyme  is  lost  at  the  end  of  each  run  
(2) Continuous  culture  –  human  hormones  such  as  insulin  are  produced  from  continuous  
culture  of  genetically  modified  Escherichia  coli  bacteria  
(a) Process  
(i) Organisms  are  grown  continuously  in  a  particular  phase  (usually  log  phase)  
(ii) Products  are  removed  from  the  fermentation  tank  at  regular  intervals  
(iii) Nutrients  are  added  to  the  fermentation  tank  to  exactly  balance  the  product  
being  removed  
(b) Advantages  
(i) Growth   rate   is   higher   –   nutrients   levels   are   continuously   maintained   as  
nutrients  are  added  to  the  fermentation  tank  
(ii) More  efficient  –  fermenter  automated  to  run  continuously  day  and  night  
(iii) Smaller  vessels  can  be  used  due  to  higher  productivity  –  cost-­‐effective  
(iv) Quicker  as  no  need  to  sterilise  machinery  
(v) Suitable  for  producing  primary  metabolites  
(c) Disadvantages  
(i) Set  up  is  more  difficult  –  maintenance  of  required  growing  conditions  can  be  
difficult  to  achieve  and  system  can  very  easily  become  imbalanced    
(ii) Considerable   wastage   should   the   system   be   contaminated   –   whole   plant  
would  have  to  be  shut  down  
(iii) Foaming  and  clumping  of  cells  can  occur,  blocking  the  inlets  and  outlets  
 
vii) Describe  the  differences  between  primary  and  secondary  metabolites;  
(1) Metabolism  –  the  sum  total  of  all  of  the  chemical  reactions  that  go  on  in  an  organism  
(a) New  cells  and  cellular  components  
(b) Chemicals  eg
...
 CO2  and  O2  to  soluble  urea,  ammonia  and  nitrates  
(2) Primary  metabolites  –  substances  produced  as  part  of  organism’s  normal  growth  
(a) Eg
...
 Antibiotic  chemicals  
(b) Production  usually  begins  after  the  organism’s  main  growth  phase  
(c) Production  does  not  mirror  the  population  growth  
(d) Only  a  relatively  small  number  of  microorganisms  produce  secondary  metabolites  
in  comparison  to  primary  metabolites  
 
viii) Explain   the   importance   of   manipulating   the   growing   conditions   in   a   fermentation   vessel  
in  order  to  maximise  the  yield  of  product  required  
(1) Bioreactor  –  vessel  in  which  the  activity  of  cells  is  optimised  which  permits  efficient  
conversion  of  relatively  inexpensive  raw  materials  to  products  of  greater  value  
(2) Industrial  applications  –  microorganisms  must  be  grown  in  a  bioreactor/fermenter  
(3) NB:   Fermenter   is   misleading   –   large   number   of   processes   carried   out   are   not  
fermentation  reactions  (originally  applied  only  to  the  use  of  anaerobic  respiration  to  
produce  substances,  in  particular,  the  production  of  ethanol  from  yeast)  
(4) Fermentation  –  now  also  refers  to  the  culturing  of  microorganisms,  both  aerobically  
and  anaerobically,  in  fermentation  tanks  to  produce  a  final,  useful  product  
(5) Advantages  of  using  a  bioreactor  
(a) Enables  conditions  to  be  monitored  and  controlled  eg
...
 for  a  cell  count  
(6) Scaling   up   –   manipulating   laboratory   procedures   so   that   they   can   be   used   on   an  
industrial  scale  to  grow  particular  microorganisms  on  an  enormous  scale  
(a) As  conditions  for  small  and  larger  scale  production  may  not  be  the  same  
(b) Normally  done  through  intermediate  models  
(c) Need  a  larger  ‘starter’  population  of  microorganisms   –  obtained  by  taking  a  pure  
culture  and  growing  it  in  sterile  nutrient  broth  
(d) Cooling  water  jacket  
(i) Too  hot  –  enzymes  will  be  denatured  
(ii) Too  cool  –  growth  will  be  slowed  
(iii) Excess  heat  produced  
(iv) Microorganisms  produce  heat  as  they  grow  
(v) Motor  that  drives  the  mixer  produces  a  lot  of  heat  
(e) Use  sterilisable  probes  to  monitor  conditions  more  carefully  and  periodically  
(i) Measurements  can  be  recorded  electronically  
(ii) Electronic  control  systems  and  automatic  valves  can  be  used  
(f) Inlet  for  the  addition  of  nutrients  

(i) Growth   of   microorganisms   requires   a   nutrient   supply,   including   sources   of  
carbon,  nitrogen  and  any  essential  vitamins  and  minerals  
(ii) The  time  of  nutrient  addition  can  be  manipulated  depending  on  whether  the  
process  is  designed  to  produce  a  primary  or  secondary  metabolite  
(g) Add  a  sparager  and  air  inlet  
(i) Aerobically  respiring  microorganisms  rapidly  consume  dissolved  oxygen  
(ii) Sufficient  oxygen  in  sterile  air  must  be  made  available  (pumped  in)  
(iii)  In  large  volumes,  diffusion  is  too  slow  
(iv) Lack  of  oxygen  –  unwanted  products  of  anaerobic  respiration  that  could  lead  
to  a  reduction  in  growth  rate  eg
...
 Heat  in  flame,  by  UV  light,  steam-­‐sterilised  in  an  autoclave  for  15  minutes  
(b) Carry   work   out   in   a   fume   cupboard   where   air   circulation   carries   away   airborne  
contaminants  
(c) Cultures  of  microorganisms  kept  closed  where  possible  
(d) Cultures  of  microorganisms  kept  away  from  bench  surface  when  open  and  in  use  
(5) Aseptic  techniques  at  large-­‐scale  culture  level  
(a) Fermenter,  input  and  output  pipes  sterilised,  disinfected  and  steam-­‐cleaned  
(b) Sterilising  all  nutrient  media  before  adding  to  the  fermenter  
(c) Probes  to  monitor  conditions  such  as  temperature  and  pH  must  be  sterilised    
(d) Fine  filters  on  inlet  and  outlet  pipes  
(i) Incoming  air  must  be  filtered  to  remove  microorganisms  
(ii) Outgoing  air  must  be  filtered  if  the  organisms  within  it  are  particularly  harmful  
(e) Seal  all  entry,  exit,  observation  and  sampling  ports  when  not  in  use  
(i) Desired  microorganisms  must  be  contained  
(ii) Other  microorganisms  must  be  excluded  
(f) Polished,  stainless  steel  fermenter  surfaces  
(i) Corrosion   resistant   containers   –   prevent   trace   metal   contamination   of   the  
culture  
(ii) Prevent  microbes  sticking  to  surfaces  
(iii) Capable  of  withstanding  repeated  sterilisation    
(g) Pipework   arranged   so   separate   parts   can   be   isolated   and   sterilised   –   avoids   the  
whole  plant  from  being  shut  down  
(h) Transparent  materials  wherever  possible  to  enable  visual  inspection  of  culture    
 
c) Genomes  and  Gene  Technologies  
i) Outline  the  steps  involved  in  sequencing  the  genome  of  an  organism  
(1) Key  definitions  
(a) Genomics  –  study  of  genomes  
(b) Genomes   –   the   whole   set   of   genetic   information   in   the   form   of   DNA   base  
sequences  within  the  cells  of  organisms  of  a  particular  species  
(i) Sequenced  genomes  are  placed  on  public  access  databases  
(c) Coding   DNA   –   code   for   the   production   of   polypeptides   and   proteins,   only   1
...
 coli  (bacterial)  cells  

(f) Clone  libraries  –  cells  are  grown  in  culture  so  clones  of  the  sections  are  produced  
(5) BAC  section  sequencing  
(a) Cells  containing  specific  BACs  are  taken  and  cultured  
(b) DNA  is  extracted  from  the  cells  
(c) Restriction   enzymes   are   used   to   cut   the   DNA   into   smaller   fragments   because  
sequencing  can  only  operate  on  a  length  of  DNA  of  about  750  base  pairs  
(d) Fragments  are  separated  using  electrophoresis  in  order  of  size  
(e) Each  fragment  is  sequenced  
(f) To   ensure   accuracy   of   completed   code,   sequencing   carried   out   many   times,   on  
overlapping  fragments  
(g) Use   of   different   restriction   enzymes   on   a   number   of   samples   gives   different  
fragment  types  
(h) Computer   programmes   compare   overlapping   regions   from   the   cuts   made   by  
different  restriction  enzymes  
(i) Whole  BAC  segment  sequences  reassembled  
(6) Automated   DNA   sequencing   –   fragments   of   varying   length   are   produced,   with   a  
fluorescent  marker  as  the  last  added  base,  then  the  sequence  is  shown  by  the  order  
of  the  colours  as  electrophoresis  separates  the  fragments  by  length  
(a) Sanger/dideoxy   method   –   based   on   the   use   of   dideoxyribonucleotides   (ddNTP)  
and  a  chain  termination  technique  
(b) ddNTP  –  hydroxyl  group  on  3rd  carbon  of  dNTP  is  replaced  by  a  hydrogen  
(c) Compose  four  different  sequencing  reaction  mixtures  
(i) Many  copies  of  the  single-­‐stranded  template  DNA  fragment  to  be  copied  
(ii) Four  normal  free-­‐floating  DNA  nucleotides  (A,  T,  G,  C)  
(iii) Small  amount  of  one  type  (A,  T,  G,  C)  of  dideoxynucleotide  –  each  type  has  a  
different  coloured  fluorescent  markers  
(iv) Primer  for  the  nucleotides  to  join  onto  
(v) DNA  polymerase  
(d) DNA  fragment  to  be  sequenced  is  copied  many  times  –  process  similar  to  PCR  
(i) Primer  anneals  at  the  3’  end  of  the  template  strand  
(ii) DNA  polymerase  is  now  allowed  to  attach  to  the  double-­‐stranded  section  of  
the  template  strand  
(iii) DNA  polymerase  can  add  complementary  nucleotides  to  the  strand  according  
to  base-­‐pairing  rules  
(iv) Double  stranded  length  of  DNA  grows  
(v) DNA  polymerase  comes  across  a  ddNTP  and  is  thrown  off  
(vi) Further  nucleotides  cannot  be  added  
(vii) ddNTP  acts  as  a  terminator  –  the  reaction  stops  on  that  template  strand  
(e) Thousands  of  DNA  fragments  are  produced  in  each  reaction  mixture  
(i) Each  DNA  fragment  is  of  a  different  length  
(ii) Length   dependent   on   when   the   ddNTP   was   added   and   when   the   DNA  
polymerase  was  thrown  off  

(iii) In  some,  the  template  strand  is  completed  
(iv) All  have  a  final  added  nucleotide  tagged  with  a  specific  colour  
(f) DNA  strands  are  run  through  a  DNA  sequencing  machine  
(i) Transfer  fragments  from  each  reaction  mixture  to  tiny  wells  in  a  gel  plate  
(ii) Load  gel  plate  into  a  DNA  sequencing  machine  
(iii) Pass  an  electric  current,  via  electrodes  on  either  side,  through  the  gel  
(iv) As   the   fragments   run   down   the   gel   to   the   positive   electrode,   a   laser   reads   the  
colour  sequence,  detecting  the  colour  each  fragment  fluoresces  
(v) Smaller   fragments   are   read   first   as   they   move   more   quickly   through   the   gel  
and  reach  the  end  of  the  gel  first  
(vi) Data  is  recorded  by  the  machine  as  a  coloured  peak  
(vii) Colour   of   each   peak   identifies   the   ddNTP   (final   base   of   each   strand)   that  
terminated  the  fragment,  ordered  from  shortest  to  longest  
(viii) Sequence  of  colours,  and  so  the  sequence  of  bases,  can  then  be  displayed  
(g) Sequencing  requires  sections  of  DNA  to  be  sequenced  between  6  and  10  times  to  
be  confident  that  the  base  sequencing  information  is  accurate  
 
ii) Outline  how  gene  sequencing  allows  for  genome-­‐wide  comparisons  between  individuals  
and  between  species  (HSW7b)  
(1) Comparative  genome  mapping  
(a) Sequences  of  bases  in  a  gene  of  one  organism  is  already  known  
(b) Comparing  genes  for  the  same/similar  proteins  across  a  wide  range  of  organisms  
(2) Gives  clues  to  the  relative  importance  of  such  genes  to  life   –   finding   the   same   genes  
coding  in  all/many  living  organisms  shows  it  plays  a  great  role  in  living  
(3) Shows   evolutionary   relationships   between   different   species   –   the   more   DNA  
sequences  organisms  share,  the  more  closely  related  they  are  likely  to  be  
(4) Modelling  effects  of  changes  to  DNA  can  be  carried  out  –  predicting  the  effects  of  a  
mutation  on  humans  by  testing  the  effects  on  an  organism  carrying  the  same  gene    
(a) Yeast  is  a  haploid  organism  
(b) Mutation  to  a  gene  is  always  shown  in  the  phenotype  
(c) Studies  have  tested  effects  on  genes  obtained  from  yeast  
(d) Genes  are  also  found  in  the  human  genome  
(5) Identification  of  specific  genes  or  base-­‐pair  sequences  causing  a  disease  –  comparing  
genomes  from  pathogenic  and  similar  but  non-­‐pathogenic  organisms  
 
(a) Specific  genes  targeted  to  develop  more  effective  drug  treatments  and  vaccines  
(6) Analysis   of   DNA   of   individuals   –   reveals   mutant   alleles,   shows   presence   of   alleles  
associated  with  increased  risk  of  a  disease  eg
...
 A  plasmid  with  DNA  from  two  different  organisms  or  sources  
 
iv) Explain  that  genetic  engineering  involves  the  extraction  of  genes  from  one  organism,  or  
the   manufacture   of   genes,   in   order   to   place   them   in   another   organism   (often   of   a  
different  species)  such  that  the  receiving  organism  expresses  the  gene  product  (HSW6a)  
(1) Required  gene  is  obtained  
(a) From  extraction  from  organism  
(i) mRNA  produced  from  the  transcription  of  the  gene  can  be  obtained  from  cells  
in  an  organism  where  that  gene  is  expressed  
(ii) mRNA  used  as  a  template  to  make  a  copy  of  the  gene  
(iii) Eg
...
 flush  ends  
(b) Sticky   ends   –   staggered   cut   through   DNA   by   restriction   enzymes   which   forms   a  
short  run  of  unpaired,  exposed  bases  at  the  end  of  the  cut  section  of  the  DNA  
(i) Overhanging  single  stranded  DNA  
(ii) Majority  of  restriction  enzymes  cut  DNA  to  form  sticky  ends  
(iii) EcoR1  cuts  at  every  GAATTC  between  the  G  and  the  A  
 
vi) Outline  how  DNA  fragments  can  be  separated  by  size  using  electrophoresis  (HSW3)  
(1) Gel  electrophoresis  –  separation  of  DNA  fragments  of  different  lengths  in  a  mixture  
as  the  negatively  charged  fragments  move  towards  the  cathode  at  different  speeds  
(a) Similar  to  chromatography  
(b) Used  for  identification  and  analysis  
(c) Separates  fragments  of  DNA  produced  by  restriction  enzymes  according  to  size  
(d) Accurate  enough  to  separate  fragments  that  are  different  by  one  base  in  length  
(e)  Shorter   fragments   pass   through   the   gel   more   easily   and   so   move   further   in   a  
fixed  period  of  time  
(2) Process  
(a) Treat  DNA  samples  with  restriction  enzymes  to  cut  them  into  fragments  
(b) Make  gel  ‘plate’  or  ‘slab’  –  purified  form  of  agar  containing  agarose  sugar  
(i) Covered  in  buffer  solution  
(ii) Gel  acts  like  a  sieve    
(iii) Electrodes  attached  to  each  end  of  the  gel  so  a  current  can  pass  through  it  
(c) Special  comb  used  to  cut  wells  into  the  negative  electrode  end  of  the  gel  
(d) Mix  DNA  fragments  with  loading  dye  
(e) Load  DNA  samples  into  the  wells  in  the  gel  
(f) Immerse  gel  in  a  tank  of  buffer  solution  
(g) Electrical  current  is  applied  to  the  electrodes  
(h) Pass  electric  current  through  the  solution  for  a  fixed  period  of  time  eg
...
 Cools  so  that  primer  hybridises  to  the  DNA  
(5) Stage  1  –  separation  of  DNA  
(a) Place   all   DNA   fragments   to   be   copied,   free-­‐floating   DNA   nucleotides   and   DNA  
polymerase  into  the  thermocycler  
(b) Heat  to  95°C  –  heat  does  the  job  of  DNA  helicase  enzymes  in  nature  
(c) Heat  breaks  hydrogen  bonding  holding  the  complementary  strands  together  
(d) Strands  of  DNA  separated  and  made  single-­‐stranded    
(6) Stage  2  –  annealing  (joining)  
(a) Add  primers  to  the  thermocycler  
(b) Cool  mixture  to  55°C  
(c) Primers   allowed   to   anneal   to   the   complementary   bases   at   the   end   of   the   DNA  
fragments  via  hydrogen  bonding  
(d) Small  sections  of  double-­‐stranded  DNA  at  either  end  of  the  DNA  sample  formed  
(e) Primers  provide  double-­‐stranded  sections  for  DNA  polymerase  to  bind  and  work  
(7) Stage  3  –  synthesis  of  DNA  
(a) Increase  temperature  to  72°C  
(b) Optimum  temperature  for  DNA  polymerase  
(c) DNA  polymerase  starts  to  add  free,  complementary  DNA  nucleotides  along  each  
of  the  separated  DNA  strands    
(d) Double  stranded  sections  of  DNA  provided  by  the  primers  are  extended  
(e) This  will  continue  until  the  DNA  polymerase  reaches  the  end  of  the  chain  
 

ix) Explain   how   isolated   DNA   fragments   can   be   placed   in   plasmids,   with   reference   to   the  
role  of  ligase  
(1) DNA   ligase   enzyme   –   catalyses   a   condensation   reaction   which   joins   the   sugar-­‐
phosphate  backbones  of  the  DNA  double  helix  together  
(2) Used  in  natural  DNA  replication  to  seal  DNA  nucleotides  together  to  form  new  DNA  
(3) Both   DNA   fragments   need   to   have   originally   been   cut   with   the   same   restriction  
enzyme  to  be  joined  together  by  DNA  ligase    
(a) Ensures  nucleotide  bases  of  sticky  ends  are  complementary  to  one  another  
(b) Bases  of  sticky  ends  can  anneal  –  pair  up  and  hydrogen  bond  together  
(c) DNA  ligase  can  seal  the  sugar-­‐phosphate  backbone  to  form  recombinant  DNA  
 
x) State  other  vectors  into  which  fragments  of  DNA  may  be  incorporated  
(1) Choice  of  cloning  vector  depends  upon  the  nature  of  the  experiment  undertaken  
(2) Naturally  occurring  vectors  include…  
(a) Bacteriophages  –  viruses  which  act  as  parasites,  infecting  and  replicating  inside  a  
bacteria,  requiring  much  preparation  before  being  used  as  cloning  vehicles  
(b) Plasmids  –  small  (relative  to  major  chromosome)  double-­‐stranded  circular  pieces  
of  DNA  found  in  many  bacteria,  separate  from  the  main  bacterial  chromosome  
(i) Capable  of  self-­‐replication  independent  of  the  host  cell  chromosome  –  more  
than  one  can  be  found  in  a  single  bacterial  cell  
(ii) Carry  genes  needed  only  under  special  circumstances  eg
...
01%  of  bacterial  cells  contain  the  desired  gene  –  inefficient  
 
xii) Describe   the   advantage   to   microorganisms   of   the   capacity   to   take   up   plasmid   DNA   from  
the  environment  
(1) Conjugation   –   process   whereby   copies   of   plasmid   DNA   are   passed   between   bacteria,  
thus  they  are  exchanging  genetic  information  
(a) Sometimes  plasmid  DNA  is  exchanged  between  different  species  of  bacteria  
(b) Conjugation  tube  forms  between  a  donor  and  a  recipient  
(c) Enzyme  in  donor  cell  makes  a  nick  in  the  plasmid  
(d) Plasmid   DNA   replication   starts   as   the   transferred   DNA   strand   starts   moving  
through  the  conjugation  tube  
(e) The  transferred  DNA  reseals  back  up  to  form  a  circular  piece  of  DNA  
(f) Cells  move  apart  
(g) Circular  DNA  plasmids  (one  in  each  cell)  reform  
(2) Advantage  of  conjugation  –  contribute  to  genetic  variation  and  survival…  
(a) Speeds   the   spread   of   antibiotic   resistance   between   bacteria   populations   –  
plasmids  often  carry  genes  associated  with  antibiotic  resistance  
(b) MRSA  –  resistant  strain  of  bacteria  commonly  found  on  human  skin  
(i) Transfer  of  bacteria  from  the  skin  to  a  wound  can  lead  to  a  serious  infection  
(ii) New  antibiotics  continually  being  looked  for  to  target  such  organisms  
 
xiii) Outline  how  genetic  markers  in  plasmids  can  be  used  to  identify  the  bacteria  that  have  
taken  up  a  recombinant  plasmid  
(1) Gene  markers  –  fluorescent  proteins  or  enzymes  that  produce  visible  products  
(a) Radioactive   marker   –   radioactive   32P   present   in   the   phosphoryl   groups   forming  
the  strand  can  be  revealed  by  exposure  to  photographic  film  
(b) Fluorescent   marker   –   usually   used   in   automated   DNA   sequencing   where  
nucleotides  will  emit  a  colour  on  exposure  to  UV  light  
(c) Antibiotic  resistance  genes  
(2) Reasons  for  very  low  efficiency  of  transformation  
(a) Only  1%  of  bacteria  will  take  up  the  plasmid  
(b) Some  bacteria  will  contain  an  ‘empty’  plasmid  

(i) Plasmid’s  sticky  ends  have  joined  back  together  
(ii) The  plasmid  has  sealed  up  on  itself  to  reform  the  original  plasmid    
(iii) The  plasmid  has  not  taken  up  and  sealed  in  the  gene  during  gene  insertion  
(c) Only  0
...
 E
...
  pro   vitamin   A   –   precursor   molecule   which   is   converted   to  
active  vitamin  A  in  the  human  gut    
(c) Fat-­‐soluble  –  lipids  needed  in  diet  if  vitamin  A  is  to  be  absorbed  properly  
(d) Deficiency   is   significant   in   poorer   populations   where   rice   is   the   staple   food   –  
vitamin  and  other  food  supplements  to  target  groups  has  made  little  impacts  on  
the  devastating  effects  of  malnutrition  on  these  populations  
(2) Functions  of  vitamin  A  –  central  role  in  maintain  integrity  of  the  immune  system  
(a) Eyesight  –  forms  part  of  the  visual  pigment  rhodopsin  
(b) Cell  growth  and  development  –  involved  in  synthesis  of  many  glycoproteins  
(c) Epithelial  tissue  –  needed  for  maintenance  and  differentiation  of  epithelial  cells,  
helps  reduce  the  risk  of  infection  
(d) Bones  –  essential  for  bone  growth  
(3) Rice  plant  (Oryza  sativa)  –  contain  genes  that  code  for  production  of  beta  carotene  
(a) Green  tissues  –  inedible  part  of  the  plant  that  produces  beta  carotene  
(i) Photosynthetic  pigment  molecule  codes  for  the  production  of  beta  carotene  
(b) Endosperm  –  grain,  edible  part  of  the  seed  that  does  not  produce  beta  carotene  
(i) All  required  genes  to  produce  beta  carotene  are  present  in  the  grain  
(ii) But  some  of  these  genes  are  turned  off  during  development  
(c) Outer  coat  of  dehusked  grains  –  contains  valuable  nutrients  but  no  beta  carotene  
(i) Eg
...
 beta-­‐carotene  
(i) Beta  carotene  accumulates  in  the  endosperm  
(ii) Complex   metabolic   pathway   to   synthesise   beta   carotene   reactivated   in   the  
endosperm  cells  (within  the  grain)  with  minor  intervention  
(iii) Beta  carotene  made  the  rice  grains  yellow-­‐orange  in  colour  
(b) Phytoene  synthetase  gene  isolated  and  extracted  from  daffodil  plants  –  enzyme  
converts  a  variety  of  precursor  molecules,  including  GGP,  into  phytoene  
(c) Crt   1   gene   isolated   and   extracted   from   soil   bacterium   (Erwinia   uredovora)   –  
enzyme  cocatalyses  the  conversion  of  phytoene  to  lycopene  
(i) Lycopene  –  precursor  molecule  for  the  carotenoids  
(ii) Enzymes  are  present  in  rice  endosperm  to  convert  lycopene  to  beta  carotene  
(d) Both  genes  inserted  into  plasmid  found  in  Agrobacterium  tumifaciens  
(e) Agrobacterium  incubated  with  rice  embryos  
(f) Agrobacterium  tumifaciens  naturally  infected  the  rice  plants  and  by  doing  so,  also  
transferred  the  genes  that  encode  the  instructions  for  making  beta  carotene  
(g) Genes   inserted   near   a   specific   promoter   sequence   in   the   rice   genome   that  
switches  on  the  genes  associated  with  endosperm  development  
(h) Genes  were  thus  expressed  as  the  endosperm  grew  
(i) Result  –  genetically  engineered  rice  which  had  beta  carotene  in  the  grain  
(5) Crossbred  GM  rice  with  natural  varieties  
(a) Survival  in  local  climate  conditions  ensured  –  GM  rice  did  not  grow  well  in  harsh  
conditions  of  the  paddy  fields  
(b) Golden  Rice  2  –  Syngenta  produced  a  variety  which  accumulated  20  times  more  
beta  carotene  in  the  endosperm  in  2005  
(c) Field  trials  are  still  currently  taking  place  
(6) Lack  of  success  
(a) Never  been  commercially  produced  
(b) Still  contain  very  little  beta  carotene  –  would  have  to  eat  large  amounts  of  rice  to  
take  in  sufficient  amounts  of  beta  carotene  
(c) Humanitarian  Use  Licences  –  allow  farmers  in  third  world  countries  to  keep  and  
replant  crop  seeds  without  having  to  pay  a  licence  fee  
(i) Given   free   of   charge   by   researchers   and   biotechnology   companies   that   have  
produced  Golden  Rice    
(ii) Critics  accuse  these  companies  of  only  doing  this  to  gain  public  acceptance  of  
GM  crops  
(d) Greenpeace  argue  GM  crops  are  still  unacceptable  
(i) Lead  to  a  reduction  in  biodiversity  
(ii) Human  food  safety  of  engineered  rice  is  unknown  
(iii) GM  rice  would  breed  with  wild  types  and  contaminate  wild  rice  populations  
 

xvi) Outline  how  animals  can  be  genetically  engineered  for  xenotransplantation  (HSW6a,  6b)  
(1) Xenotransplantation  –  transplantation  of  cells,  tissues  or  organs  between  animals  of  
different  species  
(2) Xenograft   –   a   tissue   graft   or   organ   transplant   from   a   donor   of   a   different   species  
from  the  recipient  
(3) Allotransplantation  –  transplantation  between  animals  of  the  same  species  
(4) Purpose  –  allows  for  more  organ  transplants  into  humans,  saving  lives  
(a) Failure  of  a  particular  organ  results  in  the  need  for  an  organ  transplant  
(b) Worldwide   shortage   of   donor   organs   –   60%   of   patients   awaiting   replacement  
organs  die  whilst  on  the  waiting  list  
(c) Non-­‐self   transplanted   organs   can   trigger   an   immune   response   –   rejection   of  
transplanted  tissue  
(5) Pigs  –  donor  animals  of  choice  
(a) Physiology  is  similar  to  humans  
(b) Distant  enough  from  humans  in  evolutionary  terms  that  humans  do  not  share  a  
lot  of  pathogens  with  pigs  
(c) Practical   to   breed   them   in   quantities   required   for   human   transplantation   –  
produce  large  litters  that  mature  very  quickly  
(6) Problems  
(a) Acute  rejection  –  immune  system  produces  antibodies  against  donated  organ  
(i) 2003   –   pigs   genetically   engineered   to   lack   alpha   1-­‐3   transferase,   an   enzyme  
antibodies  are  targeted  against  and  therefore  a  key  trigger  for  graft  rejection    
(ii) 2006   –   insertion   of   human   nucleotidase   (E5’N)   gene   into   pig   cells   in   culture  
reduced  immune  cell  activities  involved  in  xenotransplant  rejection  
(b) Physiological  problems  
(i) Differences  in  size  of  organs  
(ii) Premature  ageing  of  xenograft  –  eg
...
 Cell  surface  antigens  produced  will  make  the  cells  vulnerable  to  attack  by  
the  immune  system  
(d) Targeted,  somatic  cells  treated  with  the  functioning  allele  
(e) Difficulties  in  getting  the  allele  into  the  genome  in  a  functioning  state  
(i) Use  of  ex  vivo  therapy  –  specific,  somatic  cells  removed,  treated  and  replaced  

(ii) Genetically  modified  viruses  used  as  a  vector  –  host  becomes  immune  to  them  
so  cells  will  not  accept  the  vector  on  subsequent  treatments  
(iii) Liposomes  used  as  an  alternative  vector  –  inefficient  
(f) Short-­‐lived  treatment  –  regular  doses  of  the  functional  gene  are  required  for  it  to  
be  expressed    
(g) Specialised   cells   containing   the   functional   allele   will   not   pass   on   the   allele   –  
functional  gene  is  restricted  to  these  targeted,  somatic  cells  
(h) Genetic  manipulations  are  restricted  to  the  actual  patient  
(3) Problems  with  gene  therapy  
(a) Individuals   resulting   from   germline   cell   gene   therapy   would   have   no   say   in  
whether  their  genetic  material  should  have  been  modified  
(b) Unknown  level  of  risk  on  future  generations  
(c) Inadvertent   modification   of   DNA   in   germline   cell   –   can’t   tell   whether   the   allele  
has  been  successfully  introduced  without  unintentional  changes  to  the  embryo  
(i) Could  create  a  new  human  disease  
(ii) Eugenics   could   interfere   with   human   evolution   –   germline   cell   gene   therapy  
taken  advantage  of  to  enhance  favourable  characteristics  
(d) Could  interfere  with  expression  of  another  gene  due  to  where  it  is  inserted  
(i) Severe   combined   immunodeficiency   (SCID)   –   recessive   disease   leading   to  
complete  dysfunction  of  the  immune  system  
(ii) One  of  ten  forms  due  to  presence  of  defective  gene  for  adenosine  deaminase  
(iii) Lack  of  ADA  –  accumulations  of  metabolites  toxic  to  T  lymphocytes  
(iv) Insertion  of  functional  allele  in  X-­‐linked  SCID  patient  near  LM02  gene  has  led  
to  cases  of  leukaemia  
(e) Inactivated   virus   used   as   a   vector   to   carry   the   healthy   genes   into   the   patient’s  
cells  is  not  as  safe  as  researchers  had  once  thought  
(4) Future  research  
(a) Ways  of  getting  genes  into  cells  without  relying  on  a  virus  
(i) Liposomes  
(ii) Microinjection  –  ‘naked’  DNA  directly  injected  into  host  nucleus  using  a  very  
fine  micropipette  
(iii) Artificial  human  chromosomes  
(b) Ensure  that  a  transferred  gene  goes  into  the  cell’s  genome  at  the  same  position  
as  the  already  mutated  gene  
 
xix) Discuss   the   ethical   concerns   raised   by   the   genetic   manipulation   of   animals   (including  
humans),  plants  and  microorganisms  
(1) Transgenic  animals  –  new  genes  inserted  into  animals  by  microinjection  of  egg  cells  
or  early  embryos,  then  reinserted  back  into  the  mother’s  uterus/surrogate  mother  
(a) Long-­‐life  tomatoes  
(i) Tomatoes  that  make  less  PG  ripen  more  slowly  but  retain  flavour  

(ii) Flavr   Savr   –   antisense   technology   silenced   gene   for   enzyme   PG   involved   in  
softening  of  tomatoes  when  ripening  
(iii) Zeneca  tomato  –  disrupted  PG  enzyme  gene  
(b) Insect-­‐resistant  crops  
(i) Genes  for  powerful  protein  toxins  transferred  from  Bacillus  thuringiensis  (BT)  
to  crop  plants  eg
...
 chemical  insecticides  
1
...
Specific  vs
...
Minimum  damage  to  the  environment  vs
...
Avoids  bioaccumulation  of  chemical  insecticide  
(c) Nitrogen-­‐fixing  crops  
(i) Transfer   15   genes   required   for   nitrogen   fixation   from   Rhizobium   (nitrogen  
fixing  bacteria)  into  cereals  and  other  crop  plants  
(ii) Crops  can  then  fix  their  own  atmospheric  nitrogen  
(iii) No  fertilisers  needed  
(d) Tick-­‐resistant  sheep  
(i) Enzyme  chitinase  –  kills  ticks  by  digesting  their  exoskeletons    
(ii) Chitinase  enzyme  gene  transferred  from  plants  to  sheep  
(iii) Sheep  immune  to  tick  parasites  
(iv) No  sheep  dip  needed  –  hazardous  to  those  who  come  into  contact  with  it  
(2) Arguments  for  genetic  engineering  
(a) Production  of  ‘unnatural’  organisms  has  already  been  done  for  centuries  
(i) Selective  breeding  
(ii) Organisms  with  valuable  traits  have  been  bred  over  many  generations  
(iii) Domesticated   varieties   produced   are   far   removed   from   their   ancestral   wild  
relatives  
(b) Media  hype  often  has  no  scientific  background  
(i) Use  of  the  term  ‘Frankenfoods’  suggests  that  transfer  of  DNA  into  the  human  
genome  could  occur  from  eating  food  containing  DNA  
(ii) Absurd  suggestion  that  DNA  as  part  of  the  diet  is  something  unnatural  
(c) Useful  products  can  be  produced    
(i) Human  insulin  and  human  growth  hormone  –  GE  microorganisms  
(ii) Pharmaceutical   chemicals   –   alpha   anti-­‐trypsin   in   milk   of   female   transgenic  
sheep  used  to  treat  hereditary  emphysema  
(d) Combat   vitamin   A   deficiency   in   third   world   countries   –   accumulation   of   beta  
carotene  in  endosperm  of  seeds  of  rice  plants  
(e) Increase   crop   yields   –   resistance   to   herbicides   allows   application   of   weedkillers,  
resistance  to  pesticides  allows  application  of  them  
(f) Gene  therapy  –  treat  genetic  disorders  such  as  AIDS  and  X-­‐linked  SCID  
(3) Ethical  arguments  against  genetic  engineering  

(a) Research  into  genetic  engineering  is  harming  current  living  organisms  
(i) Trials  using  inactivated  viruses  in  germline  cell  gene  therapy  to  carry  healthy  
genes  into  the  patient’s  cells  is  not  as  safe  as  researchers  had  once  thought  
(ii) Inadvertent  modification  of  DNA  in  germline  cell  –  can’t  tell  whether  allele  has  
been  successfully  introduced  without  unintentional  changes  to  the  embryo  
(b) Lack  of  long-­‐term  knowledge  –  unknown  level  of  risk  on  future  generations  
(i) Expression  of  a  gene  influenced  by  presence  of  other  genes  and  environment  
(ii) Risk  means  genetically  manipulating  animals  for  any  reason  is  unethical  
(c) Reduction  in  genetic  variation  
(i) GE  crop  plant  passes  on  genes  to  wild  relatives  
(ii) GE  organism  competes  with  the  natural  species  which  is  then  lost  
(d) Widespread   resistance   to   antibiotics   –   genetic   engineering   often   uses   antibiotic  
resistance  genes  as  markers  which  could  be  passed  to  other  microorganisms  
(i) E
...
coli  (a  bacteria  which  forms  part  of  the  natural  
fauna  in  the  human  gut)  could  enter  humans  
(e) Mutated   genes   transferred   to   pathogenic   microorganisms   –   GE   microorganism  
producing  useful  products  may  escape  from  containment  and  transfer  mutations  
(f) Hybrid   crops   produced   are   less   useful   –   produced   as   GE   crop   plant   and   wild  
relatives  share  genes  
(g) Super-­‐weeds   –   herbicide   resistance   could   be   passed   to   weeds   so   stronger  
chemicals  would  need  to  be  developed  to  remove  the  weed  
(h) Super-­‐pests   –   pesticide   resistance   could   be   passed   to  pests   so   stronger   chemicals  
would  need  to  be  developed  to  remove  the  pest  
(i) More   rapid   evolution   of   attack   mechanisms   in   pathogens   –   to   counteract   more  
plants  becoming  resistant  to  the  pathogen  
(j) Stability  of  ecosystems  could  be   affected  –  pesticide  resistance  could  be  passed  
to  pests,  affecting  many  other  organisms  in  the  associated  food  chains  
(k) GM  plants  may  be  toxic  to  other  organisms  
(l) GM  plants  may  lead  to  allergic  responses  in  humans  
(m) Drugs  produced  by  GE  animals  could  contaminate  milk/meat  supplies  
(n) Large   companies   get   patents   for   GE   organisms   and   exploit   farmers   in   the   3rd  
world  eg
Title: BIOLOGY OCR F215
Description: OCR Board A2 Level Biology F215 SECTION 2: BIOTECHNOLOGY AND GENE TECHNOLOGIES