Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: General Chemistry Exam 2 Notes - Everything you need!
Description: I used to be a chemistry instructor for students struggling in General Chemistry. If you are struggling and need a quick crash course or refresher for your SECOND Gen Chem exam, this is THE PERFECT study guide/crash course packet for you. Here are 31 pages of extremely detailed notes covering everything you would expect to be on the SECOND exam of your General Chemistry course. The notes are all in large font with all equations and examples completed AND typed out for your convenience. All examples are worked out STEP BY STEP, including EXPLANATIONS every step of the way. TOPICS INCLUDE: 1. Quantum Theory, Quantum Mechanics 2. Atomic Orbitals, Electron Configurations 3. Periodic Properties 4. Ionic Bonds, Lattice Energy, Covalent Bonds, Bond Polarity 5. Lewis Structure, Resonance, Bond Energy 6. Molecular Geometry, Dipoles 7. Valence Bond Th, Hybridization 8. Molecular Orbital Theory

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Notes​ ​by​ ​Aaron​ ​Hui
Lecture​ ​3
...
17​ ​-​ ​Quantum​ ​Theory
● Maxwell​ ​(1873)​ ​proposed​ ​that​ ​visible​ ​light​ ​consists​ ​of​ ​electromagnetic​ ​waves
○ All​ ​EM​ ​radiation​ ​c=λv
● Small​ ​λ,​ ​high​ ​v,​ ​and​ ​most​ ​energy
...
0​ ​x​ ​10​4​​ ​Hz​ ​(cycles/s​ ​=​ ​s-1​
​ )
...
00 * 10 8 m/s = λ (6
...
0 * 10 3 m *

10 9 nm
m

= 5
...
63​ ​x​ ​10​-34​​ ​J*s
● Einstein​ ​in​ ​1905
○ Photoelectric​ ​effect:​ ​eject​ ​e-​ ​from​ ​the​ ​surface​ ​of​ ​certain​ ​metals​ ​exposed​ ​to
light​ ​of​ ​a​ ​minimum​ ​frequency​ ​(threshold​ ​frequency)
○ Photon​ ​-​ ​“particle”​ ​of​ ​light


E p = hv

■ E​ ​=​ ​energy​ ​of​ ​1​ ​photon
○ Light​ ​has​ ​both​ ​wave​ ​nature​ ​and​ ​particle​ ​nature
...

Calculate​ ​the​ ​energy​ ​(in​ ​joules)​ ​associated​ ​with​ ​each​ ​photon​ ​if​ ​the​ ​wavelength​ ​of
the​ ​X​ ​rays​ ​is​ ​0
...
​ ​ ​What​ ​is​ ​the​ ​energy​ ​for​ ​a​ ​mol​ ​of​ ​photons?

Ep =

hc
λ

λ = 0
...
63*10

= 1
...
00*10 m/s)
1
...
29*10 −15 J
photon

23

*

1
...
022*10 photons
mol

= 7
...

● Line​ ​Emission​ ​Spectrum​ ​-​ ​light​ ​emission​ ​only​ ​at​ ​specific​ ​wavelengths
(“fingerprint”)
● Bohr’s​ ​Model​ ​of​ ​the​ ​Atom​ ​(1913)
○ Lines​ ​in​ ​spectra​ ​correspond​ ​to​ ​energy​ ​of​ ​e-​​ ​ ​(quantized)
...

● Quantum​ ​Mechanics
○ Describes​ ​how​ ​e-​ ​act​ ​as​ ​both​ ​particles​ ​and​ ​waves
○ Electrons​ ​do​ ​not​ ​travel​ ​in​ ​circular​ ​orbits
○ Orbital​ ​-​ ​a​ ​probability​ ​map​ ​(region​ ​of​ ​space)​ ​of​ ​where​ ​an​ ​e-​ ​is​ ​most​ ​likely​ ​to
be​ ​found
...

● Principal​ ​Energy​ ​Shells

○ Quantum​ ​numbers​ ​-​ ​describe​ ​distribution​ ​of​ ​electrons​ ​in​ ​an​ ​atom
■ Principle​ ​Shell​ ​-​ ​orbitals​ ​of​ ​approximately​ ​the​ ​same​ ​size​ ​and​ ​energy
■ 𝛹​ ​=​ ​function​ ​(​n​,​ ​l​,​ ​m​l​,​ ​m​s​)
● Represented​ ​by​ ​the​ ​principal​ ​quantum​ ​number,​ ​n​ ​(n=1,2,3…)
● Higher​ ​“n”,​ ​higher​ ​energy,​ ​farther​ ​from​ ​nucleus
● #​ ​orbitals​ ​=​ ​n2​
● n​ ​tells​ ​us​ ​the​ ​distance​ ​of​ ​e-​ ​from​ ​the​ ​nucleus
○ Subshells​ ​-​ ​part​ ​of​ ​the​ ​principal​ ​shell,​ ​orbitals​ ​have​ ​the​ ​same​ ​energy​ ​and
similar​ ​shape
■ 𝛹​ ​=​ ​fn(n,​ ​l​,​ ​m​l​,​ ​m​s​)
Angular​ ​momentum​ ​quantum​ ​number​ ​l
■ Same​ ​values​ ​as​ ​n​ ​and​ ​l
■ #​ ​of​ ​subshells​ ​=​ ​n
■ l​ ​=​ ​0,1,2,3,
...
,​ ​0,
...
​ ​ ​So​ ​3​ ​orbitals
○ How​ ​many​ ​electrons​ ​can​ ​be​ ​placed​ ​in​ ​the​ ​3rd​ ​subshell?
■ n​ ​=​ ​3,​ ​l​ ​=​ ​2,​ ​m​l​​ ​=​ ​-2,​ ​-1,​ ​0,​ ​1,​ ​2​ ​so​ ​5​ ​orbitals,​ ​and​ ​each​ ​orbital
contains​ ​2​ ​e-​ ​each,​ ​so​ ​=​ ​10​ ​electrons​ ​in​ ​3rd​ ​subshell
...

■ n​ ​=​ ​3,​ ​l​ ​=​ ​1,​ ​m​l​​ ​=​ ​-1,​ ​0,​ ​1​ ​,​ ​m​s​​ ​=​ ​+½,​ ​-½
○ What​ ​is​ ​the​ ​total​ ​number​ ​of​ ​orbitals​ ​associated​ ​with​ ​the​ ​principle​ ​quantum
number​ ​n​ ​=​ ​4?
■ N​2​​ ​=​ ​42​​ ​ ​=​ ​16​ ​orbitals
● Electron​ ​configuration​ ​-​ ​distribution​ ​of​ ​electrons​ ​among​ ​the​ ​atomic​ ​orbitals
...

● Only​ ​2e-​ ​with​ ​opposite​ ​spins​ ​can​ ​occupy​ ​with​ ​the​ ​same
atomic​ ​orbital
● Each​ ​subshell​ ​has​ ​a​ ​max​ ​#​ ​of​ ​e○ s​ ​=​ ​2
○ p​ ​=​ ​6

○ d​ ​=​ ​10
○ f​ ​=14
○ Aufbau​ ​Principle​​ ​-​ ​electrons​ ​occupy​ ​the​ ​next​ ​available​ ​orbital​ ​with​ ​the
lowest​ ​energy
...

○ Using​ ​the​ ​periodic​ ​table​ ​to​ ​determine​ ​electron​ ​configuration
■ Row​ ​=​ ​energy​ ​shell
■ Length​ ​of​ ​row​ ​depends​ ​on​ ​types​ ​of​ ​subshells
● Paramagnetic​ ​-​ ​unpaired​ ​electrons​ ​so​ ​attracted​ ​to​ ​a​ ​magnet
● Diamagnetic​ ​-​ ​all​ ​electrons​ ​paired​ ​-​ ​slightly​ ​repelled​ ​by​ ​magnet
● Valence​ ​electrons​ ​-​ ​electrons​ ​in​ ​outermost​ ​principal​ ​shell​ ​(largest​ ​n)
○ Si:​ ​1s2​ ​2s2​ ​2p6​ ​3s2​ ​3​ ​p2
■ Highest​ ​shell​ ​3:​ ​2​ ​e-​ ​from​ ​s​ ​and​ ​2​ ​e-​ ​from​ ​p,​ ​so​ ​2+2​ ​=​ ​4​ ​V
...

○ Valence​ ​shell​ ​configuration​ ​-​ ​electron​ ​config​ ​of​ ​valence​ ​electrons
● Tellurium​ ​(Te):​ ​[Kr]​ ​5s2​ ​4d10​ ​5p4
○ Valence​ ​shell​ ​config:​ ​5s2​ ​5p4
○ Total​ ​V
...
E
...

● O:​ ​1s2​ ​2s2​ ​2p4
O​2-​ ​:​ ​1s2​ ​2s2​ ​2p6
Al:​ ​[Ne]​ ​3s2​ ​2p1
Al​3+​​ ​:​ ​[Ne]
Al3+​ ​and​ ​N3-​ ​are​ ​isoelectric​ ​with​ ​Ne
...
30
...

● Periodic​ ​law​ ​-​ ​if​ ​arrange​ ​elements​ ​by​ ​Z,​ ​their​ ​chemical​ ​and​ ​physical​ ​properties
vary​ ​periodically
...

○ Effective​ ​nuclear​ ​charge​ ​(Z​eff​)​ ​-​ ​“positive​ ​charge”​ ​felt​ ​by​ ​an​ ​electron
...

● Atomic​ ​radius​ ​(atomic​ ​size)​ ​-​ ​one-half​ ​the​ ​distance​ ​between​ ​the​ ​2​ ​nuclei​ ​in​ ​2
adjacent​ ​atoms
...

○ Larger​ ​Z​eff​​ ​→​ ​stronger​ ​hold​ ​of​ ​nucleus​ ​on​ ​e-​ ​→​ ​smaller​ ​the​ ​atomic​ ​radius
○ ↓​ ​across​ ​a​ ​period
■ ↑​ ​#​ ​of​ ​protons​ ​but​ ​small​ ​shell​ ​of​ ​e● Put​ ​in​ ​order​ ​of​ ​decreasing​ ​atomic​ ​radius
○ P,​ ​Si,​ ​N
■ Si​ ​>​ ​P​ ​>​ ​N
○ C,​ ​Li,​ ​Be
■ Li​ ​>​ ​Be​ ​>​ ​C
● Ionic​ ​Radius
○ Size​ ​of​ ​an​ ​ion
...

■ Often​ ​loses​ ​its​ ​outer​ ​shell
■ Nuclear​ ​charge​ ​remains​ ​the​ ​same​ ​but​ ​fewer​ ​electrons​ ​(atom
shrinks)
...

■ Nuclear​ ​charge​ ​remains​ ​the​ ​same​ ​but​ ​more​ ​e-​ ​(weaker​ ​so​ ​expands)
○ Summary:​ ​cation​ ​<​ ​atom​ ​<​ ​anion
● Comparing​ ​Ions​ ​to​ ​each​ ​other
○ Ions​ ​in​ ​the​ ​same​ ​group​ ​(family)
■ Increases​ ​down​ ​a​ ​group​ ​(if​ ​same​ ​charge)
● Size​ ​of​ ​shell​ ​increases​ ​as​ ​you​ ​go​ ​down​ ​a​ ​group
...

I 1 + X (g) → X

+

I 2 + X (g) → X

2+

I 3 + X (g) → X

3+

+e−

I 1 − 1 st IE

(g)

+e−

I 2 − 2 nd IE

(g)

+e−

I 3 − 3 nd IE

(g)

● IE​ ​is​ ​switched​ ​for​ ​columns​ ​2​ ​&​ ​3,​ ​also​ ​for​ ​5​ ​&​ ​6​ ​due​ ​to​ ​extra​ ​stability​ ​of​ ​half
filled​ ​p​ ​subshell​ ​and​ ​full​ ​s​ ​subshell
...

○ Look​ ​at​ ​energy​ ​configs

● Ionization​ ​energy​ ​and​ ​metallic​ ​character
○ Metallic​ ​character​ ​based​ ​is​ ​IE
○ More​ ​metallic​ ​character,​ ​more​ ​the​ ​element​ ​exhibits​ ​physical​ ​and​ ​chemical
properties​ ​of​ ​metals
...

○ Low​ ​EA​ ​=​ ​hard​ ​to​ ​gain​ ​e○ High​ ​EA​ ​=​ ​easy​ ​to​ ​gain​ ​e● Electronegativity​ ​(EN)​ ​-​ ​the​ ​ability​ ​to​ ​attract​ ​electrons​ ​in​ ​a​ ​covalent​ ​bond
○ Closer​ ​to​ ​Fluorine,​ ​more​ ​EN
...
Absorbance​ ​(A)​ ​(how​ ​much​ ​light​ ​the​ ​sample​ ​absorbs)​ ​(higher​ ​the​ ​#​ ​the​ ​more​ ​light
it​ ​absorbs)
2
...
T =

P
PO

* 100

Direct​ ​linear​ ​relationship​ ​between​ ​A​ ​and​ ​known​ ​concentration:​ ​use​ ​A​ ​to​ ​find
concentration
A = − logT
If​ ​T​ ​=​ ​
...
​ ​ ​Its​ ​a​ ​logarithmic​ ​curve,​ ​so​ ​use​ ​linear​ ​A
...

What​ ​is​ ​the​ ​absorbance​ ​of​ ​a​ ​solution​ ​that​ ​has​ ​40%​ ​transmittance​ ​at​ ​500nm?
A = − log(
...
40

As​ ​we​ ​change​ ​λ:
● Intensity​ ​of​ ​light​ ​changes
● Sensitivity​ ​of​ ​phototube​ ​changes
● Amount​ ​of​ ​light​ ​absorbed​ ​by​ ​cell​ ​and​ ​H​2​O​ ​also​ ​varies
We​ ​will​ ​“blank”​ ​at​ ​each​ ​λ​:
● Set​ ​absorbance​ ​of​ ​H​2​O​ ​+​ ​cell​ ​=​ ​0
● Blank​ ​for​ ​each​ ​λ
...

Red​ ​dye​ ​and​ ​yellow​ ​dye
Goal:​ ​Find​ ​λ​ ​where​ ​1​ ​dye​ ​absorbs​ ​well​ ​but​ ​no​ ​absorbance​ ​from​ ​other​ ​dye
...
Graph​ ​plotting​ ​both​ ​red​ ​and​ ​yellow​ ​dye​ ​on​ ​same​ ​graph
2
...

3
...
0​ ​mM​ ​and​ ​h2o
...
0​ ​mM
v2​ ​=​ ​10​ ​mL
Need​ ​to​ ​make​ ​10​ ​mL​ ​of​ ​each​ ​solution
Exp
...
4
...

● Lewis​ ​Dot​ ​Symbols
○ Element​ ​symbol​ ​+​ ​valence​ ​electrons​ ​as​ ​dots
■ Keep​ ​dots​ ​as​ ​far​ ​apart​ ​as​ ​possible​ ​(e
...
​ ​singly​ ​at​ ​first)
● The​ ​Ionic​ ​Bond
○ Electrostatic​ ​force​ ​between​ ​ions​ ​in​ ​an​ ​ionic​ ​compound
■ Involves​ ​transfer​ ​of​ ​electrons
● (QUIZ)​ ​Electrostatic​ ​(Lattice)​ ​Energy
○ Lattice​ ​energy​ ​(E)​ ​-​ ​energy​ ​required​ ​to​ ​separate​ ​1​ ​mol​ ​of​ ​solid​ ​ionic
compound​ ​into​ ​gaseous​ ​ions
■ Measure​ ​of​ ​stability​ ​of​ ​an​ ​ionic​ ​solid
○ Coulomb’s​ ​Law


E=k

Q+Q−
r

■ Q​+​​ ​-​ ​charge​ ​on​ ​cation
■ Q​-​​ ​-​ ​charge​ ​on​ ​anion
■ r​ ​-​ ​distance​ ​between​ ​ions
■ Lattice​ ​energy​ ​(E)​ ​increases​ ​as​ ​Q​ ​increases​ ​(absolute​ ​value)​ ​and/or
as​ ​r​ ​decreases
...
​ ​(Based​ ​on​ ​Hess’s​ ​Law)


Example:
Calculate​ ​the​ ​lattice​ ​energy​ ​for​ ​LiF​ ​if​ ​the​ ​heat​ ​of​ ​sublimation​ ​of​ ​Li​ ​is​ ​155
...
1​ ​kJ/mol
...
2​ ​(heat​ ​of​ ​sublimation)

½​ ​F​2​(g)​ ​→​ ​2F(g)

ΔH°​ ​(kJ)​ ​=​ ​½(155)​ ​(bond​ ​energy/enthalpy)

Li(g)​ ​→​ ​Li​+​​ ​(g)​ ​+​ ​e-

ΔH°​ ​(kJ)​ ​=​ ​ ​520​ ​(IE)

e-​ ​+​ ​F(g)​ ​→​ ​F-​​ ​ ​(g)

ΔH°​ ​(kJ)​ ​=​ ​-328​ ​(EA)

Li​+​​ ​(g)​ ​+​ ​F-​​ ​ ​(g)​ ​→​ ​LiF(s)

ΔH°​ ​(kJ)​ ​=​ ​ ​X​ ​(opposite​ ​of​ ​lattice​ ​energy)

Li(s)​ ​+​ ​½​ ​F​2​(g)​ ​→​ ​LiF(s)

ΔH​f​(LiF​ ​(s))​ ​=​ ​-594
...
2​ ​+​ ​½​ ​(155)​ ​+​ ​520​ ​-​ ​320​ ​+​ ​X)​ ​kJ​ ​=​ ​-594
...
5​ ​kJ/mol,​ ​the​ ​second
ionization​ ​energy​ ​of​ ​Ca​ ​is​ ​1145​ ​kJ/mol,​ ​the​ ​second​ ​ionization​ ​energy​ ​of​ ​Ca
is​ ​1145​ ​kJ/mol,​ ​the​ ​electron​ ​affinity​ ​of​ ​Cl​ ​is​ ​-349​ ​kJ,​ ​and​ ​the​ ​heat​ ​of
formation​ ​of​ ​CaCl​2​​ ​is​ ​-795​ ​kJ/mol
...
5

Ca​+​​ ​(g)​ ​→​ ​Ca​2+​​ ​(g)​ ​+​ ​e-

ΔH°​ ​(kJ)​ ​=​ ​1145

2e-​ ​+​ ​2Cl(g)​ ​→​ ​2Cl​-​​ ​(g)

ΔH°​ ​(kJ)​ ​=​ ​2(-349)

Ca​2+​(g)​ ​+​ ​2Cl​-​(g)​ ​→​ ​CaCl​2​(s)

ΔH°​ ​(kJ)​ ​=​ ​-2195

Ca(s)​ ​+​ ​Cl​2​(g)​ ​→​ ​CaCl​2​(s)

ΔH​f​(CaCl​2​​ ​(s))​ ​=​ ​-795

(x+242+589
...
0

Nonpolar​ ​covalent

C​ ​and​ ​N​ ​(𝛿+​ ​ ​𝛿-)

0
...
9

Polar​​ ​covalent​ ​(less)

Li​ ​and​ ​F​ ​(+​ ​-)

3
...
6
...



Writing​ ​Lewis​ ​Structures​ ​-​ ​Covalent​ ​Compounds

1
...


Count​ ​total​ ​number​ ​of​ ​valence​ ​ea
...
Subtract​ ​1​ ​for​ ​each​ ​+​ ​charge

3
...


Complete​ ​an​ ​octet​ ​for​ ​all​ ​atoms​​ ​except​ ​H
a
...


If​ ​central​ ​atom​ ​doesn’t​ ​have​ ​an​ ​octet​ ​form,​ ​double​ ​and​ ​triple​ ​bonds
● Two​ ​possible​ ​skeletal​ ​structures​ ​for​ ​formaldehyde​ ​(CH​2​O)



H-:C=:O-H



H↘
​ ​ ​ ​ ​ ​C=:O:
H↗

● The​ ​correct​ ​Lewis​ ​structure​ ​will​ ​minimize​ ​formal​ ​charge​ ​(FC)
● FC​ ​=​ ​Valence​ ​e-​ ​(VE)​ ​-​ ​#​ ​of​ ​nonbonding​ ​e-​ ​(NBE)​ ​-​ ​½​ ​#​ ​of​ ​electrons
shared​ ​in​ ​covalent​ ​bonds​ ​(BE)
● Second​ ​structure​ ​is​ ​the​ ​better​ ​structure​ ​because​ ​it​ ​has​ ​no​ ​FC
● Carbon​ ​hates​​ ​lone​ ​pairs
...

● Resonance​ ​structures​ ​-​ ​two​ ​or​ ​more​ ​Lewis​ ​structures​ ​that​ ​are​ ​“averaged”​ ​to​ ​more
accurately​ ​represent​ ​the​ ​real​ ​molecule
...
​ ​ ​It​ ​does​ ​NOT​ ​shuttle​ ​back​ ​and​ ​forth​ ​between​ ​forms
...
11
...


Use​ ​bond​ ​energies

b
...
7 − 0 − 52
...
0 kJ/mol ​ ​(EXACT)
● Valence​ ​shell​ ​electron​ ​pair​ ​repulsion​ ​(VESPR)​ ​model:



Model​ ​to​ ​predict​ ​the​ ​geometry​ ​of​ ​molecules



Electrons​ ​repel​ ​one​ ​another​ ​so​ ​place​ ​as​ ​far​ ​apart​ ​as​ ​possible



2​ ​Rules:
■ Double​ ​and​ ​triple​ ​bonds​ ​are​ ​treated​ ​like​ ​single​ ​bonds
■ If​ ​molecule​ ​has​ ​resonance​ ​structure,​ ​apply​ ​theory​ ​to​ ​any​ ​one
● Predicting​ ​Molecular​ ​Geometry

1
...


Determine​ ​#​ ​of​ ​electron​ ​groups​ ​(both​ ​bonded​ ​atoms​ ​and​ ​lone​ ​pairs)​ ​surrounding

the​ ​central​​ ​atom
3
...


For​ ​bond​ ​angles,​ ​remember​ ​that​ ​lone​ ​pairs​ ​are​ ​more​ ​repulsive​ ​than​ ​bonding​ ​pairs
● Electron​ ​geometry​ ​-​ ​arrangement​ ​of​ ​electron​ ​groups
● Molecular​ ​geometry​ ​-​ ​shape​ ​(just​ ​atoms​ ​not​ ​lone​ ​pairs)
● When​ ​drawing​ ​shape,​ ​must​ ​show​ ​lone​ ​pairs​ ​on​ ​central​ ​atom​ ​+​ ​multiple​ ​bonds
Electron
Groups

#​ ​Lone
Pairs

Electron
Geometry

Molecular
Geometry

Drawing
Shaper

Bond
Angles

2

0

Linear

Linear

Cl​ ​-​ ​Be​ ​-​ ​Cl

180

3

0

Trigonal

Trigonal

O

120

planar

Planar

||
C
H↗​ ​ ​ ​ ​ ​ ​ ​ ​↖H

Trigonal
planar

Bent


...
5

4

1

Tetrahedral

Trigonal
Pyramidal


...
5

4

2

Tetrahedral

bent


...
5

<109
...


<90

6

2

Octahedral

Square
planar

​ ​ ​ ​ ​ ​ ​ ​ ​
...


90

● Adding​ ​lone​ ​pairs​ ​affect​ ​the​ ​molecular​ ​geometry​​ ​(shape​ ​arrangement​ ​of​ ​atoms)
but​ ​not​ ​the​ ​electron​ ​geometry​ ​(arrangement​ ​of​ ​electrons)


Lone​ ​pairs​ ​are​ ​more​ ​repulsive​ ​than​ ​atoms
● Number​ ​of​ ​molecular​ ​geometries​ ​equals​ ​Electron​ ​groups​ ​-​ ​1
...
​ ​Cont’d

Part​ ​2​ ​&​ ​3
● Pick​ ​λ


Maximize​ ​absorbance



No​ ​abs​ ​from​ ​other​ ​dye
● 22​ ​data​ ​points

Lecture​ ​4
...
17
● Geometry​ ​of​ ​Molecules​ ​with​ ​Multiple​ ​Central​ ​Atoms
○ Difficult​ ​to​ ​determine​ ​an​ ​overall​ ​geometry​ ​of​ ​molecule
○ Describe​ ​geometry​ ​around​ ​each​ ​central​ ​atom
○ CH​3​CH​4​COOH


■ Tetrahedral​ ​(first​ ​group​ ​around​ ​C),​ ​Tetrahedral​ ​(second​ ​group
around​ ​C),​ ​Trigonal​ ​planar​ ​(third​ ​group​ ​around​ ​C),​ ​Bent​ ​(O-H)
○ CH​3​CH​2​OH


○ CH​3​NHCH​3


● Predicting​ ​Molecular​ ​Geometry

○ What​ ​are​ ​the​ ​molecular​ ​geometries​ ​and​ ​bond​ ​angles​ ​of​ ​Al​I​3​​ ​and​ ​SCl​4



(trigonal​ ​planar)

(seesaw)

● Electronegativity​ ​and​ ​Polarity
○ Electronegativity​ ​-​ ​ability​ ​of​ ​an​ ​element​ ​to​ ​attract​ ​electrons​ ​within​ ​a
covalent​ ​bond
○ Polar​ ​Covalent​ ​Bond​ ​-​ ​covalent​ ​bond​ ​in​ ​which​ ​bonding​ ​electrons​ ​spend
more​ ​time​ ​near​ ​one​ ​atom​ ​than​ ​the​ ​other
...
0

Nonpolar​ ​covalent

(𝛿+)​ ​C​ ​&​ ​N​ ​(𝛿-)

0
...
0

Polar​ ​Covalent​ ​(more)

(+)​ ​Li​ ​&​ ​F​ ​(-)

3
...
Valence​ ​bond​ ​(VB)​ ​theory
2
...

○ Valence​ ​bond​ ​theory​ ​states:​ ​a​ ​stable​ ​molecule​ ​forms​ ​when​ ​the​ ​potential
energy​ ​of​ ​the​ ​system​ ​decreases​ ​to​ ​a​ ​minimum
...
Mix​ ​at​ ​least​ ​2​ ​nonequivalent​ ​atomic​ ​orbits​ ​(e
...
​ ​s​ ​and​ ​p)
2
...
#​ ​hybrid​ ​orbitals​ ​=​ ​#​ ​pure​ ​atomic​ ​orbitals
4
...

■ VESPR​ ​Geometry​ ​(electron​ ​geo):​ ​trigonal​ ​planar
● Formation​ ​of​ ​sp​ ​Hybrid​ ​Orbitals
○ BeF​2
■ 2​ ​electron​ ​groups​ ​around​ ​Be,​ ​so​ ​2​ ​hybrid​ ​orbitals
■ So​ ​Be​ ​forms​ ​sp​ ​orbitals,​ ​or​ ​two​ ​2sp​ ​orbitals​ ​in​ ​this​ ​case
...
Draw​ ​the​ ​Lewis​ ​structure
2
...
​ ​ ​What​ ​is​ ​the​ ​hybridization​ ​of​ ​the​ ​central
(underlined)​ ​atom?​ ​Describe​ ​which​ ​orbitals​ ​overlap​ ​during​ ​the
hybridization​ ​process:
■ P​F​3
● 4​ ​electron​ ​groups​ ​so​ ​four​ ​3sp3​ ​orbits​ ​around​ ​P
● But​ ​only​ ​three​ ​3sp3​ ​orbitals​ ​of​ ​P​ ​overlap​ ​with​ ​the​ ​2p​ ​of​ ​F​ ​(1
orbital​ ​is​ ​a​ ​lone​ ​pair)
■ P​Br​5
● 5​ ​electron​ ​groups​ ​so​ ​five​ ​3sp​3​d
● All​ ​five​ ​3sp​3​d​ ​orbitals​ ​of​ ​P​ ​overlap​ ​with​ ​the​ ​4p​ ​of​ ​Br
■ Be​H​2
● 2​ ​electron​ ​groups​ ​so​ ​two​ ​2sp​ ​hybridization
● All​ ​two​ ​2sp​ ​orbitals​ ​of​ ​Be​ ​overlap​ ​with​ ​1s​ ​orbital​ ​of​ ​H
Lecture​ ​4
...
17
● Hybridization​ ​in​ ​Molecules​ ​with​ ​Double​ ​and​ ​Triple​ ​Bonds
○ sp​2​​ ​hybridization​ ​of​ ​a​ ​Carbon​ ​Atom​ ​(double​ ​bond)
■ Ground​ ​state:​ ​2s​ ​↑↓​​ ​2p​ ​↑​ ​↑​ ​_
■ Promotion​ ​of​ ​electron:​ ​2s​ ​↑​ ​2p​ ​↑​ ​↑​ ​↑

■ sp​2​ ​hybridized​ ​orbitals:​ ​sp​2​​ ​↑​ ​↑​ ​↑​ ​2p​z​​ ​↑
● Sigma​ ​bond​ ​(σ)​ ​-​ ​orbitals​ ​overlap​ ​end-to-end,​ ​electron​ ​density​ ​between​ ​the​ ​2
atoms
● Pi​ ​bond​ ​(𝜋)​ ​-​ ​orbitals​ ​overlap​ ​sideways,​ ​electron​ ​density​ ​above​ ​and​ ​below​ ​plan​ ​of
nuclei
...

● Remember​ ​only​ ​central​ ​atom​ ​hybridizes
...

○ Antibonding​ ​MO​ ​-​ ​higher​ ​energy​ ​and​ ​lower​ ​stability​ ​than​ ​the​ ​atomic
orbitals​ ​it​ ​came​ ​from
...
#​ ​of​ ​MOs​ ​=​ ​#​ ​of​ ​atomic​ ​orbitals​ ​combined
2
...

3
...
Each​ ​MO​ ​holds​ ​2​ ​electrons​ ​with​ ​opposite​ ​spins
5
...

6
...
Abhi​ ​im​ ​dying​ ​pls​ ​halp​ ​|​ ​dude​ ​do​ ​you​ ​wanna​ ​find​ ​some​ ​time​ ​this​ ​week
to​ ​study​ ​together?
● Bond​ ​order​ ​=​ ​½​ ​(#​ ​of​ ​e-​ ​in​ ​bonding​ ​MOs​ ​-​ ​#​ ​of​ ​e-​ ​in​ ​antibonding​ ​MOs)
Bond​ ​order

Type​ ​of​ ​Bond

1

Single

2

Double

3

Triple

● All​ ​e-​ ​paired​ ​=​ ​diamag
...
​ ​Orb
...
​ ​ ​Higher​ ​bond​ ​dissociation
energy​ ​(more​ ​energy​ ​to​ ​break)
○ Shortest​ ​bond​ ​length:​ ​H​2
○ Least​ ​stable:​ ​He​2​ ​(in​ ​fact​ ​it​ ​does​ ​not​ ​exist)
○ Highest​ ​bond​ ​dissoc
...
​ ​Orb
...
​ ​energy
● σ​2p​ ​and​ ​𝜋​2p​​ ​switch​ ​places​ ​between​ ​N​ ​and​ ​O

● Quiz
○ Ch
...
​ ​4-​ ​know​ ​how​ ​to​ ​do​ ​beer’s​ ​law​ ​calculations,​ ​best​ ​wavelength​ ​to​ ​do
calculation,​ ​figure​ ​out​ ​concentrations​ ​from​ ​beer’s​ ​law​ ​plot
...
375​ ​(for​ ​example),​ ​solve​ ​for​ ​K
...
​ ​ ​%Trans=​ ​-log​ ​A
○ SA​ ​4​ ​-​ ​formal​ ​charge,​ ​lewis​ ​dot​ ​structure
○ SA​ ​5​ ​-​ ​Models​ ​360:​ ​bond​ ​lengths​ ​in​ ​Angstroms​ ​(10​-10​​ ​m),​ ​calculate​ ​bond
order
...



Title: General Chemistry Exam 2 Notes - Everything you need!
Description: I used to be a chemistry instructor for students struggling in General Chemistry. If you are struggling and need a quick crash course or refresher for your SECOND Gen Chem exam, this is THE PERFECT study guide/crash course packet for you. Here are 31 pages of extremely detailed notes covering everything you would expect to be on the SECOND exam of your General Chemistry course. The notes are all in large font with all equations and examples completed AND typed out for your convenience. All examples are worked out STEP BY STEP, including EXPLANATIONS every step of the way. TOPICS INCLUDE: 1. Quantum Theory, Quantum Mechanics 2. Atomic Orbitals, Electron Configurations 3. Periodic Properties 4. Ionic Bonds, Lattice Energy, Covalent Bonds, Bond Polarity 5. Lewis Structure, Resonance, Bond Energy 6. Molecular Geometry, Dipoles 7. Valence Bond Th, Hybridization 8. Molecular Orbital Theory