Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Laplace Transform
Description: Definition of Laplace and Inverse Laplace Transform. Examples of the Laplace transform of common functions. Properties of Laplace transform

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Laplace Transform
Definition of Laplace transform of ๐‘“(๐‘ก):
โˆž

๐น(๐‘ ) = ๐ฟ[๐‘“(๐‘ก)] โ‰” โˆซ ๐‘“(๐‘ก)๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก
0

Definition of the inverse Laplace transform of ๐น(๐‘ ):
๐‘“(๐‘ก) = ๐ฟโˆ’1 [๐น(๐‘ )] =

1 ๐œŽ+๐‘—โˆž
โˆซ
๐น(๐‘ )๐‘’ ๐‘ ๐‘ก ๐‘‘๐‘ 
2๐œ‹๐‘— ๐œŽโˆ’๐‘—โˆž

Note: ๐‘  = ๐œŽ + ๐‘—๐œ”, ๐œŽ โ‰ฅ 0
---------------------------------------------------------------------------------------------------------------------Examples:
1 ๐‘กโ‰ฅ0
1
...
) Exponential Function: ๐‘“(๐‘ก) = {๐‘’
0
๐‘ก<0
โˆž

โˆž

๐น(๐‘ ) = โˆซ ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = โˆซ ๐‘’ โˆ’(๐‘Ž+๐‘ )๐‘ก ๐‘‘๐‘ก = โˆ’
0

0

๐‘’ โˆ’(๐‘Ž+๐‘ )๐‘ก โˆž
1
1
|๐‘ก=0 = 0 โˆ’ (โˆ’
)=
๐‘ +๐‘Ž
๐‘ +๐‘Ž
๐‘ +๐‘Ž

3
...
) Ramp Function: ๐‘“(๐‘ก) = {
0 ๐‘ก<0
โˆž

๐น(๐‘ ) = โˆซ ๐‘ก๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = โˆ’
0

โˆž
๐‘ก๐‘’ โˆ’๐‘ ๐‘ก โˆž
๐‘’ โˆ’๐‘ ๐‘ก
1
1
|๐‘ก=0 โˆ’ โˆซ โˆ’
๐‘‘๐‘ก = (0 โˆ’ 0) โˆ’ 2 ๐‘’ โˆ’๐‘ ๐‘ก |โˆž
๐‘ก=0 = 2
๐‘ 
๐‘ 
๐‘ 
๐‘ 
0

Note: Use Integration by parts
โˆž
๐‘ก=0
5
...
) Linearity
๐ฟ[๐‘“1 (๐‘ก) + ๐‘“2 (๐‘ก)] = ๐ฟ[๐‘“1 (๐‘ก)] + ๐ฟ[๐‘“2 (๐‘ก)] = ๐น1 (๐‘ ) + ๐น2 (๐‘ )
๐ฟ[๐‘Ž๐‘“1 (๐‘ก)] = ๐‘Ž๐ฟ[๐‘“1 (๐‘ก)] = ๐‘Ž๐น1 (๐‘ )
2
...
) Exponential Scaling
Let ๐‘”(๐‘ก) = ๐‘’ ๐‘Ž๐‘ก ๐‘“(๐‘ก) for some scalar ๐‘Ž
๐บ(๐‘ ) = ๐น(๐‘  โˆ’ ๐‘Ž)
4
...
) Derivative
Let ๐‘”(๐‘ก) =

๐‘‘
๐‘“(๐‘ก)
๐‘‘๐‘ก

Let ๐‘”(๐‘ก) =

๐‘‘2
๐‘“(๐‘ก)
๐‘‘๐‘ก 2

๐ฟ[๐‘”(๐‘ก)] = ๐‘ ๐น(๐‘ ) โˆ’ ๐‘“(0)
๐ฟ[๐‘”(๐‘ก)] = ๐‘  2 ๐น(๐‘ ) โˆ’ ๐‘ ๐‘“(0) โˆ’ ๐‘“โ€ฒ(0)

๐‘‘3

Let ๐‘”(๐‘ก) = ๐‘‘๐‘ก 3 ๐‘“(๐‘ก)

๐ฟ[๐‘”(๐‘ก)] = ๐‘  3 ๐น(๐‘ ) โˆ’ ๐‘  2 ๐‘“(0) โˆ’ ๐‘ ๐‘“ โ€ฒ (0) โˆ’ ๐‘“โ€ฒโ€ฒ(0)

6
...
) Multiplication by t
Let ๐‘”(๐‘ก) = ๐‘ก๐‘“(๐‘ก)
๐ฟ[๐‘”(๐‘ก)] = โˆ’

๐‘‘
๐น(๐‘ )
๐‘‘๐‘ 

8
Title: Laplace Transform
Description: Definition of Laplace and Inverse Laplace Transform. Examples of the Laplace transform of common functions. Properties of Laplace transform