Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Numerical analysis
Description: They are easy to follow

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


KIRINYAGA UNIVERSITY

DEPARTMENT OF PURE AND APPLIED SCIENCES

COURSE CODE : SPM2321

COURSE TITLE: NUMERICL ANALYSIS I

LECTURER: ANTHONY KINYANJUI

MODULE 05: FORWARD AND BACKWARD FINITE DIFFERENCE
TABLES

OBJECTIVE: AT THE END OF LECTURE, A STUDENT WILL BE ABLE
TO CONSTRUCT FORWARD AND BACKWARD FINITE DIFFERENCE
TABLES
1

Construction of finite difference tables
Consider a tabulated function (π‘₯𝑖 , 𝑓𝑖)) from the table
π‘₯𝑖

𝑓𝑖

π‘₯0

𝑓0

π‘₯1

𝑓1

βˆ†π‘“π‘–

βˆ†2𝑓𝑖

βˆ†3𝑓𝑖

βˆ†4𝑓𝑖

βˆ†5𝑓𝑖

βˆ†π‘“0
βˆ†2𝑓0

π‘₯2

βˆ†π‘“1

𝑓2

βˆ†2𝑓1
π‘₯3

βˆ†4𝑓0

βˆ†π‘“2

𝑓3

βˆ†2𝑓2
π‘₯4

βˆ†5𝑓0

βˆ†3𝑓1
βˆ†4𝑓1

βˆ†π‘“3

𝑓4

βˆ†2𝑓3
π‘₯5

βˆ†3𝑓0

βˆ†3𝑓2

βˆ†π‘“4

𝑓5

The above table is called a diagram difference table
...
The difference βˆ†π‘“0βˆ†2𝑓0 βˆ†2𝑓0 are called the leading
difference
...

π‘₯

𝑓(π‘₯)

βˆ†π‘“(π‘₯)

π‘₯+β„Ž

𝑓(π‘₯ + β„Ž)

βˆ†π‘“(π‘₯)

βˆ†2𝑓(π‘₯)

βˆ†3𝑓(π‘₯)

βˆ†2𝑓(π‘₯)
π‘₯ + 2β„Ž

𝑓(π‘₯ + 2β„Ž)

βˆ†π‘“(π‘₯ + β„Ž)
2

βˆ†3𝑓(π‘₯)

π‘₯ + 3β„Ž

𝑓(π‘₯ + 3β„Ž)

βˆ†π‘“(π‘₯ + 2β„Ž)

βˆ†2𝑓(π‘₯ + β„Ž)

Solved problem
Construct a forward difference table from the following table
π‘₯

0

10

20

30

𝑓(π‘₯)

0

0
...
347

0
...
174
10

βˆ’0
...
174

βˆ’0
...
173
20

βˆ’0
...
347
0
...
518

Construct a difference table for 𝑓 (π‘₯ ) = π‘₯ 3 + 2π‘₯ + 1 π‘“π‘œπ‘Ÿ π‘₯ = 1,2,3,4,5
π‘₯

𝑓(π‘₯)

βˆ†π‘“(π‘₯)
3

βˆ†2𝑓(π‘₯)

βˆ†3𝑓(π‘₯)

1

4
9

2

12

13

6

21
3

18

34

6

39
4

24

73
63

5

136

Backward difference
Let 𝑦 = 𝑓(π‘₯) be a function given the values 𝑦0 , 𝑦1 ,
...
π‘₯𝑛 of the independent variable x
...
Thus we have
𝑦1 βˆ’ 𝑦0 = βˆ‡π‘¦1
𝑦2 βˆ’ 𝑦1 = βˆ‡π‘¦2
𝑦𝑛 βˆ’ π‘¦π‘›βˆ’1 = βˆ‡π‘¦π‘›
Where βˆ‡ is called the backward difference operator
...
Hence use the results to find:
(i)

βˆ‡2𝑓2 π‘Žπ‘‘ π‘₯ = 2

(ii)

βˆ†2𝑓2 π‘Žπ‘‘ π‘₯ = 3

(iii)

Ξ΄f3 at x = 4

(iv)

πœ‡π‘“2 π‘Žπ‘‘ π‘₯0 = 4

(v)

𝛿 2 𝑓2 π‘Žπ‘‘ π‘₯0 = 2

Solution
5

π‘₯

𝑓(π‘₯)

βˆ†π‘“

1

6

7

βˆ†2 𝑓

βˆ†3 𝑓

2
2

13

0

9
2

3

22

0

11
2

4

33(𝑓0)

0

13(βˆ†π‘“0)
2

5

46

0

15
2

6

61

0

17
2

7

78

0

19
2

8

97

0

21
2

(i)

9

118

10

141

βˆ†π‘“π‘– = 𝑓𝑖+1 βˆ’ 𝑓𝑖

23

βˆ†π‘“2 = 𝑓3 βˆ’ 𝑓2

6

βˆ†2𝑓𝑖 = 𝑓𝑖+2 βˆ’ 2𝑓𝑖+1 + 𝑓𝑖
= 𝑓𝑖+2 βˆ’ 2𝑓𝑖+1 + 𝑓𝑖
= 𝑓4 βˆ’ 2𝑓3 + 𝑓2
= 61 βˆ’ 2(46) + 33
=2
π‘₯

𝑓(π‘₯)

1

6

βˆ‡π‘“

βˆ‡2 𝑓

βˆ‡3 𝑓

βˆ’7
2

13

2
βˆ’9

3

22

0
2

βˆ’11
4

33

0
2

βˆ’13
5

46

0
2

βˆ’15
6

61

0
2

βˆ’17
7

78

0
2

βˆ’19
8

97

0
2

βˆ’21
9

118

0
2

βˆ’23

7

10

141

𝛻𝑓2 π‘Žπ‘‘ π‘₯0 = 3
= βˆ’13
βˆ‡2 𝑓2 = 2
𝛿𝑓3 π‘Žπ‘‘ π‘₯0 = 4
𝛿𝑓𝑖 = 𝑓𝑖+1 βˆ’ π‘“π‘–βˆ’1
2

2

𝛿𝑓3 = 𝑓3
...
5
= 87
...
5
= 18
𝛿 2 𝑓2 π‘Žπ‘‘ π‘₯0 = 2
𝛿 2 𝑓𝑖 = 𝑓𝑖+1 βˆ’ 2𝑓𝑖 + π‘“π‘–βˆ’1
𝛿 2 𝑓2 = 𝑓3 βˆ’ 2𝑓2 + 𝑓1
= 46 βˆ’ 2(33) + 22
=2

8

1
πœ‡π‘“π‘– = (𝑓𝑖+1 βˆ’ π‘“π‘–βˆ’1 )
2
2
2
πœ‡π‘“3=𝑓3
...
5
2

1
= (87
...
5 )
2
= 61
...
Tabulate 2π‘₯ 2 βˆ’ 2π‘₯ + 1 from 1 to 8 and hence use the value to find

(i)

βˆ‡π‘“2 π‘Žπ‘‘ π‘₯ = 3

(ii)

βˆ†3 𝑓𝑖 π‘Žπ‘‘ π‘₯ = 2

(iii)

πœ‡π‘“4 π‘Žπ‘‘ π‘₯ = 1

(iv)

𝛿 3 𝑓2 π‘Žπ‘‘ π‘₯ = 2

9


Title: Numerical analysis
Description: They are easy to follow