Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Ordinary differential equation
Description: Differential equation of first order and first degree,beenoulie equation

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Mathematics-II [BT-202]

Dr
...

Lecture Plan
Lecture
No
...
F
Method to find P
...
I and Rule-3-4 &
Problems
Homogenous LDE and Problems
Simultaneous Differential Equations

References

R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86
R1: 3-86

Teaching
Methodology*

Reference
to Course
Outcomes

Chalk/Board

CO1

Chalk/Board
Chalk/Board
Chalk/Board
Chalk/Board

CO1
CO1
CO1
CO1

Chalk/Board

CO1

Chalk/Board

CO1

Chalk/Board

CO1

Chalk/Board

CO1

Chalk/Board

CO1

Chalk/Board

CO1

Chalk/Board
Chalk/Board

CO1
CO1

Reference Books:
R1: Dr, Sonendra Gupta, Engineering Mathematics-II, Dhanpat Rai Publishing Company(P), New Delhi
R2: B
...
Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
R3: N
...
Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint,
2008
...


Dr
...
1
Concept of Differential equation:
A equation is said to be differential equation which is involves one dependent variable and one or more
than one independent variable and also involves the differential coefficient of dependent variable with respect to
their independent variable
...
2

Types of Differential equation:
There are two types of differential equation:
1
...

2
...

1
...

Example : suppose z = f (x, y) be any two variable function, then
1
...
x 2

2 z
x 2

y

2

2 z
2 y

2x y

1
...
e
...

1
...


d2y
dx

2

5

dy
 8y  0
dx

  dy 2

4
...

2

dy
 dy 
 y0
3
...
5

Order of Differential equation:
The order of differential equation is the order of the highest ordered derivative occurring in the
differential equation
...
6

Degree of a Differential equation:
The degree of a differential equation is the power of the highest derivative of that differential equation
...
Sonendra Gupta [9893455006]

Page 3

Mathematics-II [BT-202]

Note: 1
2
...

Degree and order never be negative and zero
...
7

Types of Ordinary differential equation:
Differential equations in which the dependent variable and its derivative (or differential equation) is of
first degree are called the linear differential equation
...
8

Non-Linear ordinary Differential equation:
The differential equation which is not linear i
...
, the differential coefficient of higher degree are called
the non-linear differential equation
...
No
...

1
1
Linear
dy
 cos x  tan x
dx
2
2
...


  dy 2
 1   
dx 2   dx 

d2y





3/ 2

4
...


d2y

2

dx 2

6
...
9

General solution or complete solution
The General (Complete) solution of a differential equation is the solution in which the number of
arbitrary constants is equal to the order of the differential equation
...

1
...
S):
A Particular solution of a differential equation is the solution which is obtained from its general solution by
giving particular values to the arbitrary constants
...

Note : - The solution of a differential equation of nth order is its particular solution if it contains less than n
arbitrary constant
...
Sonendra Gupta [9893455006]

Page 4

Mathematics-II [BT-202]

Module-I

E-Notes

1
...
Equations solvable by separation of the variables
2
...

3
...

1
...

If the differential equation can be written in the form;
f ( x)
dy
 1
 f 2 ( y ) dy  f1 ( x) dx
dx f 2 ( y )

We say those variables are separable, y on left hand side and x on right hand side
...


 f2 ( y) dy   f1( x) dx  c , where c be integral constant (which we take any form as per the requirement

i
...
,

of solving the problems)
...
13

Homogeneous function:
A function f (x, y) in x and y is a homogeneous function of degree n, if the degree of each term is n
...
Suppose the function,

f ( x, y)  a0 xn  a1xn  1 y  a2 x n  2 y 2  a3x n  3 y3 
...

 y
2
...
f ( x, y ) 
4
...
f ( x, y )  y tan -1  
x

Test for Homogeneity: f (t x, t y )  t n f ( x, y )
1
...

Putting y = v x and solve it
...
Sonendra Gupta [9893455006]

Page 5

Mathematics-II [BT-202]

1
...

A B
 , then putting x = u + h, y = v + k where h & k are constant
...

Case 2: When
A B 

Lecture-02
1
...
e, x
...
Write the D
...
in the standard form,
dy
 P yQ
dx
2
...




(1)

P dx
3
...
F
...
The solution of equation (1) is,



y
...
F   C  Q
...
F 
...
e
...

Working Rule:
1
...
E
...
Find the value of P and Q
...
Find the Integrating factor such as I
...
 e 
4
...
Sonendra Gupta [9893455006]

Page 6

Mathematics-II [BT-202]

Module-I

E-Notes



x
...
F   C  Q
...
F 
...
F
...
I
...
 c   I
...
 Q dx




Problem 2:

x
dx
 
  1cos
 x2
y
...
1  x 2   c  sin x
Solve: 1  y 2  dx   tan 1 y  x  dy
y
...
2019]

dx tan 1 y  x

dy
1 y2

Solution: Given:

dx
x
tan 1 y


dy 1  y 2 1  y 2



Answer

… (1)

This is Linear differential equation of first order
...
F
...
e

Putting,


tan 1 y

c



tan 1 y

tan 1 y  t  dt 

x
...

e
dy
1 y2

dy
1 y2



 c  t
...
Sonendra Gupta [9893455006]

Page 7

Mathematics-II [BT-202]
1

Module-I



x
...
etan y  c  et  t  1



x
...
et  et

y

1

E-Notes

y

 c  e tan

1

y

 tan1 y 1

Problem 3 Solve the differential equation

Answer 1
...
F
...
 x  dx

y
...
F
...
 I
...
 dx



x3
3
Thus the required solution is



x
...
y  c 

x3
3

Answer

dy y
sin x
  cos x 
dx x
x
Solution: Given differential equation is
dy y
sin x
  cos x 
dx x
x
This is linear differential equation of first order
...
Solve:

 I
...
 e 

P dx

 e 

1/ x  dx

[RGPV Dec
...
 I
...
  c  Q
...
F
...
 x  dx
x 


 c   x cos x dx   sin x dx

Dr
...
Solve: 1  x 2   2 xy  4 x 2
dx

[RGPV Dec
...
1  x   c 
]
3
dy
y
 2  sin x
2
...
2019]

[Answer: x 2 y  c  x 2 cos x  2 x sin x  2 cos x ]
3
...
Solve
dx
[Answer: y e x  c  e x ]

Dr
...

dx
dy y
  y3
Problem 1
Solve:
dx x
Solution: Given differential equation is
dy y
  y3
dx x
This is Bernoulli’s equation
...
17



y 3

dy y 2

1
dx
x

… (2)

y 2  v

Putting,

dy
1 dv

dx
2 dx
From equation (2) and (3), we get
1 dv v

 1
2 dx x
dv 2
 v  2

dx x
This is LDE in v
...
F
...
 I
...
  c  Q
...
F
...
 2
...
Sonendra Gupta [9893455006]

Q v  y 1 



Answer

Page 10

Mathematics-II [BT-202]

Module-I

E-Notes

dy
 x sin 2 y  x3
...
cos 2 y
dx
This is Bernoulli’s equation
...
v  x3
dx
This is LDE in v
...
F
...
ex
...
 I
...
  c  Q
...
F
...
x
...
 dx
v ex

2

2

x2

x2

2

x 2  t  x dx 

1
dt
2

   c  12  t
...
e  1 et 

2 
2
1 2
e x tan y  c  e x t  1
2
2
1 2
e x tan y  c  e x  x 2  1


2
2

e x tan y  c 

Dr
...


dy
 2 y tan x  y 2 tan 2 x
dx

2
...
y  y 2 e x / 2 sin x
dx



3
...
y 1  x
...


2



1
tan 3 x
[Answer:  sec2 x  c 
]
y
3

[Answer: y 1  e x

2

/2

 c  cos x  ]

 y2 
1
 y 2 /2
 2
 1 ]
[Answer:  c e
 2

x



dy
1
dx



dy tan y

 1  x  e x sec y
dx 1  x



[Answer: sin y  c  e x 1  x  ]

Lecture-04
1
...
2015]
… (1)

Here, M  y cos x  sin y  y and N  sin x  x cos y  x


N
M
 cos x  cos y
 cos x  cos y and
x
y

Clearly,

M N

y
x

Therefore, equation (1) is exact, and then the solution is

y is contant M dx  Independent of x N dy  c


y  constant  y cos x  sin y  y  dx  Independent of x sin x  x cos y  x  dy  c



y sin x  x sin y  x y   No
...
Sonendra Gupta [9893455006]

Answer
Page 12

Mathematics-II [BT-202]

Problem 2:

Module-I







E-Notes



Solve: 1  4 xy  2 y 2 dx  1  4 xy  2 x 2 dy  0

[RGPV June 2017]

Solution: Given the differential equation is

1  4xy  2 y2  dx  1  4xy  2x2  dy  0

… (1)

Here M  1  4 xy  2 y 2 and N  1  4 xy  2 x 2


N
M
 4 y  4x
 4 x  4 y and
x
y

Clearly

M N
x

 2
y
x
y

Equation (1) is exact
...

Therefore the solution of equation (1) is

y is contant M dx  Independent of x N dy  c



x/ y
y is con tan t 1  e  dx  c

x  y e x/ y  c

Dr
...






1
...


 x  y  2  dx   x  2 y  3 dy  0
[Answer: x 2  2 xy  4 x  2 y 2  6 y  2c ]









3
...
20

Rules for finding the IF when differential equation is not exact:
M N
If differential M  x, y  dx  N  x, y  dy  0 is not exact i
...

, then we will find the integrating

y
x

factor by the following methods
...
]
Method 1: If differential equation is homogeneous and Mx  Ny  0 , then
I
...


1
Mx  Ny

Method 2: If the given differential equation can be written in the form y f1( x y) dx  x f 2 ( x y) dy  0 and
Mx  Ny  0 , then

Problem 4

I
...






1
Mx  Ny





Solve: x 2 y  2 xy 2 dx  x3  3x 2 y dy  0

Solution: Given the differential equation is

 x2 y  2xy2  dx   x3  3x2 y  dy  0

… (1)

Here M  x 2 y  2 xy 2 and N   x3  3 x 2 y


M
N
 x 2  4 xy and
 3x 2  6 xy
y
x

Clearly

M N

y
x

Equation (1) is not exact
...
Sonendra Gupta [9893455006]

Page 14

Mathematics-II [BT-202]

Module-I

Since Equation (1) is homogeneous then



 

Mx  Ny  x x 2 y  2 xy 2  y  x3  3x 2 y



 x3 y  2 x 2 y 2  x3 y  3 x 2 y 2



 x2 y 2  0



The integrating Factor I
...


Multiplying equation (1) by

1
2 2

E-Notes



1
1
 2 2
Mx  Ny x y

, we get

x y

 x 2 y  2 xy 2 
  x3  3 x 2 y 

 dx  
 dy  0
2 2
2 2
 x y

 x y


 x 3
1 2
 y  x  dx    2  y  dy  0
 y



1 2
x 3
Equation (2) is exact and M   and N   2 
y x
y
y



… (2)

Therefore the solution of equation (2) is

y is contant M dx  Independent of x N dy  c
1

2

3



y is contant  y  x  dx  Independent of x  y  dx  c



x
 2 log x  3log y  c
y



x
 2 log x  3log y  c
y

Problem 5

Answer

Solve: y 1  x y  dx  x 1  x y  dy  0

Solution: Given differential equation is
y 1  x y  dx  x 1  x y  dy  0

… (1)

Here M  y  x y 2 and N  x  x 2 y


M
N
 1  2 x y and
 1  2x y
y
x

Clearly

M N

y
x

Equation (1) is not exact
...
Sonendra Gupta [9893455006]

Page 15

Mathematics-II [BT-202]



Module-I

 

Mx  Ny  x y  x y 2  y x  x 2 y



 x y  x2 y 2  x y  x2 y 2



 2 x2 y 2  0



The integrating Factor I
...


Multiplying equation (1) by

1
2x 2 y 2

E-Notes



1
1
 2 2
Mx  Ny 2 x y

, we get

 y  x y2 
 x  x2 y 
dx


 2 2  dy  0
2 2 
 2 x y 
 2 x y 

1 1
1
1 1
1
 2   dx   2   dy  0
2  x y x 
2  x y
y 



 1
 1
1
1
 2   dx   2   dy  0
y 
 x y x 
 x y
1
1
1
1
Equation (2) is exact and M 
 and N 

2
2
y
x y x
xy



… (2)

Therefore the solution of equation (2) is

y is contant M dx  Independent of x N dy  c





 1
 1
1
 2   dx 
   dx  c
y is contant x y x
Independent of x  y 


1

 log x  log y  log c
xy






 x  1
log 

cy xy
x
1/ x y 
 e
cy



1/ x y 
x  c y e



x  c y e

Dr
...






1
...


x3
3 y3

 log y  log c ]

 y  x y2  dx   x  x2 y  dy  0
[Answer: x  c y e x y ]

3
...

Method 3: If

1  M N 
  x  dx


    x  , then I
...
 e
N  y
x 

Method 4: If

1  N M 
  y  dy


    y  , then I
...
 e
M  x
y 

Problem 6

Solve: x 2  y 2  2 x dx  2 y dy  0





Solution: Given differential equation is

 x2  y2  2x  dx  2 y dy  0

… (1)

Here M  x 2  y 2  2 x and N  2 y


M
N
 2 y and
0
y
x

Clearly

M N

y
x

Equation (1) is not exact
...
F
...
Sonendra Gupta [9893455006]

Page 17

Mathematics-II [BT-202]

Module-I

E-Notes

 x2  y2  2x  e xdx  2 y e xdy  0
Equation (2) is exact and M  e x  x 2  y 2  2 x  and N  2 y e x

… (2)

Therefore the solution of equation (2) is

y is contant M dx  Independent of x N dy  c


x 2
2
y is contant e  x  y  2 x  dx   No term free from x   c



x 2
2
x
 e  x  2 x  dx  y  e dx  c



x 2 e x  y 2e x  c

Problem 7









Solve: 3x 2 y 4  2 x y dx  2 x3 y 3  x 2 dy  0

Answer
[RGPV Dec
...

Since Equation (1) is not homogeneous and not in the form y f1  x y  dx  x f 2  x y  dy  0 , then



1  N M 
1

6 x 2 y 3  2 x  12 x 2 y 3  2 x

 2 4
M  x
y  3 x y  2 x y











1



2



2

y 3x y  2 x
3

2

y 3x y  2 x
3






 6 x 2 y 3  4 x 




3 6 x 2 y 3  2 x 

2
  y
y

1
 y  dy
2/ y  dy
 e 
 e 2log e y  2
The integrating Factor I
...
 e 
y

Multiplying equation (1) by

1
y2

, we get

 3x 2 y 4  2 x y 
 2 x3 y 3  x 2 
dx




 dy  0
y2
y2





Dr
...

1
...
 x y3  y  dx  2  x 2 y 2  x  y 4  dy  0
2
...


 x
...
Sonendra Gupta [9893455006]

Page 19

Mathematics-II [BT-202]

Module-I

E-Notes

Lecture-07
Chapter – 2
LINEAR DIFFERENTIAL EQUATION FIRST ORDER AND HIGHER DEGREE
2
...
Here we
discuss the following methods
Method 1
Solvable by p
Method 2
Solvable by x
Method 3
solvable by y
Method 4
Clairaut’s Equation
Method 1 [Solvable by p]
Concept: If the differential equation in polynomial form of p, then it is solvable by p
...
2019]

Solution: Given: p 2  5 p  6  0

 p  2  p  3  0




p  2 and p  3

Now,

p2

dy
2
dx
Integrating on both sides, we get



y  2 x  c1



y  2 x  c1  0

Now,


...
(2)

The required solution is,

 y  2 x  c  y  3x  c   0
Problem 2

where c1  c2  c





Solve: x 2 p 3  y 1  x 2 y p 2  y 3 p  0 , where p 





Answer
dy
dx

[RGPV June 2019]

Solution: Given: x 2 p 3  y 1  x 2 y p 2  y 3 p  0

Dr
...
(1)

Integrating on both sides, we get
1
1
 x  c2   x  c2  0
y
y
and




...
(3)

where c1  c2  c3  c

Answer

2

Problem 3

dy
 dy 
Solve: x 2    xy  6 y 2  0
dx
 dx 

[RGPV Dec
...
Sonendra Gupta [9893455006]

Page 21

Mathematics-II [BT-202]

Taking, p 


Module-I

E-Notes

dy
dx

x 2 p 2  xyp  6 y 2  0

…(1)

x 2 p 2  3 xyp  2 xyp  6 y 2  0



xp  px  3 y   2 y  px  3 y   0



 px  3 y  px  2 y   0



px  3 y  0



dy
dx
 3
y
x



x



log y   3log x  log c1



dy
dx
2
y
x



log y  2log x  log c2



log y  log c2 x 2



y  x2c2





px  2 y  0

c 
log y  log  13 
x 
c
y  13
x

x3 y  c1  0

… (2)

dy
 2y  0
dx







y x2  c2  0

… (3)

The required solution is,

 x3 y  c  y x2  c   0

Answer

IMPROVE YOUR SELF
Solve the following differential Equations:
1
...
Solve: p 2  2 py cot x  y 2  0

[RGPV Dec
...
Solve: x 2    xy  6 y 2  0
dx
 dx 







[Answer: x3 y  c y x 2  c  0 ]

Dr
...
2019]

Solution: Given differential Equation is,
y  2 px  y 2 p 3

… (1)

Clearly it is solvable for x, then
y
2x   y2
...
r
...
y, we get

2



p
...


dp
dy

 2

dp
2

y
2
p

p
2
y


dy
p2


2 1
y dp
dp
  2
 2 py 2
 2 p2 y
p p p dy
dy

dx

dy

 y
2
 2  2 py 
 p

1
dp y 
1  2 p3 y   
1  2 p3 y 


p
dy p 2 
1
dp
 2 p2 y  
p
dy




dp y
dy p



1 



dp
dy

p
y

Integrating both sides, we get
log p   log y  log c





c
log p  log  
 y
c
 p 
y

Putting the value of p in equation (1), we get
c
c
y  2   x  y2  
 y
 y

3



y 2  2c  c 3

Answer

Problem 2

Solve: y 2 log y  x y p  p 2

[RGPV June 2015]

Solution: Given differential equation is
Dr
...
r
...
y, we get
 1

dp
dp
p  y  log y
...
1
y
dy
dx
dy




dy
p2
y2



1 1 log y y log y dp 1 dp p
 



p p
p
p 2 dy y dy y 2



 y log y 1  dp log y p
 
 2  2

2
 dy
y
p
p
y





 y 2 log y  p 2  dp y 2 log y  p 2



2
dy
p
y
p y2





dp  1  1
 
dy  p  y



dp dy

p
y

Integrating both sides, we get
log p  log y  log c


log p  log y c



p  yc

Putting in equation (1), we get
y 2 log y  x y  y c    y c 



2

log y  c x  c 2

Answer
IMPROVE YOUR SELF

Solve the following differential Equations:
1
...
y p 2  2 x p  y  0
[Answer: y 2  c 2  2cx ]

p 
3
...
Sonendra Gupta [9893455006]

Page 24

Mathematics-II [BT-202]

[Answer: y  

1
p 1
2

Module-I

E-Notes

c]

Lecture-08
Method 3 [Solvable by y]
Concept: The differential equation is said to be solvable for y when y can be separate in term of x such
that

y  f  x, p 

Problem 1

Solve: y   p x  x 4 p 2

Solution: Given differential equation is
y   p x  x4 p2

…(1)

Differentiate with respect to x, we get
dy
dp
dp 

  p
...
 x 4  2 p   4 x3 p 2
dx
dx
dx 




p   p  x
...

Dr
...
cos p
dx
dx
dx
dx
dp
p   cos p  p sin p  cos p 

dx

E-Notes

dy 

Q p  dx 

dp
dx



p  p sin p



dx  sin p dp

Integrating both sides, we get
x   cos p  c


cos p  c  x

Since sin p  1  cos 2 p  1   c  x 

2

Putting in equation (1), we get
y  1 c  x  p c  x
2

1 c  x  y
2



p

cx
Putting the value of p in equation (1) we get
2


1 c  x  y 

cos
cx


cx



Answer

IMPROVE YOUR SELF
Solve the following differential Equations:



1
...
y  2 px  tan 1 x p 2



 c2 
[Answer: y  c x  tan 1   ]
 4 
 

3
...
Sonendra Gupta [9893455006]

Page 26

Mathematics-II [BT-202]

Concept:

Module-I

E-Notes

Method 4 [Clairaut’s Equation]
If the differential equation can we written in the form
y  p x  f  p  , then it is called Clairaut’s equation and solution is y  c x  f  c 

Problem 1

Solve:  y  px  p  1  p

Solution: Given differential equation is

 y  px  p  1  p


y  px 



… (1)

p
p 1

y  px 

p
p 1

This is required Clairaut’s equation, and then required solution is
c
y cx
c 1
Problem 2



Answer



Solve: p 2 x 2  a 2  2 p x y  y 2  a 2  0

Solution: Given differential equation is





p2 x2  a2  2 p x y  y 2  a2  0



p2 x2  a2 p2  2 p x y  y 2  a2  0



 
 y  px 2  a 2  p 2  1



y  p x   a p2 1



y  p x  a p2 1



… (1)

p2 x2  2 p x y  y 2  a2 p2  1

This is required Clairaut’s equation, and then required solution is
y  c x  a c2 1

Answer
IMPROVE YOUR SELF

Solve the following differential Equations:
1
...
sin px cos y  cos px sin y  p
[Answer: y  cx  sin 1 c ]
3
...
Sonendra Gupta [9893455006]

Page 27

Mathematics-II [BT-202]

Module-I

E-Notes

[Answer: y  c  1  cx  c  1  c ]
S
...


Video Lectures Links
Topic

Lecture No

Link

1

Lecture 0

Differential Equation-Ordinary Differential Equation

https://youtu
...
be/nyKypjThv0c

3

Lecture 2

Ordinary Differential Equation-Variable Separable form

https://youtu
...
be/s-JdP_ohMmA

25

Lecture 2

Homogeneous Linear Differential Equation of Higher Order in Hindi

https://youtu
...
be/nyxipXkzCfo

Ordinary Differential Equation-Homogeneous Differential Equation
of first order
Ordinary Differential Equation-Non-Homogeneous Differential
Equation of First order
Ordinary Differential Equation-Linear Differential Equation of First
order
Ordinary Differential Equation-Bernoulli's Equation of First order
Ordinary Differential Equation-Exact differential Equation of First
order and First Deg
Ordinary Differential Equation-Non Exact differential Equation of
First order
Ordinary Differential Equation-Non Exact differential Equation of
First order
Ordinary Differential Equation-Non Exact differential Equation of
First order
Ordinary Differential Equation-Non Exact differential Equation of
First order
Ordinary Differential Equation-Solve by Inspection Method
Ordinary Differential Equation-First Order and Higher degree
Solvable for p
Ordinary Differential Equation-First Order and Higher degree
Solvable for y
Ordinary Differential Equation-First Order and Higher degree
Solvable for x
Ordinary Differential Equation-First Order and Higher degree
equation Clairaut's Equation
Linear Differential Equations of Higher order with constant
coefficients (Updated)
Linear Differential Equations of Higher order with constant
coefficients (updated)
Linear Differential Equations of Higher order with constant
coefficients (Updated)
Linear Differential Equations of Higher order with constant
coefficient (Updated)
Linear Differential Equations of Higher order with constant
coefficient (Updated)
Linear Differential Equations of Higher order with constant
coefficient (Updated)

Dr
...
be/uJMDxnr2B8s
https://youtu
...
be/bJ1TqnXV_D8
https://youtu
...
be/DkztYqeADIE
https://youtu
...
be/OnaKpEdKKLM
https://youtu
...
be/fDrfqG9pCLk
https://youtu
...
be/vZkz5RqswLk
https://youtu
...
be/GkxjRCx2Qdk
https://youtu
...
be/pqbDwzswUOA
https://youtu
...
be/cge0suZ-rkA
https://youtu
...
be/EU0Kjre-2ow
https://youtu
...
be/JL9eJxw5V0g

Lecture-09
CHAPTER – 3
LINEAR DIFFERENTIAL EQUATION OF HIGHER ORDER WITH CONSTANT COEFFICIENT

3
...
 an y  Q

…… (1)

Where a1, a2 ----- an-1, an are constant and Q is the function of independent variable x (only) is called the linear
differential equation of higher order with constant coefficient
...
 an  y  Q


f  D y  Q



… (2)

The Solution of Equation is,
y  C
...
I

Note: (i)
...
2

… (3)

If Q = 0, then P
...
F

Method to find complementary function when Q = 0
From equation (2), we have f  D  y  0

The Auxiliary equation (A
...
) is
f m  0



a0 mn  a1 mn 1  a2 mn  2 
...

Case 1: When the roots of A
...
are distinct and real
Say m  m1, m2 , m3
 C
...
 c1 em1 x  c2 em2 x  c3 e m3 x
Case 2:When the roots of A
...
are real and repeated
Say
m  m1, m1, m1
 C
...
 (c1  c2 x  c3 x 2 ) e m1 x
Case 3:When the roots of A
...
are in pair of complex number
Say, m    i 

Dr
...
F
...
F
...
F
...
E
...
F
...
F
...
F
...
E
...
F
...
2019]

Solution: Given:

 D2  1 y  0

The Auxiliary Equation is,
m2  1  0



m  1,  1

The C
...
is,

C
...
 c1 e x  c2 e x
The Complete Solution is,
y  C
...
 c1 e x  c2 e  x
Dr
...
2019]

Solution: Given, D 2  4 D  3 y  0

… (1)

The A
...
equation is,
m 2  4m  3  0

 m  3 m  1  0




m  1, 3

The complete solution is

y  C
...
 c1e x  c2e3x

Answer
IMPROVE YOUR SELF

Solve the following differential Equations:
1
...


3
...
I
...
 an y  Q



 a0 D n  a1 D n 1  a2 D n  2 
...
I
...
I
...
D Q 
dx
1
Q   Q dx
2
...
Sonendra Gupta [9893455006]

Page 31

Mathematics-II [BT-202]

Module-I

E-Notes

Method 1:
When Q = eax
1
1 ax
(i)
...




1
1
ea x  ea x 

...

ea x  
 e , when f (a )  0

f ( D)

f  D 
 D


(iv)
...
E
...
F
...
I
...
F
...
I
...
I
...
E
...
Sonendra Gupta [9893455006]

Page 32

Mathematics-II [BT-202]

Module-I

E-Notes

m 2  3m  2  0

 m  2  m  1  0




m  2, 1

C
...
 c1e2 x  c2e x

The C
...
is

P
...


1
D  3D  2
2

1











 e2 x



e2 x

 D  2  D  1

e2 x 

1  1

e2 x 

D  2  D 1


1  1 2x 
1
e 
e2 x

D  2  2 1
D

2


1
1 

...
1
 D  2  2
D 

P
...
 e 2 x x

The required solution is,
y  c1e2 x  c2e x  e2 x x

Problem 3 Solve the differential equation

Answer
d2y
dx

2

6

dy
 9 y  5 e3 x
dx

[RGPV June 2018]

Solution: Given differential equation is
d2y
dx



2

6

dy
 9 y  5 e3 x
dx

… (1)

 D 2  6 D  9  y  5 e3 x

The A
...
is
m 2  6m  9  0

 m  32  0





Now,

m   3,  3

C
...
  C1  x C2  e3 x

P
...








P
...


1
D  6D  9
1
2

 3

2

5 e3 x

 6  3  9

5 e3 x

Here f (3)  0

5 3x
e
64

Dr
...
F
...
I
...
E
...
F
...
F
...
I
...
1
3 
3

  0  1

D

1

1





3
 1 
xx 
 e  3
...
I
...
Sonendra Gupta [9893455006]

Answer
[RGPV Dec
...
E
...
F
...
I
...
I
...
F
...
I
...


d2y
dy
 3  2 y  e5 x
2
dx
dx

2
...
2019][Answer:

3
...
Sonendra Gupta [9893455006]





y  c1e 2 x  c2  xc3  x 2c4 e x 

x3 e x
]
18

 3 
 3   x
 1/2 x 
x   c2 sin 
x    e ]
[Answer: y  e   c1 cos 

 2 
 2  

Page 35

Mathematics-II [BT-202]

Module-I

E-Notes

Method 2: When Q = xm, where m I+
1
1
x m   f ( D) x m
f ( D)
1

Where  f ( D) is expand as per Binomial theorem
...
(1  D ) 1  1  D  D 2  D 3  D 4 
...
(1  D ) 1  1  D  D 2  D3  D 4 
...
(1  D) 2  1  2 D  3D 2  4 D3  5 D 4 
...
(1  D) 2  1  2 D  3D 2  4 D3  5 D 4 
...
E
...
Complementary function is

C
...
 c1  c2e x  c2e2 x
Now,

P
...


1
D  3D  2 D
3

1

2D

2

x2

  D 2  3D  
1  
 
2
 
 

1

x2

2


1   D 2  3D   D 2  3D 
2

1 
  
 
...




1
2D

1
1  2
7
 2 1

 x  2  2  6 x   4  0  18  0  
...
I
...
Sonendra Gupta [9893455006]

Page 36

Mathematics-II [BT-202]

Module-I

y  c1  c2e  x  c2e 2 x 

1  x3 3 x 2 7 x 

 

2  3
2
2 

d2 y
dy
 6  9 y  x 2  2e2 x
2
dx
dx
Solution: Given differential equation is

Problem 2

E-Notes

Answer

[RGPV Dec
...

d
D
Suppose,
dx



D

2

 6 D  9  y  x 2  2e2 x

The A
...
is
m 2  6m  9  0



 m  3



2

0

m  3, 3

The C
...
F
...
I
...
 x 2  2 
e

2
9 
3
3
  2  3



1 2 2
 2 2

2
2x
 x  3  D x   3  D x  
...
I
...
F
...
I
...
Sonendra Gupta [9893455006]

Page 37

Mathematics-II [BT-202]

Module-I

y   c1  xc2  e3 x 

1  2 4x
x 

9 
3

2
 2 e2 x

3

E-Notes

Answer

IMPROVE YOUR SELF
Solve the following differential Equations:
1
1
[Answer: y  c1 cos 2 x  c2 sin 2 x   x 2   ]
4
2

1
...


d3y
dx

3
...

2
2
f (D )
f (a )
(ii)
...


1
D a
1
2

2

sin ax  
cos ax 

x
cos ax, When f (a 2 )  0
2a

x
sin ax, When f (a 2 )  0
2a

D a
Problem 1
Solve the differential equation
2

2

( D 2  D  1) y  sin x

Solution: Given differential equation is
( D 2  D  1) y  sin x , Here, D 

d
dx

The A
...
is,
m2  m  1  0



m

1  1  4 1  3 i
1
3

 
i
2
2
2 2


 3 
 3 
x   c2 sin 
x  
 C
...
 e  x /2 c1 cos 

 2 
 2  

Now,

P
...


1

sin x 

1

D  D 1
1  D  1
1
 sin x   cos x
D
2

Dr
...
E
...
F
...
F
...
I
...
1
5   D  1 D  1
 4   D  1  1 





1
1
3
1
 D  1  2 cos 2 x   e x 
...
x
5
 2  1
 4



P
...


D3  D 2  D  1

cos 2 x 

1
2 2 D  2 2  D  1

1
5

cos 2 x 


3  1
x

e
D  1  1  12 



3 1
 1 
x
 D  1  cos 2 x  4  D  1 e 





1
3
 2sin 2 x  cos 2 x   x e x
25
4

The solution is,
Dr
...

2
...


d2y
dx 2
d2y
dx 2
d2y
dx 2

1
3sin 2 x  cos 2 x   1 ]
10

dy
 2 y  4 cos 2 x
dx

[Answer: y  c1e  x  c2e 2 x 

8

dy
 9 y  40sin 5 x
dx

[Answer: y  c1 cosh

4

dy
 4 y  x 2  e x  cos 2 x
dx

1
3
1
[Answer: y   c1  xc2  e 2 x   x 2  2 x    e x  sin 2 x ]
4
2
8

3





7 x  c2 

5
5cos 5 x  2sin 5 x  ]
29

Method 4: When Q = V
...
V  eax 
V
f ( D)
 f ( D  a) 

Method 5: When Q = x
...
V  x 
V 


 
...
This method is applicable when power of x is an unity
...
This method is fail when V operate on f (D), which is zero
...
2019]

Solution: Given differential equation is
d2y

dy
 4 y  e x cos x
dx

… (1)

 D2  2D  4 y  e x cos x

… (2)

dx

Suppose D 


d
dx

2

2

The A
...
is
m 2  2m  4  0


Dr
...
F
...
I
...
F
...
I
...
I
...
E
...
F
...
I
...
Sonendra Gupta [9893455006]

Page 41

Mathematics-II [BT-202]

Module-I

E-Notes

1
 1 

2 x 
 e2 x  2
 sin 2 x  e
 2
 sin 2 x
D  D
 2  D 
D  4
 D4 
 1
 e2 x 

sin 2 x  e2 x  2
 sin 2 x

 D  4 D  4
 D  16 
1
e 2 x


 e 2 x  D  4   2
sin 2 x   
 D sin 2 x  4sin 2 x 
20
 2  16

P
...
 

e 2 x
e 2 x
 2cos 2 x  4sin 2 x   
cos 2 x  2sin 2 x 
20
10

The solution is,
y  c1e

Problem 3

3 x

 c2e

2 x



e2 x

cos 2 x  2sin 2 x 
10

Answer



Solve: D 2  2 D  1 y  x cos x



[RGPV Dec
...
E
...
F
...
I
...
I
...
Sonendra Gupta [9893455006]

Page 42

Mathematics-II [BT-202]

y   c1  xc2  e x 

Module-I

E-Notes

x
1
 sin x     sin x  cos x 
2
2

Answer

IMPROVE YOUR SELF
Solve the following differential Equations:
1
...


d2y
dx 2
d2y
dx

2

3

dy
 2 y  x ex
dx

 x2

[Answer: y  c1e x  c2e 2 x  e x   x  ]
 2




dy
 y  x e x sin x
dx

[Answer: y   c1  xc2  e x  e x  x sin x  2cos x  ]

2

3
...


 1  m
 1  m ai x
1
x m sin ax  I
...

x (cos ax  i sin ax)  I
...


x e
f ( D)
 f ( D) 
 f ( D) 

 1  m
 1  m a ix
1
x m cos ax  R
...

x (cos ax  i sin ax)  R
...


x e
f ( D)
 f ( D) 
 f ( D) 
Where m ≥ 1 and m is positive integer
...

D
1
Q  e   x e x Q dx
(iv)
...






Dr
...
1 Concept:
The standard form of HLDE is,
a0 x n

dny
dx n

d n 1 y

 a1 x n 1

dx n 1

 a2 x n  2

d n2 y
dx n  2


...

To reduce HLDE in LDE of higher order,
x  e z  z  log x

And x

d
d
d2
d3
 D, x 2 2  D ( D  1), x3 3  D ( D  1) ( D  2) as D 
dz
dx
dx
dx

Solve: x 2

Problem 1

d 2y
dx

2

 2x

dy
 4y  x 2  2log x
dx

[RGPV June 2019, 2015]

Solution: Given differential equation is
x2

d 2y
dx 2

 2x

dy
 4y  x 2  2log x
dx

… (1)

This is homogeneous linear differential equation
...
E
...
F
...
I
...
Sonendra Gupta [9893455006]

2

2z

Page 44

Mathematics-II [BT-202]


Module-I

1
22  3(2)  4

e

2z

1   D 2  3D  
 1  


4  
4


1

2z




1 2 z 1   D 2  3D 
e  1  
 
...


6
2  
4





1 2z 1 
1
1
z 3

e   z  (0  3)    e2 z  
6
2
4
6
2 8


P
...
 

E-Notes

x 2 log x 3


6
2
8

 The required solution is,
y  C
...
 P
...


y  c1 x 1  c2 x 4 


Problem 2

Solve: x

2

x 2 log x 3


6
2
8

d2y
2

x

Answer

dy
 4y  0
dx

[RGPV Dec
...

x  ez

So put


z  log x and

dz 1

dx x

d
d
d2
 D, x 2 2  D ( D  1) as D 
dz
dx
dx
then equation (1), becomes

and x

 D( D  1)  D  4 y  0
 D2  4 y  0




The A
...
is,

m2  4  0




m   2i

C
...
 c1 cos z  c2 sin z  c1 cos  log x   c2 sin  log x 

The complete solution is
y  C
...
 c1 cos  log x   c2 sin  log x 
Dr
...

x  ez

So put


z  log x and

dz 1

dx x

d
d
d2
 D, x 2 2  D ( D  1) as D 
dz
dx
dx
then equation (1), becomes

and x

 D( D  1)  D  1 y  z
 D 2  2 D  1 y  z




The A
...
is,

m 2  2m  1  0

 m  12  0




m  1, 1

C
...
  c1  zc2  e z  c1  log x c2  x



P
...


1

 D  1

2

2

 1  D 

z

z  1  2 D  3D 2 
...
I   z  2
...
F
...
I
...
x

2

d2y
dx

2

 5x

dy
 4 y  x log x
dx

Dr
...
x

2

d2y
dx

3
...
2019]

… (2)

…(3)
…(4)

Eliminate y from equation (3) and (4), we get

 D  5  D  7  x   D  5  y  0
2 x   D  5  y  0

(Subtraction)

 D  5 D  7   2 x  0



 D2 12D  37  x  0

… (5)

The A
...
is,
m 2  12m  37  0



m

12  122  4 1 37 12  144  148

2 1
2



m

12  2 i
 6 i
2



x  e6t  c1 cos t  c2 sin t 

Answer

Differentiate w
...
t
...
Sonendra Gupta [9893455006]

Page 47

Mathematics-II [BT-202]

Module-I

E-Notes

dx
 e6t  6c1  c2  cos t   6c2  c1  sin t 
dt
From equation (1), we get
dx
y  7x 
dt





 7 e6t  c1 cos t  c2 sin t   e6t  6c1  c2  cos t   6c2  c1  sin t 



 e6t  7c1  6c1  c2  cos t   7c2  6c2  c1  sin t 
y  e6t  c1  c2  cos t   c1  c2  sin t 



Answer

Problem 2

Solve the following simultaneous differential equations
...
E
...
F
...
I
...
I
...
Sonendra Gupta [9893455006]

Page 48

Mathematics-II [BT-202]

x   c1  tc2  e

Module-I

4 t

4 et e 2t


25 36

E-Notes

… (6)

Answer

dx
4 e t 2e 2 t
 e 4 t  4  c1  tc2   c2  

dt
25
36
From equation (1), we have
dx
y 
 5 x  et
dt

and

  e 4 t  4  c1  tc2   c2  




4 e t 2e 2 t
4 e t e 2t  t

 5  c1  tc2  e 4 t 

e
25
36
25 36 




y  e 4t  4c1  4tc2  c2  5c1  5tc2  



y    c2  tc2  c1  e

et
7
 e 2t
25 25

et
7

 e 2t
25 25

4t

Answer

IMPROVE YOUR SELF
Solve the following differential Equations:
dy
dx
 x  cos t
 y  sin t and
1
...

dt
dt

[Answer: x  c1et  c2et and y  c1et  c2et  sin t ]
[Answer: x  c1e4t  c2et and y 

3
...
No
...
be/GtZnXWdTD5Q

2

Lecture 1

Ordinary Differential Equation-Formation of Differential Equation

https://youtu
...
be/C_2ScUovh8Y

4

Lecture 3

5

Lecture 4

6

Lecture 5

7

Lecture 6

Ordinary Differential Equation-Bernoulli's Equation of First order

https://youtu
...
be/DkztYqeADIE

Ordinary Differential Equation-Homogeneous Differential Equation
of first order
Ordinary Differential Equation-Non-Homogeneous Differential
Equation of First order
Ordinary Differential Equation-Linear Differential Equation of First
order

Dr
...
be/uJMDxnr2B8s
https://youtu
...
be/bJ1TqnXV_D8

Page 49

Mathematics-II [BT-202]

Module-I

Ordinary Differential Equation-Non Exact differential Equation of
First order
Ordinary Differential Equation-Non Exact differential Equation of
First order
Ordinary Differential Equation-Non Exact differential Equation of
First order
Ordinary Differential Equation-Non Exact differential Equation of
First order

E-Notes

9

Lecture 8

10

Lecture 9

11

Lecture 10

12

Lecture 11

13

Lecture 12

14

Lecture 13

15

Lecture 14

16

Lecture 15

17

Lecture 16

18

Lecture 1

19

Lecture 2

20

Lecture 3

21

Lecture 4

22

Lecture 5

23

Lecture 6

24

Lecture 1

Homogeneous Linear Differential Equation of Higher Order in Hindi

https://youtu
...
be/Abyz2W7aYQQ

26

Lecture 1

Simultaneous Ordinary Differential Equations in Hindi

https://youtu
...
be/JL9eJxw5V0g

Ordinary Differential Equation-Solve by Inspection Method
Ordinary Differential Equation-First Order and Higher degree
Solvable for p
Ordinary Differential Equation-First Order and Higher degree
Solvable for y
Ordinary Differential Equation-First Order and Higher degree
Solvable for x
Ordinary Differential Equation-First Order and Higher degree
equation Clairaut's Equation
Linear Differential Equations of Higher order with constant
coefficients (Updated)
Linear Differential Equations of Higher order with constant
coefficients (updated)
Linear Differential Equations of Higher order with constant
coefficients (Updated)
Linear Differential Equations of Higher order with constant
coefficient (Updated)
Linear Differential Equations of Higher order with constant
coefficient (Updated)
Linear Differential Equations of Higher order with constant
coefficient (Updated)

Dr
...
be/Gw3xu3NzlX4
https://youtu
...
be/XCn6UXbyYtc
https://youtu
...
be/iOpkpv_cE68
https://youtu
...
be/EU93LOvQoCw
https://youtu
...
be/1tkpbmKnI2Q
https://youtu
...
be/me2Y7Rckj8c
https://youtu
...
be/VJ2_8ZfduoM
https://youtu
...
be/Yh-oNF2_qRs

Page 50


Title: Ordinary differential equation
Description: Differential equation of first order and first degree,beenoulie equation