Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Multivariate optimisation in economics
Description: A summary on multivariate optimisation, covering: multivariate functions, partial derivatives, production function, utility functions, total differential and implicit differentiation, first order condition, second order condition, profit maximisation, cost minimisation, and price discrimination.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


EECM 3714
Lecture 8: Unit 8

Multivariate Optimisation I
Renshaw, Ch
...
g
...
2)
If all three variables are raised to the power 1, and if there are no cross-products, then the
resulting graph is called a plane (e
...
Fig 14
...
These slices are
called sections (e
...
Fig 14
...
4)
These sections are known as iso-sections (if z is constant: iso-𝑧 section, if π‘₯ constant, then iso-x
section, if y constant, then iso-y section)
Can represent these functions with lines/curves in 2D space

FIRST ORDER PARTIAL DERIVATIVES
β€’ Suppose 𝑧 = 𝑓(π‘₯, 𝑦), then:
β€’

β€’

πœ•π‘§
πœ•π‘₯
πœ•π‘§
πœ•π‘¦

= 𝑓π‘₯ , slope of surface in direction of x (y is treated as a constant)

= 𝑓𝑦 , slope of surface in direction of y (x is treated as a constant)
πœ•π‘§

β€’ Suppose that 𝑧 = 𝑔 π‘₯1 , π‘₯2 , … , π‘₯𝑛 , then
= π‘“π‘˜ , slope of surface in direction of π‘₯π‘˜ (other π‘₯π‘›βˆ’1
πœ•π‘₯π‘˜
independent variables treated as constants)
β€’ Note the change in notation:
β€’ For univariate functions, the derivative is

𝑑𝑦
𝑑π‘₯

β€’ For multivariate functions, the partial derivative is

πœ•π‘¦
πœ•π‘₯

β€’ When partially differentiating, all variables except the one that you are differentiating with
respect to are treated as constants (or kept constant)

SECOND ORDER PARTIAL DERIVATIVES
β€’ If 𝑧 = 𝑓(π‘₯, 𝑦), then first-order partial derivatives are

πœ•π‘§
πœ•π‘₯

= 𝑓π‘₯ and

πœ•π‘§
πœ•π‘¦

= 𝑓𝑦

β€’ The second-order partial derivatives are then
πœ•2 𝑧
πœ•π‘₯ 2

=

πœ•2 𝑧
𝑓π‘₯π‘₯ , 2
πœ•π‘¦

=

πœ•2 𝑧
𝑓𝑦𝑦 ,
πœ•π‘₯πœ•π‘¦

=

πœ•2 𝑧
𝑓π‘₯𝑦 ,
πœ•π‘¦πœ•π‘₯

= 𝑓𝑦π‘₯
...
e
...

2
...
𝑧 = π‘₯ 0
...
7

β€’ Also do examples 14
...
6 (p
...
𝑧 = π‘₯ 2 + 3π‘₯𝑦 + 𝑦 2 + 2
β€’

πœ•π‘§
πœ•π‘₯

β€’

πœ•2 𝑧
πœ•π‘₯ 2

β€’

πœ•2 𝑧
πœ•π‘₯πœ•π‘¦

= 2π‘₯ + 3𝑦;
=

πœ• πœ•π‘§
πœ•π‘₯ πœ•π‘₯

=

πœ•π‘§
πœ•π‘¦

= 3π‘₯ + 2𝑦

= 2;

πœ• πœ•π‘§
πœ•π‘₯ πœ•π‘¦

3
...
3 𝑦 0
...
𝑧 = π‘Ž ln π‘₯ + 𝑏 ln 𝑦
β€’

πœ•π‘§
πœ•π‘₯

π‘Ž
π‘₯

β€’

πœ•2 𝑧
πœ•π‘₯ 2

β€’

πœ•2 𝑧
πœ•π‘₯πœ•π‘¦

= ;
=

πœ•π‘§
πœ•π‘¦

=

πœ• πœ•π‘§
πœ•π‘₯ πœ•π‘₯

=

πœ• πœ•π‘§
πœ•π‘₯ πœ•π‘¦

πœ•2 𝑧
βˆ’2
βˆ’aπ‘₯ ; 2
πœ•π‘¦

=

πœ•2 𝑧
0;
πœ•π‘¦πœ•π‘₯

πœ•π‘§
πœ•π‘₯

β€’

πœ•π‘§
πœ•π‘₯

⟹ 𝑦 0
...
7 Γ—
π‘₯ 0
...
7 Γ—
πœ•π‘₯
πœ•π‘₯
βˆ’0
...
3π‘₯

β€’ ∴

πœ•π‘§
πœ•π‘₯

= 0
...
7 𝑦 0
...
3 𝑦 0
...
3 is the multiplicative constant

= βˆ’π‘π‘¦ βˆ’2 β€’

πœ•π‘§
πœ•π‘¦

= π‘₯ 0
...
7𝑦 βˆ’0
...
7 ⟹

= 0
...
3 𝑦 βˆ’0
...
3 Γ—

SOLUTION, EXAMPLE 3
β€’

πœ•2 𝑧
πœ•π‘₯ 2

=

πœ• πœ•π‘§
πœ•π‘₯ πœ•π‘₯

=

πœ•
πœ•π‘₯

0
...
7 0
...
3𝑦 0
...
3𝑦
πœ•2 𝑧
πœ•π‘₯ 2

πœ•2 𝑧
πœ•π‘₯ 2

πœ•2 𝑧
πœ•π‘¦ 2

0
...
7

= 0
...
7 Γ— βˆ’0
...
7

= βˆ’0
...
7 𝑦 0
...
7π‘₯ 0
...
3

β€’ ⟹ 0
...
3 is the multiplicative constant
β€’

πœ•2 𝑧
πœ•π‘¦ 2

β€’ ⟹
β€’ ∴

πœ•

= 0
...
3 Γ— πœ•π‘¦ 𝑦 βˆ’0
...
7π‘₯ 0
...
3𝑦 βˆ’1
...
21π‘₯ 0
...
3

β€’

πœ•2 𝑧
πœ•π‘₯πœ•π‘¦

πœ•

= πœ•π‘₯

πœ•π‘§
πœ•π‘¦

πœ•

= πœ•π‘₯ 0
...
3 𝑦 βˆ’0
...
7𝑦 βˆ’0
...
7𝑦 βˆ’0
...
3

πœ•2 𝑧

β€’ ⟹ πœ•π‘₯πœ•π‘¦ = 0
...
3 Γ— 0
...
7
β€’ ∴
β€’

πœ•2 𝑧
πœ•π‘₯πœ•π‘¦

πœ•2 𝑧
πœ•π‘¦πœ•π‘₯

= 0
...
7 𝑦 βˆ’0
...
3π‘₯ βˆ’0
...
7

β€’ ⟹ 0
...
7 is the multiplicative constant
β€’

πœ•2 𝑧
πœ•π‘¦πœ•π‘₯

β€’ ⟹
β€’ ∴

πœ•

= 0
...
7 Γ— πœ•π‘¦ 𝑦 0
...
3π‘₯ βˆ’0
...
7𝑦 βˆ’0
...
21π‘₯ βˆ’0
...
3

ECONOMIC APPLICATION 1: PRODUCTION FUNCTIONS
β€’ Relates inputs (capital and labour) to output (production)
β€’ π‘ž = 𝑓(𝐾, 𝐿)

β€’ We’ll assume that the production function is smooth, continuous and differentiable (at least
twice)
πœ•π‘ž
π‘ž
, average product of labour = 𝐴𝑃𝐿 =
πœ•πΏ
𝐿
πœ•π‘ž
π‘ž
= , average product of capital = 𝐴𝑃𝐾 =
πœ•πΎ
𝐾

β€’ Marginal product of labour = 𝑀𝑃𝐿 =
β€’ Marginal product of capital = 𝑀𝑃𝐾

DIMINISHING MP & ELASTICITY
β€’ Law of diminishing returns: as more units of one input is used, while keeping the other input
fixed, the increase in output becomes smaller and smaller
β€’ Confirm: negative second partial derivatives (or MP curves have negative slopes), i
...

β€’ Diminishing returns to labour:

πœ•2 π‘ž
πœ•πΏ2

β€’ Diminishing returns to capital:

πœ•2 π‘ž
πœ•πΎ 2

β€’ Labour elasticity of output = 𝑒 𝐿 =

=

πœ• πœ•π‘ž
πœ•πΏ πœ•πΏ

<0

πœ• πœ•π‘ž
<0
πœ•πΎ πœ•πΎ
𝑀𝑃𝐿
; capital elasticity
𝐴𝑃𝐿

=

of output = 𝑒 𝐾 =

𝑀𝑃𝐾
𝐴𝑃𝐾

COMMON FUNCTIONAL FORMS OF PRODUCTION FUNCTIONS
β€’ You must know how to find MPL; MPK; APL; APK for all of these functions (hint: for CES, you’ll
need the chain rule)
β€’ Cobb-Douglas: π‘ž = 𝐴𝐾 𝛼 𝐿𝛽
𝛽

β€’ Constant elasticity of substitution (CES): π‘ž = 𝐴[𝛼𝐾 + 1 βˆ’ 𝛼

𝛽 1ࡗ𝛽
𝐿 ]

β€’ Linear: π‘ž = π‘ŽπΎ + 𝑏𝐿
β€’ Log: π‘ž = π‘Ž ln 𝐾 + 𝑏 ln 𝐿
Another type of commonly used production function is the fixed proportions production function
π‘ž = min(π‘ŽπΎ, 𝑏𝐿), but this function is not differentiable

ISOQUANTS AND THE MRTS
β€’ Note that the graph of the production function q = f(K; L) is a surface in the π‘ž βˆ’ 𝐾 βˆ’ 𝐿 space (e
...

Fig 14
...
g
...
15)
– has a negative slope
...
g
...
17)
β€’ Note that 𝑀𝑃𝐿 = 𝐴𝑃𝐿 at the point where AP reaches a maximum (Fig 14
...
r
...
π‘₯ = 𝑒 π‘₯ =

π‘€π‘ˆπ‘₯
,
π΄π‘ˆπ‘₯

elasticity of utility w
...
t
...


INDIFFERENCE CURVES & THE MRCS
β€’ Note that the graph of the utility function π‘ˆ = 𝑓(π‘₯, 𝑦) is a surface in the 𝑒 βˆ’ π‘₯ βˆ’ 𝑦 space (e
...
Fig
14
...
g
...
14
...
Find 𝑑π‘₯ ?
β€’ Define z, so that 𝑧 = 0 ⟹ 𝑓(π‘₯, 𝑦) = 𝑧
πœ•π‘§

πœ•π‘§

β€’ The total differential of this function is 𝑑𝑧 = πœ•π‘₯ 𝑑π‘₯ + πœ•π‘¦ 𝑑𝑦
πœ•π‘§

πœ•π‘§

β€’ But 𝑧 = 0 which is a constant, so 𝑑𝑧 = 0 ⟹ βˆ’ πœ•π‘₯ 𝑑π‘₯ = πœ•π‘¦ 𝑑𝑦
β€’ Solving for

𝑑𝑦 𝑑𝑦
:
𝑑π‘₯ 𝑑π‘₯

=βˆ’

πœ•π‘§ΰ΅—
πœ•π‘₯
πœ•π‘§ΰ΅—
πœ•π‘¦

β€’ We can use implicit differentiation to find the slope of iso-z sections (i
...
isoquants and indifference curves)

EXAMPLE 1, PRODUCTION FUNCTION
A firm’s production function is π‘ž = 𝐾 0
...
5
β€’ Find 𝑀𝑃𝐾 and 𝑀𝑃𝐿
...

β€’ Show that 𝑀𝑅𝑇𝑆 = βˆ’

𝑀𝑃𝐿
𝑀𝑃𝐾

SOLUTION, PRODUCTION FUNCTION
β€’ π‘ž = 𝐾 0
...
5
β€’ 𝑀𝑃𝐿 =

πœ•π‘ž
πœ•πΏ

= 0
...
5 πΏβˆ’0
...
5 is a multiplicative constant and differentiate 𝐿0
...
5𝐾 βˆ’0
...
5

β€’ Note: 𝐿0
...
5
β€’ Isoquant if π‘ž = 100 β†’ 100 = 𝐾 0
...
5

β€’ Make K the subject of the formula
β€’ Make the power of K equal to 1 by squaring both sides of the equation
β€’ 1002 = 𝐾 0
...
5

2

β€’ ⟹ 10000 = 𝐾𝐿
β€’ ∴𝐾=

10000
𝐿

= 10000πΏβˆ’1

SOLUTION, PRODUCTION FUNCTION 3
β€’ Implicit differentiation to find the slope of the isoquant
β€’ 100 = 𝐾 0
...
5 , where 100 = π‘ž
πœ•π‘ž Ξ€πœ•πΏ
πœ•π‘ž Ξ€πœ•πΎ

β€’

𝑑𝐾
βˆ’
𝑑𝐿

=

β€’

𝑑𝐾
𝑑𝐿
𝑑𝐾
𝑑𝐿

0
...
5 πΏβˆ’0
...
5𝐾 βˆ’0
...
5
𝐾
βˆ’ = 𝑀𝑅𝑇𝑆
𝐿

β€’

=
=

⟹

𝑑𝐾
𝑑𝐿

=

πœ•π‘ž Ξ€πœ•πΏ
βˆ’ Ξ€
πœ•π‘ž πœ•πΎ

β€’ So, for the Cobb-Douglas production function, the slope of the isoquant depends only on capital intensity

β€’ Show that 𝑀𝑅𝑇𝑆 = βˆ’

𝑀𝑃𝐿
𝑀𝑃𝐾

πœ•π‘ž
= 0
...
5 πΏβˆ’0
...
5𝐾 βˆ’0
...
5
πœ•πΎ
𝑀𝑃𝐿
0
...
5 πΏβˆ’0
...
5πΎβˆ’0
...
5
𝐿
𝑀𝑃𝐿
𝐾
∴
= βˆ’ = 𝑀𝑅𝑇𝑆
𝑀𝑃𝐾
𝐿

β€’ 𝑀𝑃𝐿 =
β€’
β€’
β€’

βˆ’π‘€π‘…π‘‡π‘†

EXAMPLE 2, UTILITY FUNCTION
β€’ An individual’s utility function is π‘ˆ = π‘₯ + 1

0
...
5

1
...


Find the indifference curve for π‘ˆ = 6

3
...


Show that 𝑀𝑅𝐢𝑆 = βˆ’

π‘€π‘ˆπ‘₯
π‘€π‘ˆπ‘¦

SOLUTION, UTILITY FUNCTION 1
β€’ π‘ˆ = π‘₯+1

0
...
5

β€’ π‘€π‘ˆπ‘₯ and π‘€π‘ˆπ‘¦ :
β€’ π‘€π‘ˆπ‘₯ =

πœ•π‘ˆ
πœ•π‘₯

= 0
...
5

0
...
5

is a multiplicative constant and differentiate π‘₯ + 1

= 0
...
5

0
...
5

βˆ’0
...
5

SOLUTION, UTILITY FUNCTION 2
β€’ Indifference curve if π‘ˆ = 6
β€’ 6= π‘₯+1

0
...
5

β€’ To make y the subject of the formula, make the power of y equal to 1 by squaring both sides of
the equation
β€’

62

=

0
...
5

2

⟹ 36 = π‘₯ + 1 𝑦 + 2

βˆ’2

β€’ Implicit differentiation to find the slope of the indifference curve:
β€’ For 6 = π‘₯ + 1
β€’ βˆ’
β€’
β€’

𝑑𝑦
𝑑π‘₯

𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯

=
=

=

πœ•π‘’Ξ€πœ•π‘₯
πœ•π‘’Ξ€πœ•π‘¦

0
...
5 ,

𝑦+2

𝑑𝑦
𝑑π‘₯

=βˆ’

where π‘ˆ = 6

πœ•π‘’Ξ€πœ•π‘₯
πœ•π‘’Ξ€πœ•π‘¦

0
...
5 𝑦+2 0
...
5 π‘₯+1 0
...
5
𝑦+2
βˆ’
π‘₯+1

SOLUTION, UTILITY FUNCTION
β€’ Show that 𝑀𝑅𝐢𝑆 = βˆ’
β€’ π‘€π‘ˆπ‘₯ =
β€’ π‘€π‘ˆπ‘¦ =
β€’ ⟹

π‘€π‘ˆπ‘₯
π‘€π‘ˆπ‘¦

β€’ βˆ΄βˆ’

πœ•π‘ˆ
πœ•π‘₯
πœ•π‘ˆ
πœ•π‘¦

=

π‘€π‘ˆπ‘₯
π‘€π‘ˆπ‘¦

π‘€π‘ˆπ‘₯
π‘€π‘ˆπ‘¦

= 0
...
5

= 0
...
5

𝑦+2

0
...
5 𝑦+2 0
...
5 π‘₯+1 0
...
5

=βˆ’

𝑦+2
π‘₯+1

= 𝑀𝑅𝐢𝑆

𝑦+2

=

0
...
5

𝑦+2
π‘₯+1

= βˆ’π‘€π‘…πΆπ‘†

FIRST-ORDER & SECOND-ORDER CONDITIONS
β€’ Suppose that 𝑧 = 𝑓(π‘₯, 𝑦)
β€’ To find the minimum and/or maximum values of z:

β€’ First-order (necessary) condition:

πœ•π‘§
πœ•π‘₯

=

πœ•π‘§
πœ•π‘¦

=0

β€’ Second-order (sufficient) condition:
β€’ Maximum:

πœ•2 𝑧
πœ•π‘₯ 2

β€’ Minimum:

πœ•2 𝑧
πœ•π‘₯ 2

< 0,

πœ•2 𝑧
πœ•π‘¦ 2

> 0,

πœ•2 𝑧
πœ•π‘¦ 2

< 0,

πœ•2 𝑧
πœ•π‘₯πœ•π‘¦

> 0,

πœ•2 𝑧
πœ•π‘₯πœ•π‘¦

Γ—

πœ•2 𝑧
πœ•π‘¦πœ•π‘₯

Γ—

πœ•2 𝑧
πœ•π‘¦πœ•π‘₯

<

πœ•2 𝑧
πœ•π‘₯ 2

πœ•2 𝑧
πœ•π‘¦ 2

Γ—

<

πœ•2 𝑧
πœ•π‘₯ 2

πœ•2 𝑧
Γ— 2
πœ•π‘¦

EXAMPLE
β€’ Suppose that 𝑧 = 2π‘₯ + 𝑦 βˆ’ π‘₯ 2 + π‘₯𝑦 βˆ’ 𝑦 2
β€’ Find the values of π‘₯, 𝑦 that minimize/maximize z
...
547-8)

EXAMPLE (COBB-DOUGLAS PRODUCTION FUNCTION)
Suppose that a perfectly competitive firm can sell its output at 𝑅20, while its costs are 4𝐾 +
5𝐿 and its production function is π‘ž = 𝐾 0
...
5
...
Show that these levels of 𝐿, 𝐾 satisfy the FOC and SOC for profit maximization
...

β€’ πœ‹ = 𝑅 βˆ’ 𝐢 = 20π‘ž βˆ’ 4𝐾 + 5𝐿 = 20 𝐾 0
...
5 βˆ’ 4𝐾 βˆ’ 5𝐿
β€’ FOC:

β€’
β€’

πœ•πœ‹
πœ•πΏ
πœ•πœ‹
πœ•πΎ

πœ•πœ‹
πœ•πΏ

=

πœ•πœ‹
πœ•πΎ

=0

= 10𝐾 0
...
5 βˆ’ 5 = 0

[1]

= 8𝐾 βˆ’0
...
5 βˆ’ 4 = 0

[2]

β€’ Now, 10𝐾 0
...
5 = 5 [1a] and 8𝐾 βˆ’0
...
5 = 4 [2a]
β€’

10𝐾 0
...
5
[1a]/[2a]: βˆ’0
...
5
8𝐾
𝐿

=

5
4

SOLUTION, PROFIT MAXIMISATION
β€’ 1
...
25 β†’ 𝐾 = 𝐿
β€’ Plug into [1a]: 10𝐾 0
...
5 = 5 ⟹ 10𝐾 βˆ’0
...
1 =

5
10

β€’ Raise both sides to the power βˆ’10 =
β€’ 𝐾

βˆ’0
...
4 πΏβˆ’1
...
002 < 0 (substitute K=L=1024)
2
πœ•πΏ
πœ•2 πœ‹
= βˆ’4
...
6 𝐿0
...
002 < 0 (substitute K=L=1024)
2
πœ•πΎ
πœ•2 πœ‹
πœ•2 πœ‹
=
= 4𝐾 βˆ’0
...
5 = 0
...
000004,

πœ•2 πœ‹
πœ•πΏπœ•πΎ

Γ—

πœ•2 πœ‹
πœ•πΎπœ•πΏ

= 0
...
000004

β€’ Therefore, profits are maximised if 𝐾 = 1024; 𝐿 = 1024, because FOC and SOC are met

β€’ Note: for very small numbers, can use scientific notation
β–ͺ 0
...
8 Γ— 10βˆ’1
β–ͺ 0
...
8 Γ— 10βˆ’3
β–ͺ 0
...
8 Γ— 10βˆ’6

PRICE DISCRIMINATION
β€’ Price discrimination: sell same product at different prices to different customers (e
...
household
and industrial; domestic and foreign, etc
...
e
...
e
...
e
...
g
...
The
inverse demand functions for the household and industrial markets are 𝑝1 = 500 βˆ’ π‘ž1 and 𝑝2 =

360 βˆ’ 1
...
Find the values of π‘ž1
and π‘ž2 (as well as 𝑝1 and 𝑝2 ) that will maximise profit for the monopolist
...


β€’ Next, suppose that the monopolist does not price discriminate
...
If you were to advise the monopolist, would you advise for or against
price discrimination? Explain
...
5π‘ž22 , 𝐢 = 50000 + 20 π‘ž1 + π‘ž2
β€’ πœ‹ = 𝑅1 + 𝑅2 βˆ’ 𝐢 = 500π‘ž1 βˆ’ π‘ž12 + 360π‘ž2 βˆ’ 1
...
5π‘ž22 βˆ’ 50000
β€’ FOC:

πœ•πœ‹
πœ•π‘ž1

=

πœ•πœ‹
πœ•π‘ž2

=0

β€’

πœ•πœ‹
πœ•π‘ž1

= 480 βˆ’ 2π‘ž1 = 0, ∴ π‘ž1 = 240

β€’

πœ•πœ‹
πœ•π‘ž2

= 340 βˆ’ 3π‘ž2 = 0, ∴ π‘ž2 = 340Ξ€3 = 113
...
333, because FOC and SOC met

PROFITS WITHOUT PRICE DISCRIMINATION
β€’ Without price discrimination, 𝑝1 = 𝑝2 = 𝑝 and π‘ž = π‘ž1 + π‘ž2
β€’ Rewrite the inverse demand functions so that π‘ž1 , π‘ž2 are the subjects:
720βˆ’2𝑝
3
720βˆ’2𝑝
3

β€’ π‘ž1 = 500 βˆ’ 𝑝 and 1
...
t
...
p: 𝑝 =
= 444 βˆ’ 0
...
6π‘ž2 ⟹ 𝑀𝑅 =
= 444 βˆ’ 1
...
2π‘ž = 20, ∴ π‘ž = 353
...
67, profit without price discrimination = 24906
...

β€’ Advice = price discriminate (greater profit)

PROFIT MAX BY A 2-PRODUCT FIRM
β€’ Suppose a firm produces two products, then:
β€’ 𝑅 = 𝑅1 + 𝑅2 = 𝑝1 π‘ž1 + 𝑝2 π‘ž2 , where 𝑝1 = 𝑓 π‘ž1 , 𝑝2 = 𝑔 π‘ž2

β€’ πœ‹ = 𝑅 βˆ’ 𝐢 = 𝑝1 π‘ž1 + 𝑝2 π‘ž2 βˆ’ 𝐢, 𝐢 = β„Ž(π‘ž1 , π‘ž2 )
β€’ FOC:

πœ•πœ‹
πœ•π‘ž1

=

πœ•πœ‹
πœ•π‘ž2

=0

β€’ Or FOC: 𝑀𝑅1 = 𝑀𝐢1 , 𝑀𝑅2 = 𝑀𝐢2
β€’

πœ•2 πœ‹
SOC: 2
πœ•π‘ž1

β€’ Or

πœ•2 πœ‹
< 0, 2
πœ•π‘ž2
πœ•π‘€π‘…1
SOC:
πœ•π‘ž1

πœ•2 πœ‹
πœ•2 πœ‹
πœ•2 πœ‹
< 0, 2 Γ— 2 >
πœ•π‘ž1
πœ•π‘ž2
πœ•π‘ž1 πœ•π‘ž2
πœ•π‘€πΆ1 πœ•π‘€π‘…2
πœ•π‘€πΆ2
<
,
<
πœ•π‘ž1
πœ•π‘ž2
πœ•π‘ž2

Γ—

πœ•2 πœ‹
πœ•π‘ž2 πœ•π‘ž1

EXAMPLE: PROFIT MAX BY A 2-PRODUCT FIRM
A monopolist produces two goods, A and B
...
Total cost is 𝐢 = π‘žπ‘Ž2 + 3π‘žπ‘Ž π‘žπ‘ + π‘žπ‘2
...
Show that the first-order and second-order conditions
for profit maximization are met at these levels of π‘ž and 𝑝
...

β€’ πœ‹ = π‘…π‘Ž + 𝑅𝑏 βˆ’ 𝐢 = 50π‘žπ‘Ž βˆ’ π‘žπ‘Ž2 + 95π‘žπ‘ βˆ’ 3π‘žπ‘2 βˆ’ π‘žπ‘Ž2 βˆ’ 3π‘žπ‘Ž π‘žπ‘ βˆ’ π‘žπ‘2

β€’ πœ‹ = 50π‘žπ‘Ž + 95π‘žπ‘ βˆ’ 2π‘žπ‘Ž2 βˆ’ 4π‘žπ‘2 βˆ’ 3π‘žπ‘Ž π‘žπ‘
β€’ FOC:
β€’
β€’
β€’
β€’
β€’
β€’

πœ•πœ‹
πœ•π‘žπ‘Ž
πœ•πœ‹
πœ•π‘žπ‘

πœ•πœ‹
πœ•π‘žπ‘Ž

=

πœ•πœ‹
πœ•π‘žπ‘

=0

= 50 βˆ’ 4π‘žπ‘Ž βˆ’ 3π‘žπ‘ = 0

[1]

= 95 βˆ’ 3π‘žπ‘Ž βˆ’ 8π‘žπ‘ = 0

[2]

3 Γ— [1] and 4 Γ— [2]
150 βˆ’ 12π‘žπ‘Ž βˆ’ 9π‘žπ‘ = 0
[1a]
380 βˆ’ 12π‘žπ‘Ž βˆ’ 32π‘žπ‘ = 0
[2a]
[1a] - [2a]: 150 βˆ’ 12π‘žπ‘Ž βˆ’ 9π‘žπ‘ βˆ’ 380 + 12π‘žπ‘Ž + 32π‘žπ‘ = 0

β€’ ⟹ βˆ’230 = βˆ’23π‘žπ‘ , ∴ π‘žπ‘ = 10 ⟹ π‘žπ‘Ž = 5
β€’ π‘π‘Ž = 45, 𝑝𝑏 = 65

SOLUTION: PROFIT MAXIMISATION BY A 2-PRODUCT FIRM
β€’

πœ•2 πœ‹
SOC: 2
πœ•π‘ž1

β€’

πœ•2 πœ‹
2
πœ•π‘žπ‘Ž

=

πœ•
πœ•π‘žπ‘Ž

50 βˆ’ 4π‘žπ‘Ž βˆ’ 3π‘žπ‘ = βˆ’4 < 0

β€’

πœ•2 πœ‹
πœ•π‘žπ‘2

=

πœ•
πœ•π‘žπ‘

95 βˆ’ 3π‘žπ‘Ž βˆ’ 8π‘žπ‘ = βˆ’8 < 0

β€’

πœ•2 πœ‹
πœ•π‘žπ‘Ž πœ•π‘žπ‘

πœ•2 πœ‹
Γ—
πœ•π‘žπ‘ πœ•π‘žπ‘Ž

β€’

πœ•2 πœ‹
2
πœ•π‘žπ‘Ž

πœ•2 πœ‹
πœ•π‘žπ‘2

β€’

πœ•2 πœ‹
πœ•π‘žπ‘Ž πœ•π‘žπ‘

Γ—

<

πœ•2 πœ‹
0, 2
πœ•π‘ž2

< 0,

πœ•2 πœ‹
πœ•π‘ž12

Γ—

πœ•2 πœ‹
πœ•π‘ž22

>

πœ•2 πœ‹
πœ•π‘ž1 πœ•π‘ž2

Γ—

πœ•2 πœ‹
πœ•π‘ž2 πœ•π‘ž1

= βˆ’3

= βˆ’4 Γ— βˆ’8 = 32

πœ•2 πœ‹
Γ—
πœ•π‘žπ‘ πœ•π‘žπ‘Ž

= βˆ’3

2

= 9 β†’ 9 < 32

β€’ Therefore, profits are maximised if π‘žπ‘Ž = 5, π‘žπ‘ = 10, because FOC and SOC met

COST MINIMISATION, MULTI-PLANT FIRM
β€’ In this application, firm produces one product, but at plants at more than one location (many
large firms do this)
β€’ Total production cost is sum of all individual plants’ cost functions

β€’ To minimise cost:
β€’ FOC: Set all first partial derivatives of total cost function jointly equal to zero
β€’ This implies that marginal cost must be equalised across all plants for the firm to minimise its total cost
β€’ SOC: all second partial derivatives must be positive, while product of second partial derivatives must be
greater than product of cross partial derivatives

β€’ For 2-plant firm (with cost function 𝐢 = 𝑓 π‘ž1 , π‘ž2 , where π‘ž1 and π‘ž2 refer to the quantities
produced at each plant), these conditions are then
β€’ FOC:

β€’

πœ•πΆ
πœ•π‘ž1

πœ•2 𝐢
SOC: 2
πœ•π‘ž1

=

πœ•πΆ
πœ•π‘ž2

<

πœ•2 𝐢
0, 2
πœ•π‘ž2

=0

< 0,

πœ•2 𝐢
πœ•π‘ž12

Γ—

πœ•2 𝐢
πœ•π‘ž22

>

πœ•2 𝐢
πœ•π‘ž1 πœ•π‘ž2

πœ•2 𝐢
Γ—
πœ•π‘ž2 πœ•π‘ž1

EXAMPLE, COST MINIMISATION, MULTI-PLANT FIRM
A firm produces computer monitors at two separate plants in Bloemfontein and
Kimberley
...
05π‘ž12

βˆ’ 10π‘ž1 , 𝐢2 =

1
400 βˆ’ π‘ž2 +
π‘ž23 ,
147

while total cost is 𝐢 = 𝐢1 + 𝐢2
...


SOLUTION, COST MINIMISATION, MULTI-PLANT FIRM
β€’ 𝐢 = 𝐢1 + 𝐢2 ⟹ 𝐢 = 400 + 0
...
05π‘ž12 βˆ’ 10π‘ž1 βˆ’ π‘ž2 +
β€’ FOC:

πœ•πΆ
πœ•π‘ž1

=

πœ•πΆ
πœ•π‘ž2

1
π‘ž23
147

=0

β€’

πœ•πΆ
πœ•π‘ž1

= 0
...
1π‘ž1 = 10 ⟹ π‘ž1 = 100

β€’

πœ•πΆ
πœ•π‘ž2

= βˆ’1 +

3
π‘ž22
147

3
π‘ž22
147

=0⟢

= 1 ⟹ π‘ž22 = 49, β†’ π‘ž2 = Β± 49 = Β±7

β€’ But π‘ž2 β‰₯ 0, ∴ π‘ž2 = 7

β€’

πœ•2 𝐢
SOC: 2
πœ•π‘ž1

β€’

πœ•2 𝐢
πœ•π‘ž12

=

πœ•
πœ•πΆ
πœ•π‘ž1 πœ•π‘ž1

= 0
...
1 Γ—

πœ•2 𝐢
πœ•π‘ž2 πœ•π‘ž1

πœ•
πœ•πΆ
πœ•π‘ž2 πœ•π‘ž1
42
147

=

=0

42
1470

=0Γ—0= 0<

42
1470

β€’ Cost minimised at π‘ž1 = 100, π‘ž2 = 7, because FOC and SOC met


Title: Multivariate optimisation in economics
Description: A summary on multivariate optimisation, covering: multivariate functions, partial derivatives, production function, utility functions, total differential and implicit differentiation, first order condition, second order condition, profit maximisation, cost minimisation, and price discrimination.