Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Trigonometry Basics1
Description: Simple highschool concepts of Trigonometry with examples for brain farts

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Trigonometry Basics1 
 

 
Sine (sin) = 

Opposite
Hypotenuse

Cosecant (csc) = 

Hypotenuse
Opposite

Adjacent

Secant (sec) = 

Opposite

Cotangent (cot) =  Opposite  

Cosine (cos) =  Hypotenuse
Tangent (tan) =  Adjacent

Hypotenuse
Adjacent

 

 

Adjacent

Remember, most teachers won’t accept trig work if you don’t have some symbol in your 
equations for the angle (like “X” or “ᵯ”) if you don’t have a measurement 
Example: 
acceptable trig equation: 



sin(ᵯ) = opp / hyp 
cos(25) = adj / 5 

Unacceptable trig equation: 



sin = opp / hyp 
cos = adj / 5 

Pythagorean Identities: 
sin 2 +  cos2   = 1     which means that      tan 2 +  1  =  sec 2    and     1  +  cot2   =  csc 2  
Pythagorean Theorem: 
Opposite 2   +  Adj acent2   =  H ypotenuse 2  
Inverse Trig: 
You can find an angle in a right triangle by solving with inverse trig
...
267  
sin −1 (
...
47°  = Y 
 




√X 2   = √209  ≈  14
...
47°   ≈  74
...
 
4
○ cos−1 ( 15 )  ≈  74
...
53°   =  15
...
47)  =   15  



15  •  cos(15
...
46in  =  X  

 
 
 
 

  
When using Trig to solve a right triangle on a coordinate plane: 




X coordinate = sin(ᵯ) 
Y coordinate = cos(ᵯ) 
tan(ᵯ) = sin(ᵯ)  ÷  cos(ᵯ) 

 


Title: Trigonometry Basics1
Description: Simple highschool concepts of Trigonometry with examples for brain farts