Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: The problems and solutions in Algebraic and Rational Expressions
Description: ADDING AND SUBTRACTING ALGEBRAIC EXPRESSIONS 2 Addition and subtraction of monomials: 2 MULTYPLY ALGEBRAIC EXPRESSIONS 4 Multiply polynomials by monomials 4 Multiply polynomials by polynomials 5 DIVIDING ALGEBRAIC EXPRESSIONS 7 Dividing monomials by monomials 7 Dividing polynomials by integers and monomials 8 Rational Expressions 10 Simplifying rational expressions using algebraic Identities 10 Simplifying an rational expressions using factorization 11 Multiplying rational expressions 11 Dividing a Rational expression with another rational expression 13 Sum and Difference of Rational Expressions 14 To add or subtract two rational expressions with the same denominator 14 To add or subtract two rational expressions with unlike denominator 15 Algebraic Identities 17

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


The problems and solutions in Algebraic and Rational Expressions
More than 80 problems

 Before this book you have to read :
β€œOperations with Algebraic and Rational Expressions”

AUGUST 26, 2022
HELMA ISAZEI
Helma_isazei@outlook
...
2
Addition and subtraction of monomials:
...
4
Multiply polynomials by monomials
...
5
DIVIDING ALGEBRAIC EXPRESSIONS
...
7
Dividing polynomials by integers and monomials
...
10
Simplifying rational expressions using algebraic Identities
...
11
Multiplying rational expressions
...
13
Sum and Difference of Rational Expressions
...
14
To add or subtract two rational expressions with unlike denominator
...
17

1|Page

Operations with Algebraic and Rational Expressions

HELMA NOTE

ADDING AND SUBTRACTING ALGEBRAIC EXPRESSIONS
Addition and subtraction of monomials:
Example 1:

π‘š + 2 + 3π‘š βˆ’ 7 = 4π‘š βˆ’ 5

Example 2:

3π‘Ž + 2𝑏 + (6π‘Ž βˆ’ 6𝑏) = 3π‘Ž + 2𝑏 + 6π‘Ž βˆ’ 6𝑏 = 9π‘Ž βˆ’ 4𝑏

Example 3:

2𝒙2 βˆ’ 5𝒙 βˆ’ 9 βˆ’ (𝒙2 βˆ’ 2𝒙 βˆ’ 1) =
2𝒙2 βˆ’ 5𝒙 βˆ’ 9 βˆ’ 𝒙2 + 2𝒙 + 1 =
𝒙2 βˆ’ 3𝒙 βˆ’ 8
Example 4:

π’‚πŸ β€Š βˆ’ β€Š πŸ‘π’‚π’™ + π’™πŸ β€Š βˆ’ [πŸ’π’‚πŸ + πŸ“π’‚π’™ βˆ’ (πŸ‘π’‚πŸ βˆ’ πŸ–π’‚π’™)] =

π’‚πŸ β€Š βˆ’ β€Š πŸ‘π’‚π’™ + π’™πŸ β€Š βˆ’ [πŸ’π’‚πŸ + πŸ“π’‚π’™ βˆ’ πŸ‘π’‚πŸ + πŸ–π’‚π’™] =
π’‚πŸ β€Š βˆ’ β€Š πŸ‘π’‚π’™ + π’™πŸ β€Š βˆ’ πŸ’π’‚πŸ βˆ’ πŸ“π’‚π’™ + πŸ‘π’‚πŸ βˆ’ πŸ–π’‚π’™ = π’™πŸ βˆ’ β€Š πŸπŸ”π’‚π’™ β€Š

Example 5:

β€Š βˆ’ [πŸ’π’ƒπŸ + πŸ“π’‚ βˆ’ πŸ’ βˆ’ (π’ƒπŸ βˆ’ πŸ‘π’‚ + πŸ”)] =
β€Š βˆ’ [πŸ’π’ƒπŸ + πŸ“π’‚ βˆ’ πŸ’ βˆ’ π’ƒπŸ + πŸ‘π’‚ βˆ’ πŸ”] =
β€Š βˆ’ πŸ’π’ƒπŸ βˆ’ πŸ“π’‚ + πŸ’ + π’ƒπŸ βˆ’ πŸ‘π’‚ + πŸ” =
β€Š βˆ’ πŸ‘π’ƒπŸ βˆ’ πŸ–π’‚ + 𝟏𝟎

2|Page

HELMA NOTE

Operations with Algebraic and Rational Expressions

Example 6:

3𝒙2 βˆ’ 4𝒙 + 8 βˆ’ (5𝒙2 βˆ’ 6𝒙 βˆ’ 1) =
3𝒙2 βˆ’ 4𝒙 + 8 βˆ’ 5𝒙2 + 6𝒙 + 1 =
βˆ’2𝒙2 + 2𝒙 + 9

Example 7:

5𝒙2 + 10π’™π’š + 25 βˆ’ (𝒙2 + 12π’™π’š + 15) =
5𝒙2 + 10π’™π’š + 25 βˆ’ 𝒙2 βˆ’ 12π’™π’š βˆ’ 15
= 4𝒙2 βˆ’ 2π’™π’š + 10

Example 8:

(π’šπŸ + π’š + 𝟏) + (π’šπŸ βˆ’ π’š βˆ’ 𝟏) =
π’šπŸ + π’š + 𝟏 + π’šπŸ βˆ’ π’š βˆ’ 𝟏 = πŸπ’šπŸ

Example 9:

(πŸ•π’šπŸ + πŸπŸŽπ’š βˆ’ πŸ“) βˆ’ (πŸ“π’šπŸ βˆ’ πŸ–π’š βˆ’ 𝟏)
πŸ•π’“πŸ + πŸπŸŽπ’“ βˆ’ πŸ“ βˆ’ πŸ“π’“πŸ + πŸ–π’š + 𝟏
= πŸπ’“πŸ + πŸπŸ–π’š βˆ’ πŸ’

οƒΌ

Example 10:

(πŸπ’™ + πŸ“π’™π’š βˆ’ πŸ‘π’š) + (πŸπŸπ’™ βˆ’ πŸπ’™π’š βˆ’ πŸ“π’š) =
πŸπ’™ + πŸ“π’™π’š βˆ’ πŸ‘π’š + πŸπŸπ’™ βˆ’ πŸπ’™π’š βˆ’ πŸ“π’š =
πŸπŸ’π’™ + πŸ‘π’™π’š – πŸ–π’š

3|Page

HELMA NOTE

Operations with Algebraic and Rational Expressions

MULTYPLY ALGEBRAIC EXPRESSIONS
Multiply polynomials by monomials
Examples 11:

3𝑦(𝑦 2 βˆ’ 3𝑦 + 1) =
3𝑦 3 βˆ’ 9𝑦 2 + 3𝑦
Examples 12:

4π‘₯(2π‘₯ βˆ’ 3) βˆ’ 3π‘₯(π‘₯ + 2) =
πŸ–π’™πŸ βˆ’ πŸπŸπ’™ βˆ’ πŸ‘π’™πŸ βˆ’ πŸ”π’™ = πŸ“π’™πŸ βˆ’ πŸπŸ–π’™

Examples 13:

πŸ’π’“ 𝟐 + πŸ‘ βˆ’ πŸ“π’“(𝒓 βˆ’ πŸ–) =
πŸ’π’“ 𝟐 + πŸ‘ βˆ’ πŸ“π’“ 𝟐 + πŸ’πŸŽπ’“ =
βˆ’π’“ 𝟐 + πŸ’πŸŽπ’“ + πŸ‘

Examples 14:

πŸπ’™πŸ (𝒙 βˆ’ πŸ“) βˆ’ 𝒙(πŸ‘π’™πŸ βˆ’ 𝟐) =
πŸπ’™πŸ‘ βˆ’ πŸπŸŽπ’™πŸ βˆ’ πŸ‘π’™πŸ‘ + πŸπ’™ =
βˆ’π’™πŸ‘ βˆ’ πŸπŸŽπ’™πŸ + πŸπ’™

Examples 15:

πŸ‘π’Ž(π’Ž + 𝒂 βˆ’ πŸ“) =
πŸ‘π’ŽπŸ + πŸ‘π’Žπ’‚ βˆ’ πŸπŸ“π’Ž

Examples 16:

𝟏
πŸ–π’šπŸ πŸ”π’š πŸ’
𝟐
𝟐
(πŸ–π’š + πŸ”π’š βˆ’ πŸ’) =
+
βˆ’
= πŸ’π’š + πŸ‘ βˆ’
πŸπ’š
πŸπ’š πŸπ’š πŸπ’š
π’š
4|Page

Operations with Algebraic and Rational Expressions

HELMA NOTE
Examples 17:

π’™πŸ π’š(π’™πŸ βˆ’ πŸπ’™π’š + π’šπŸ ) βˆ’ π’™π’šπŸ (πŸπ’™πŸ βˆ’ πŸ‘π’™π’š βˆ’ π’šπŸ ) =
π’™πŸ’ π’š βˆ’ πŸπ’™πŸ‘ π’š + π’™πŸ π’šπŸ‘ βˆ’ πŸπ’™πŸ‘ π’šπŸ + πŸ‘π’™πŸ π’šπŸ‘ + π’™π’šπŸ =
π’™πŸ’ π’š βˆ’ πŸπ’™πŸ‘ π’š + πŸ’π’™πŸ π’šπŸ‘ βˆ’ πŸπ’™πŸ‘ π’šπŸ + π’™π’šπŸ οƒ˜Done

Multiply polynomials by polynomials
Examples 18:

(𝒙 + 𝟐 )(π’š + πŸ‘ ) = π’™π’š + πŸ‘π’™ + πŸπ’š + πŸ”
Examples 19:

(πŸπ’™ + 𝟏 )(π’š + πŸ‘ ) = πŸπ’™π’š + πŸ”π’™ + π’š + πŸ‘

Examples 20:

(π’š + 𝟏 )(π’š + πŸ‘ ) = π’šπŸ + (𝟏 + πŸ‘)π’š + (𝟏 Γ— πŸ‘) = π’šπŸ + πŸ’π’š + πŸ‘

(Identity IV)

Examples 21:

(𝒙 + 𝒂 )(𝒙 + 𝒃 ) = π’™πŸ + 𝒃𝒙 + 𝒂𝒙 + 𝒂𝒃
= π’™πŸ + 𝒙(𝒃 + 𝒂) + 𝒂𝒃

(Identity IV)

Examples 22:
𝟐

𝟐

(𝒙 + βˆšπŸ“ ) = π’™πŸ + 𝟐(𝒙)(βˆšπŸ“) + (βˆšπŸ“) = π’™πŸ βˆ’ πŸβˆšπŸ“π’™ + πŸ“ (Identity I)

Examples 23:

(𝒙 + πŸ“ )(𝒙 βˆ’ πŸ“ ) = π’™πŸ βˆ’ πŸ“πŸ
= π’™πŸ βˆ’ πŸπŸ“
5|Page

(Identity III)

HELMA NOTE

Operations with Algebraic and Rational Expressions

Examples 24:

(𝒙 βˆ’ πŸ“ )𝟐 = π’™πŸ βˆ’ 𝟐(𝒙)(πŸ“) + πŸ“πŸ
= π’™πŸ βˆ’ πŸπŸŽπ’™ + πŸπŸ“

(Identity II)

Examples 25:

𝟏 𝟐
𝟏
𝟏 𝟐
𝟐
𝟐
𝟐
(𝒙 + ) = (𝒙 ) + 𝟐(𝒙 ) ( ) + ( )
𝟐
𝟐
𝟐
𝟐

= π’™πŸ’ + π’™πŸ +

𝟏
πŸ’

(Identity I)

Examples 26:

𝟐 𝟐
𝟐
𝟐 𝟐
𝟐
(π’š βˆ’ ) = (π’š) βˆ’ 𝟐(π’š) ( ) + ( )
πŸ‘
πŸ‘
πŸ‘
𝟐

πŸ’

πŸ‘

πŸ—

= π’šπŸ βˆ’ π’š +

(Identity II)

Examples 27:

(𝒙 + 𝟐 )(πŸπ’™ + πŸ‘π’™ + πŸ“ ) = πŸπ’™πŸ + πŸ‘π’™πŸ + πŸ“π’™ + πŸ’π’™ + πŸ”π’™ + 𝟏𝟎
= πŸ“π’™πŸ + πŸπŸ“π’™ + 𝟏𝟎
Examples 28:

(πŸ‘π’™πŸ + πŸπ’™ + πŸ“ )(π’™πŸ + πŸ‘π’™ + 𝟐 )
= πŸ‘π’™πŸ’ + πŸ—π’™πŸ‘ + πŸ”π’™πŸ + πŸπ’™πŸ‘ + πŸ”π’™πŸ + πŸ’π’™ + πŸ“π’™πŸ + πŸπŸ“π’™ + 𝟏𝟎
= πŸ‘π’™πŸ’ + πŸπŸπ’™πŸ‘ + πŸπŸ•π’™πŸ + πŸπŸ—π’™ + 𝟏𝟎

Examples 29:

(𝐀 – 𝟐)(πŸ–π€ – πŸ•) = πŸ–π’ŒπŸ βˆ’ πŸ•π’Œ βˆ’ πŸπŸ”π’Œ + πŸπŸ’ = πŸ–π’ŒπŸ βˆ’ πŸπŸ‘π’Œ + πŸπŸ’

6|Page

HELMA NOTE

Operations with Algebraic and Rational Expressions

DIVIDING ALGEBRAIC EXPRESSIONS
Dividing monomials by monomials
Examples 30:

πŸπŸ–π’šπŸ“ πŸ‘π’šπŸ
πŸπŸ–π’š Γ· πŸ”πŸŽπ’š =
=
πŸ”πŸŽπ’šπŸ‘
𝟏𝟎
πŸ“

πŸ‘

Examples 31:

πŸ”π’™πŸ•
πŸ”π’™ Γ· πŸ‘π’™ = πŸ’ = πŸπ’™πŸ‘
πŸ‘π’™
πŸ•

πŸ’

Examples 32:

πŸπŸŽπ’ŽπŸ• πŸ’π’ŽπŸ“
πŸπŸŽπ’Ž Γ· πŸπŸ“π’Ž =
=
πŸπŸ“π’ŽπŸ
πŸ“
πŸ“

πŸ‘

Examples 33:

πŸ–π’™πŸ“ π’šπŸπŸ
= βˆ’πŸ’π’™πŸ π’šπŸ
πŸ‘
𝟏𝟎
βˆ’πŸπ’™ π’š
Examples 34:

πŸ–π’™πŸ’ π’šπŸ’ 𝒛
= πŸπ’™π’›βˆ’πŸ
πŸ‘
πŸ’
πŸ‘
πŸ’π’™ π’š 𝒛

Examples 35:

πŸ”π’™πŸ π’šπŸ‘
𝟏 βˆ’πŸ‘
=
𝒙 π’š
πŸπŸπ’™πŸ“ π’šπŸ 𝟐

7|Page

π’™βˆ’πŸ‘ =

𝟏
π’™πŸ‘

HELMA NOTE

Operations with Algebraic and Rational Expressions

Examples 36:

πŸ”π’‚πŸ’ π’ƒπŸ πŸ”π’‚πŸ‘
=
πŸ“π’‚π’ƒπŸ
πŸ“
Examples 37:

π’ŽπŸ• π’πŸ“
= π’ŽπŸ” π’πŸ’
π’Žπ’

Dividing polynomials by integers and monomials
Examples 38:

(πŸπŸŽπ’™π’š + πŸπŸ”π’™) Γ· πŸ’π’™ =

πŸπŸŽπ’™π’š πŸπŸ”π’™
+
= πŸ“π’š + πŸ’
πŸ’π’™
πŸ’π’™

Examples 39:

πŸ“π’™π’šπŸ’ + πŸπŸ“π’™πŸ π’šπŸ“ + πŸ’πŸŽπ’™πŸ‘ π’šπŸ
= π’šπŸ‘ + πŸ“π’™π’šπŸ’ + πŸ–π’™πŸ π’š
πŸ“π’™π’š

Examples 40:

πŸπŸ–π’šπŸ• πŸ—π’šπŸ‘
π’šπŸ“
βˆ’ πŸ‘+ πŸ‘
(πŸπŸ–π’š βˆ’ πŸ—π’š + π’š ) Γ· πŸ—π’š =
πŸ—π’šπŸ‘
πŸ—π’š
πŸ—π’š
πŸ•

πŸ‘

πŸ“

πŸ‘

π’šπŸ
= πŸπ’š βˆ’ 𝟏 +
πŸ—
πŸ’

Examples 41:

(πŸπ’™ + πŸ’π’š) Γ· 𝟐 =

8|Page

πŸπ’™ πŸ’π’š
+
= 𝒙 + πŸπ’š
𝟐
𝟐

Operations with Algebraic and Rational Expressions

HELMA NOTE
Examples 42:

(πŸ’πŸ—π’‚πŸ

𝟐)

𝒃 βˆ’ πŸπŸ’π’‚π’ƒ + 𝒂𝒃

πŸ’πŸ—π’‚πŸ 𝒃 πŸπŸ’π’‚π’ƒ π’‚π’ƒπŸ
Γ· πŸ•π’‚π’ƒ =
βˆ’
+
πŸ•π’‚π’ƒ
πŸ•π’‚π’ƒ πŸ•π’‚π’ƒ
= πŸ•π’‚ βˆ’ 𝟐 +

𝒃
πŸ•

Examples 43:

π’™πŸ‘

(

+

πŸ‘

πŸ“π’™πŸ
𝟐

+

πŸ•π’™

π’™πŸ‘

πŸ‘

πŸ‘(πŸπ’™)

) Γ· πŸπ’™ =

+

πŸ“π’™πŸ
𝟐(πŸπ’™)

+

πŸ•π’™
πŸ‘(πŸπ’™)

=

π’™πŸ
πŸ”

+

Examples 44:

(πŸ“πŸ’π’πŸ’ – πŸ‘πŸ”π’πŸ – πŸ’πŸ“π’) πŸ“πŸ’π’πŸ’ πŸ‘πŸ”π’πŸ πŸ’πŸ“π’
πŸ“
𝟐
=
βˆ’
βˆ’
=
πŸ”π’
βˆ’
πŸ’
βˆ’
πŸ—π’πŸ
πŸ—π’πŸ
πŸ—π’πŸ
πŸ—π’πŸ
𝒏
Examples 45:

(π’™πŸ‘

π’™πŸ‘ π’™πŸ
𝒙
π’™πŸ 𝒙 𝟏
+ 𝒙 + 𝒙) Γ· πŸπ’™ =
+
+
=
+ +
πŸπ’™ πŸπ’™ πŸπ’™
𝟐 𝟐 𝟐
𝟐

Examples 46:

πŸπŸπ’Žπ’ + πŸπ’ŽπŸ π’πŸ‘ + πŸπŸ’π’ŽπŸ π’πŸ
= πŸ” + π’Žπ’πŸ + πŸ•π’Žπ’
πŸπ’Žπ’
Examples 47:

(πŸ—π’›πŸ’

πŸ—π’›πŸ’ πŸ“π’›πŸ
𝟏
πŸ“ 𝟏
+ πŸ“π’› + 𝟏) Γ· 𝒛 = πŸ‘ + πŸ‘ + πŸ‘ = πŸ—π’› + + πŸ‘
𝒛
𝒛
𝒛
𝒛 𝒛
𝟐

πŸ‘

Examples 48:
πŸ‘

𝟐

(βˆšπŸπŸ’π’’ + βˆšπŸπŸ–π’’ + βˆšπŸ‘πŸπ’’) Γ· βˆšπŸπ’’ =

βˆšπŸπŸ’π’’πŸ‘

βˆšπŸπ’’
πŸ‘π’’
βˆšπŸ—π’’ βˆšπŸπŸ”
= βˆšπŸ•π’’πŸ +
+
= βˆšπŸ•π’’πŸ +
+𝟐
𝟐
𝟐
𝟐

9|Page

βˆšπŸπ’’

+

βˆšπŸπŸ–π’’πŸ

+

βˆšπŸ‘πŸπ’’
βˆšπŸπ’’

πŸ“π’™
πŸ’

+

πŸ•
πŸ”

HELMA NOTE

Operations with Algebraic and Rational Expressions

Rational Expressions
Simplifying rational expressions using algebraic Identities
Examples 49:

Identity I

(𝒙 + πŸ‘)𝟐
(𝒙 + πŸ‘)
π’™πŸ + πŸ”π’™ + πŸ—
=
=
π’™πŸ + πŸ’π’™ + πŸ‘ (𝒙 + 𝟏)(𝒙 + πŸ‘) (𝒙 + 𝟏)
Identity IV
Examples 50:

Identity III

π’ŽπŸ βˆ’ πŸπŸ” (π’Ž βˆ’ πŸ’)(π’Ž + πŸ’)
=
=π’Ž+πŸ’
π’Žβˆ’πŸ’
π’Žβˆ’πŸ’
Examples 51:

π’š+𝟏
π’š+𝟏
𝟏
=
=
(π’š βˆ’ 𝟏)(π’š + 𝟏) π’š βˆ’ 𝟏
π’šπŸ βˆ’ 𝟏

Examples 52:

(πŸπ’™ βˆ’ πŸ“)(πŸπ’™ + πŸ“) (πŸπ’™ + πŸ“)
πŸ’π’™πŸ βˆ’ πŸπŸ“
=
=
πŸ’π’™πŸ βˆ’ πŸ’π’™ βˆ’ πŸπŸ“ (πŸπ’™ βˆ’ πŸ“)(πŸπ’™ + πŸ‘) (πŸπ’™ + πŸ‘)

Examples 53:

π’™πŸ + πŸ’π’™ + πŸ’ (𝒙 + πŸ‘)(𝒙 + 𝟏) (𝒙 + πŸ‘)
=
=
π’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ” (𝒙 + 𝟏)(𝒙 βˆ’ πŸ”) (𝒙 βˆ’ πŸ”)

Examples 54:

𝒙 βˆ’ βˆšπŸ“
𝒙 βˆ’ βˆšπŸ“
𝟏
=
=
π’™πŸ βˆ’ πŸ“ (𝒙 βˆ’ βˆšπŸ“)(𝒙 + βˆšπŸ“) (𝒙 + βˆšπŸ“)
10 | P a g e

HELMA NOTE

Operations with Algebraic and Rational Expressions

Simplifying an rational expressions using factorization
Examples 55:

πŸ‘π’š + πŸ— πŸ‘(π’š + πŸ‘)
=
=πŸ‘
π’š+πŸ‘
π’š+πŸ‘

Examples 56:

πŸπŸ–π’™πŸ + πŸ”π’™ πŸ”π’™(πŸ‘π’™ + 𝟏)
=
= πŸ‘π’™ + 𝟏
πŸ”π’™
πŸ”π’™
Examples 57:

π’ƒβˆ’πŸ“
π’ƒβˆ’πŸ“
π’ƒβˆ’πŸ“
=
=
= βˆ’πŸ
πŸ“ βˆ’ 𝒃 βˆ’(βˆ’πŸ“ + 𝒃) βˆ’(𝒃 βˆ’ πŸ“)

Examples 58:

πŸπ’ŽπŸ‘ + πŸπ’ŽπŸ βˆ’ πŸ’π’Ž πŸπ’Ž(π’ŽπŸ + π’Ž βˆ’ 𝟐) πŸπ’Ž((π’Ž βˆ’ 𝟏)(π’Ž + 𝟐))
=
=
= 𝟐(π’Ž βˆ’ 𝟏)
π’Ž(π’Ž + 𝟐)
π’Ž(π’Ž + 𝟐)
π’Ž(π’Ž + 𝟐)

Multiplying rational expressions
Examples 59:

πŸ“π’™π’šπŸ‘ πŸπŸ”π’›πŸ‘ πŸπ’šπ’›
Γ—
=
πŸ–π’™πŸ π’›πŸ πŸπŸ“π’šπŸ
π’™πŸ‘

Examples 60:

πŸ‘π’‚
π’š
πŸ‘π’‚
π’š
𝒂
Γ—
=
Γ—
=
πŸ–π’šπŸ 𝟏𝟐 πŸ–π’šπŸ 𝟏𝟐 πŸ‘πŸπ’š
4

Examples 61:

πŸ’
𝒃
πŸ’π’ƒ
Γ—
=
πŸ‘π’ƒ βˆ’ 𝟏 𝒃 βˆ’ 𝟏 (πŸ‘π’ƒ βˆ’ 𝟏)(𝒃 βˆ’ 𝟏)

11 | P a g e

HELMA NOTE

Operations with Algebraic and Rational Expressions

Examples 62:

πŸ‘π’πŸ βˆ’ 𝒏
π’Ž
𝒏(πŸ‘π’ βˆ’ 𝟏)
π’Ž
𝒏
Γ—
=
Γ—
=
π’ŽπŸ
πŸ‘π’ βˆ’ 𝟏
π’ŽπŸ
πŸ‘π’ βˆ’ 𝟏 π’Ž
Examples 63:

𝒙+πŸ‘
π’™πŸ
𝒙+πŸ‘
π’™πŸ
𝒙
Γ— 𝟐
=
Γ—
=
(𝒙 + πŸ‘)(𝒙 βˆ’ πŸ“) (𝒙 βˆ’ πŸ“)
𝒙
𝒙 βˆ’ πŸπ’™ βˆ’ πŸπŸ“
𝒙
Identity IV
Examples 64:

π’™βˆ’πŸ
π’™πŸ βˆ’ 𝟏
𝒙 βˆ’ 𝟐 (𝒙 + 𝟏)(𝒙 βˆ’ 𝟏) (𝒙 βˆ’ 𝟏)
Γ— 𝟐
=
Γ—
=
𝒙 + 𝟏 𝒙 βˆ’ πŸπ’™ 𝒙 + 𝟏
𝒙(𝒙 βˆ’ 𝟐)
𝒙

Examples 65:

π’‘βˆ’π’’ 𝒑+𝒒 π’‘βˆ’π’’ 𝒑+𝒒 π’‘βˆ’π’’
Γ—
=
Γ—
=
𝒑+𝒒
πŸπ’ƒ
𝒑+𝒒
πŸπ’ƒ
πŸπ’ƒ

Examples 66:
Factorization

π’™πŸ + πŸ“π’™
𝟏
𝒙(𝒙 + πŸ“)
𝟏
𝟏
Γ— 𝟐
=
Γ—
=
(𝒙 + πŸ“)𝟐 𝒙 + πŸ“
𝒙
𝒙 + πŸπŸŽπ’™ + πŸπŸ“
𝒙
Identity I
Examples 67:

(𝒙 + 𝟐)(𝒙 + 𝟏)
𝒙 + πŸ‘π’™ + 𝟐
𝟏
Γ—
=
=𝟏
𝒙+𝟐
𝒙 + 𝟏 (𝒙 + 𝟐) Γ— (𝒙 + 𝟏)
Examples 68:

πŸ”π’‚
πŸ’(𝒂 + πŸ“)
πŸ”π’‚
πŸ’(𝒂 + πŸ“) πŸ’
Γ—
=
Γ—
=
πŸ‘(𝒂 + πŸ“)
πŸπ’‚πŸ
πŸ‘(𝒂 + πŸ“)
πŸπ’‚πŸ
𝒂
12 | P a g e

HELMA NOTE

Operations with Algebraic and Rational Expressions

Dividing a Rational expression with another rational expression
Examples 69:

πŸ•π’™π’š πŸπŸ’π’š
÷ 𝟐 =
πŸ’π’™πŸ
𝒙

πŸ•π’™π’š
π’™πŸ
𝒙 𝟏 𝒙
Γ—
=
Γ— =
πŸ’π’™πŸ πŸπŸ’π’š πŸ’ 𝟐 πŸ–

Examples 70:

πŸ’π’™πŸ
πŸ‘π’™
Γ· πŸ‘=
πŸ–π’™π’š π’š

πŸ’π’™πŸ π’šπŸ‘ 𝒙 π’š π’™π’š
Γ—
= Γ— =
πŸ–π’™π’š πŸ‘π’š 𝟐 πŸ‘
πŸ”

Examples 71:
2x

(πŸπŸ–π’™π’š) (𝒙 βˆ’ 𝟐)
πŸπŸ–π’™π’š
πŸπŸ’π’š
Γ·
=
Γ—
= πŸπ’™
(𝒙 βˆ’ 𝟐) 𝒙 βˆ’ 𝟐
(πŸπŸ’π’š)
π’™βˆ’πŸ

Examples 72:

𝒙 + πŸ‘π’™ + 𝟐 𝒙 + 𝟏 (𝒙 + 𝟐)(𝒙 + 𝟏) (𝒙 + πŸ“)
Γ·
=
Γ—
= (𝒙 + πŸ“)
(𝒙 + 𝟐)
(𝒙 + 𝟏)
𝒙+𝟐
𝒙+πŸ“

Examples 73:

Identity III

(π’Ž βˆ’ πŸ•)(π’Ž + πŸ•) π’Ž(π’Ž + 𝟏)
π’ŽπŸ βˆ’ πŸ’πŸ—
π’Ž+πŸ•
÷ 𝟐
=
Γ—
= π’Ž(π’Ž βˆ’ πŸ•)
π’Ž+𝟏
π’Ž +π’Ž
π’Ž+𝟏
π’Ž+πŸ•
factorization
Examples 74:

π’‚πŸ + πŸ–π’‚ + πŸπŸ“
π’‚πŸ βˆ’ πŸπŸ“
π’‚πŸ + πŸ–π’‚ + πŸπŸ“ π’‚πŸ βˆ’ πŸ“π’‚ + πŸ’
÷ 𝟐
= 𝟐
Γ—
=
π’‚πŸ + πŸπ’‚ βˆ’ πŸ‘
𝒂 βˆ’ πŸ“π’‚ + πŸ’
𝒂 + πŸπ’‚ βˆ’ πŸ‘
π’‚πŸ βˆ’ πŸπŸ“

=
13 | P a g e

(𝒂 + πŸ‘)(𝒂 + πŸ“) (𝒂 βˆ’ πŸ’)(𝒂 βˆ’ 𝟏) 𝒂 βˆ’ πŸ’
Γ—
=
(𝒂 + πŸ‘)(𝒂 βˆ’ 𝟏) (𝒂 + πŸ“)(𝒂 βˆ’ πŸ“) 𝒂 βˆ’ πŸ“

HELMA NOTE

Operations with Algebraic and Rational Expressions

Sum and Difference of Rational Expressions
To add or subtract two rational expressions with the same denominator
Examples 75:
Add numerators

𝟏
𝒙 βˆ’ 𝟏 (𝟏) + (𝒙 βˆ’ 𝟏)
𝒙
+
=
=
π’š+πŸ‘ π’š+πŸ‘
π’š+πŸ‘
π’š+πŸ‘
Common
denominator
Examples 76:

𝒙 + πŸ“ πŸπ’™ βˆ’ 𝟏 𝒙 + πŸ“ βˆ’ (πŸπ’™ βˆ’ 𝟏) 𝒙 + πŸ“ βˆ’ πŸπ’™ + 𝟏 βˆ’π’™ + πŸ”
βˆ’
=
=
=
𝒙+πŸ“
𝒙+πŸ“
𝒙+πŸ“
𝒙+πŸ“
𝒙+πŸ“
Common
denominator
Examples 77:

πŸ‘π’™ + πŸ• πŸπ’™ βˆ’ πŸ‘ πŸ‘π’™ + πŸ• + πŸπ’™ βˆ’ πŸ‘ πŸ“π’™ + πŸ’
+
=
=
𝒙+𝟐
𝒙+𝟐
𝒙+𝟐
𝒙+𝟐

Examples 77:

πŸ‘π’™ + πŸ• πŸπ’™ βˆ’ πŸ‘
βˆ’
=
𝒙+𝟐
𝒙+𝟐

πŸ‘π’™ + πŸ• βˆ’ (πŸπ’™ βˆ’ πŸ‘) πŸ‘π’™ + πŸ• βˆ’ πŸπ’™ + πŸ‘) 𝒙 + 𝟏𝟎
=
=
𝒙+𝟐
𝒙+𝟐
𝒙+𝟐
Examples 78:

𝟐
π’Ž βˆ’ πŸ‘ 𝟐 βˆ’ (π’Ž βˆ’ πŸ‘) 𝟐 βˆ’ π’Ž + πŸ‘) βˆ’π’Ž + πŸ“
βˆ’
=
=
=
π’Ž+𝟐 π’Ž+𝟐
π’Ž+𝟐
π’Ž+𝟐
π’Ž+𝟐

14 | P a g e

HELMA NOTE

Operations with Algebraic and Rational Expressions

To add or subtract two rational expressions with unlike denominator
Examples 79:

𝟏
𝟏
𝟏(πŸ’π’ƒ)
𝟏(πŸ‘π’‚)
πŸ’π’ƒ + πŸ‘π’‚
+
=
+
=
πŸ‘π’‚ πŸ’π’ƒ πŸ‘π’‚(πŸ’π’ƒ) πŸ’π’ƒ(πŸ‘π’‚)
πŸπŸπ’‚π’ƒ
The LCD of the
fraction is 12ab
Examples 78:

𝟏
𝟐
𝟏+𝟐
πŸ‘
+ =
=
𝒂 βˆ’ πŸ“ 𝒂 𝒂(𝒂 βˆ’ πŸ“) 𝒂(𝒂 βˆ’ πŸ“)
The LCM of the fraction is

𝒂(𝒂 βˆ’ πŸ“)
Examples 79:

𝟐
𝒙 βˆ’ 𝟏 𝟐(𝒙 + πŸ’) + (𝒙 βˆ’ 𝟏)(𝒙 + 𝟐)
+
=
(𝒙 + 𝟐)(𝒙 + πŸ’)
𝒙+𝟐 𝒙+πŸ’

Examples 80:

π’‚πŸ βˆ’ 𝟐𝟎 𝒂 βˆ’ 𝟐
π’‚πŸ βˆ’ 𝟐𝟎
𝒂 βˆ’ 𝟐(𝒂 βˆ’ 𝟐)
+
=
+
π’‚πŸ βˆ’ πŸ’
𝒂 + 𝟐 (𝒂 + 𝟐)(𝒂 βˆ’ 𝟐) 𝒂 + 𝟐(𝒂 βˆ’ 𝟐)
π’‚πŸ βˆ’ 𝟐𝟎 + 𝒂 βˆ’ 𝟐(𝒂 βˆ’ 𝟐) π’‚πŸ βˆ’ 𝟐𝟎 + π’‚πŸ βˆ’ πŸ’π’‚ + πŸ’
=
=
𝒂 + 𝟐(𝒂 βˆ’ 𝟐)
𝒂 + 𝟐(𝒂 βˆ’ 𝟐)
πŸπ’‚πŸ βˆ’ πŸ’π’‚ βˆ’ πŸπŸ” 𝟐(π’‚πŸ βˆ’ πŸπ’‚ βˆ’ πŸ–) 𝟐(π’‚πŸ βˆ’ πŸπ’‚ βˆ’ πŸ–)
=
=
=
𝒂 + 𝟐(𝒂 βˆ’ 𝟐)
𝒂 + 𝟐(𝒂 βˆ’ 𝟐)
𝒂 + 𝟐(𝒂 βˆ’ 𝟐)
=

𝟐((𝒂 βˆ’ πŸ’)(𝒂 + 𝟐)) 𝟐(𝒂 βˆ’ πŸ’)
=
(𝒂 βˆ’ 𝟐)
𝒂 + 𝟐(𝒂 βˆ’ 𝟐)

15 | P a g e

HELMA NOTE

Operations with Algebraic and Rational Expressions

Examples 81:

πŸπ’™πŸ βˆ’ πŸπŸ” 𝒙 + πŸ’
πŸπ’™πŸ βˆ’ πŸπŸ”
𝒙 + πŸ’(𝒙 βˆ’ 𝟐)
+
=
+
=
π’™πŸ βˆ’ πŸ’
𝒙 + 𝟐 (𝒙 + 𝟐)(𝒙 βˆ’ 𝟐) 𝒙 + 𝟐(𝒙 βˆ’ 𝟐)
πŸπ’™πŸ βˆ’ πŸπŸ” + π’™πŸ + πŸπ’™ βˆ’ πŸ– πŸ‘π’™πŸ + πŸπ’™ βˆ’ πŸπŸ’
=
(𝒙 + 𝟐)(𝒙 βˆ’ 𝟐)
(𝒙 + 𝟐)(𝒙 βˆ’ 𝟐)

Examples 82:

Identity IV

𝟐
π’™βˆ’πŸ
𝟐(𝒙 + πŸ’)
𝒙 βˆ’ 𝟏(𝒙 + 𝟐) 𝟐(𝒙 + πŸ’) + (𝒙 βˆ’ 𝟏)(𝒙 + 𝟐)
+
=
+
=
(𝒙 + 𝟐)(𝒙 + πŸ’)
𝒙 + 𝟐 𝒙 + πŸ’ 𝒙 + 𝟐(𝒙 + πŸ’) 𝒙 + πŸ’(𝒙 + 𝟐)

=

πŸπ’™ + πŸ– + π’™πŸ + (𝟐 βˆ’ 𝟏)𝒙 + (βˆ’πŸ Γ— 𝟐) πŸπ’™ + πŸ– + π’™πŸ + 𝒙 βˆ’ 𝟐
=
(𝒙 + 𝟐)(𝒙 + πŸ’)
(𝒙 + 𝟐)(𝒙 + πŸ’)
(𝒙 βˆ’ 𝟐)(𝒙 + πŸ‘)
π’™πŸ + 𝒙 βˆ’ πŸ”
=
=
(𝒙 + 𝟐)(𝒙 + πŸ’)
(𝒙 + 𝟐)(𝒙 + πŸ’)

Examples 83:

π’™πŸ
π’šπŸ
π’™πŸ (π’š βˆ’ 𝒙)
π’šπŸ (𝒙 βˆ’ π’š)
π’™πŸ π’š βˆ’ π’™πŸ‘ + π’šπŸ 𝒙 βˆ’ π’šπŸ‘
+
=
+
=
𝒙 βˆ’ π’š π’š βˆ’ 𝒙 𝒙 βˆ’ π’š(π’š βˆ’ 𝒙) π’š βˆ’ 𝒙(𝒙 βˆ’ π’š)
𝒙 βˆ’ π’š(π’š βˆ’ 𝒙)
Examples 84:

πŸ”
πŸ’
πŸ”
πŸ’(πŸ“) πŸ” + 𝟐𝟎 πŸπŸ”
+ =
+
=
=
πŸ“π’™ 𝒙 πŸ“π’™ 𝒙(πŸ“)
πŸ“π’™
πŸ“π’™
Examples 85:

πŸ•
𝒙
πŸ•
𝒙
+
=
+
π’™πŸ βˆ’ 𝒙 βˆ’ 𝟐 π’™πŸ + πŸ’π’™ + πŸ‘ (𝒙 βˆ’ 𝟐)(𝒙 + 𝟏) (𝒙 + πŸ‘)(𝒙 + 𝟏)
=

πŸ•(𝒙 + πŸ‘)
𝒙(𝒙 βˆ’ 𝟐)
+
(𝒙 βˆ’ 𝟐)(𝒙 + 𝟏)(𝒙 + πŸ‘) (𝒙 + πŸ‘)(𝒙 + 𝟏)(𝒙 βˆ’ 𝟐)

16 | P a g e

HELMA NOTE

Operations with Algebraic and Rational Expressions

πŸ•π’™ + 𝟐𝟏 + π’™πŸ βˆ’ πŸπ’™
π’™πŸ + πŸ“π’™ + 𝟐𝟏
=
=
(𝒙 βˆ’ 𝟐)(𝒙 + 𝟏)(𝒙 + πŸ‘) (𝒙 βˆ’ 𝟐)(𝒙 + 𝟏)(𝒙 + πŸ‘)

 For learning these examples read this book:
β€œOperations with Algebraic and Rational Expressions”

Algebraic Identities
Identity I:

(𝒙 + π’š)𝟐 = π’™πŸ + πŸπ’™π’š + π’šπŸ

Identity II:

(𝒙 βˆ’ π’š)𝟐 = π’™πŸ βˆ’ πŸπ’™π’š + π’šπŸ

Identity III: (𝒙 + π’š)(𝒙 βˆ’ π’š) = π’™πŸ βˆ’ π’šπŸ
𝟐

Identity IV: (𝒙 + 𝒂)(𝒙 + 𝒃) = π’™πŸ + (𝒂 + 𝒃) 𝒙

17 | P a g e

+ (𝒂𝒃)


Title: The problems and solutions in Algebraic and Rational Expressions
Description: ADDING AND SUBTRACTING ALGEBRAIC EXPRESSIONS 2 Addition and subtraction of monomials: 2 MULTYPLY ALGEBRAIC EXPRESSIONS 4 Multiply polynomials by monomials 4 Multiply polynomials by polynomials 5 DIVIDING ALGEBRAIC EXPRESSIONS 7 Dividing monomials by monomials 7 Dividing polynomials by integers and monomials 8 Rational Expressions 10 Simplifying rational expressions using algebraic Identities 10 Simplifying an rational expressions using factorization 11 Multiplying rational expressions 11 Dividing a Rational expression with another rational expression 13 Sum and Difference of Rational Expressions 14 To add or subtract two rational expressions with the same denominator 14 To add or subtract two rational expressions with unlike denominator 15 Algebraic Identities 17