Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Basic Engineering Mathematics- introduction to trigonometry
Description: Basic Engineering Mathematics- introduction to trigonometry
Description: Basic Engineering Mathematics- introduction to trigonometry
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Chapter 21
Introduction to trigonometry
21
...
The theorem of Pythagoras and trigonometric ratios
are used with right-angled triangles only
...
In this chapter, three trigonometric ratios – i
...
sine,
cosine and tangent – are defined and then evaluated
using a calculator
...
21
...
From equation (1):
b = a2 + c2
Transposing√equation (1) for a gives a 2 = b2 − c2 , from
which a = b2 − c 2
2
2
2
Transposing
√equation (1) for c gives c = b − a , from
2
2
which c = b − a
Here are some worked problems to demonstrate the
theorem of Pythagoras
...
In Figure 21
...
In the right-angled triangle ABC shown in Figure 21
...
1
DOI: 10
...
00021-1
a
c 5 3 cm
B
Figure 21
...
e
...
A
c
A
a
C
Hence,
√
25 = ±5 but in a practical example like this an answer
of a = −5 cm has no meaning, so we take only the
positive answer
...
182 Basic Engineering Mathematics
PQR is a 3, 4, 5 triangle
...
e
...
Problem 2
...
3, find the length of EF
From Pythagoras’ theorem,
BC 2 = 12002 + 8802
= 1440000 + 774400 = 2214400
√
BC = 2214400 = 1488 km
...
D
e5 13 cm
f 5 5 cm
E
Now try the following Practice Exercise
F
d
Figure 21
...
Find the length of side x in Figure 21
...
2
41 cm
169 = d 2 + 25
x
d 2 = 169 − 25 = 144
√
d = 144 = 12 cm
Thus,
40 cm
d = EF = 12 cm
i
...
DEF is a 5, 12, 13 triangle, another right-angled
triangle which has integer values for all three sides
...
5
2
...
6(a)
...
Find the length of side x in Figure 21
...
Problem 3
...
One travels due north at an average
speed of 300 km/h and the other due west at an
average speed of 220 km/h
...
7 mm
as shown in Figure 21
...
The distance apart after
4 hours = BC
...
6
E
S
C
Figure 21
...
3 mm
(b)
B
1200 km
880 km
A
4
...
Determine the length of
AC, correct to 2 decimal places
...
A tent peg is 4
...
0 m high
tent
...
In a triangle ABC, ∠B is a right angle,
AB = 6
...
78 cm
...
14
...
8 shows a cross-section of a component that is to be made from a round bar
...
x
90◦ ,
7
...
83 mm and CE = 28
...
Determine the length of DE
...
Show that if a triangle has sides of 8, 15 and
17 cm it is right-angled
...
183
Triangle PQR is isosceles, Q being a right
angle
...
46 cm find (a)
the lengths of sides PQ and QR and (b) the
value of ∠QPR
...
A man cycles 24 km due south and then 20 km
due east
...
Find the distance
between the two men
...
A ladder 3
...
0 m from the
wall
...
8
21
...
9,
opposite side
hypotenuse
sine θ =
‘Sine’ is abbreviated to ‘sin’, thus sin θ =
BC
AC
C
12
...
One
travels due west at 18
...
6 knots
...
13
...
7 shows a bolt rounded off at one
end
...
m
4m
7
se
nu
te
po
Hy
Opposite
A
Adjacent
B
Figure 21
...
Remembering these three equations
is very important and the mnemonic ‘SOH CAH TOA’
is one way of remembering them
...
7
184 Basic Engineering Mathematics
SOH indicates sin = opposite ÷ hypotenuse
sin C =
CAH indicates cos = adjacent ÷ hypotenuse
TOA indicates tan = opposite ÷ adjacent
cos C =
Here are some worked problems to help familiarize
ourselves with trigonometric ratios
...
In triangle PQR shown in
Figure 21
...
10
sin θ =
opposite side
PQ
5
=
=
= 0
...
9231
hypotenuse
PR
13
tanθ =
opposite side
PQ
5
=
=
= 0
...
In triangle ABC of Figure 21
...
47
= 0
...
778
4
...
7996
5
...
47
=
= 0
...
62
4
...
7996
5
...
47
=
= 0
...
778
4
...
3314
3
...
If tan B = , determine the value of
15
sin B, cos B, sin A and tan A
A right-angled triangle ABC is shown in Figure 21
...
8
If tan B = , then AC = 8 and BC = 15
...
12
i
...
from which
AB 2 = 82 + 152
AB = 82 + 152 = 17
AC
AB
BC
cos B =
AB
BC
sinA =
AB
BC
tanA =
AC
sin B =
3
...
62 cm
C
Figure 21
...
e
...
472 + 4
...
472 + 4
...
778 cm
from which
AB
AC
BC
AC
AB
BC
BC
AC
AB
AC
BC
AB
By Pythagoras, AB 2 = AC 2 + BC 2
A
B
opposite side
=
hypotenuse
adjacent side
=
hypotenuse
opposite side
=
adjacent side
opposite side
=
hypotenuse
adjacent side
=
hypotenuse
opposite side
=
adjacent side
8
17
15
=
17
15
=
17
15
=
8
=
or 0
...
8824
or 0
...
8750
Problem 7
...
Determine (a) the distance AB and
(b) the gradient of the straight line AB
Introduction to trigonometry
f (x)
8
7
6
f(x)
8
7
B
6
4
3
2
4
3
2
0
A
2
4
(a)
6
B
0
8
C
A
2
4
(b)
6
15
, find sin X and cos X , in frac4
...
5
...
15, find (a) sin α (b) cos θ (c) tan θ
...
13
185
␣
17
15
Figure 21
...
13(a)
...
13(b), the horizontal and vertical
lines AC and BC are constructed
...
211 correct to 3
decimal places
...
e
...
If tan θ = , find sin θ and cos θ in fraction
24
form
...
Point P lies at co-ordinate (−3, 1) and point
Q at (5, −4)
...
(b) the gradient of the straight line PQ
...
4 Evaluating trigonometric ratios
of acute angles
The easiest way to evaluate trigonometric ratios of any
angle is to use a calculator
...
sin 29◦ = 0
...
62◦ = 0
...
3907 cos 83
...
1120
Practice Exercise 83 Trigonometric ratios
(answers on page 349)
1
...
Determine sin Z , cos Z , tan X and cos X
...
In triangle ABC shown in Figure 21
...
B
5
A
3
C
Figure 21
...
If cos A = , find sin A and tan A, in fraction
17
form
...
6745 tan 67
...
4541
43◦
= sin 67
...
◦ = 0
...
466666
...
9725
60
54◦
tan 56◦54 = tan 56
= tan 56
...
5340
60
sin 67◦43 = sin 67
If we know the value of a trigonometric ratio and need to
find the angle we use the inverse function on our calculators
...
5 then
the value of the angle is given by
sin−1 0
...
5)
Similarly, if
cos θ = 0
...
4371 = 64
...
5984 then A = tan−1 3
...
47 ◦
each correct to 2 decimal places
...
Problem 8
...
65◦ = 0
...
Press sin
2
...
Press◦ ”’
4
...
Press◦ ”’
6
...
Press =
Answer = 0
...
Problem 9
...
20◦ = 2
...
Evaluate tan 2
...
93 means 2
...
Hence, tan 2
...
2148
It is important to know when to have your calculator on
either degrees mode or radian mode
...
Problem 13
...
4128 in
degrees, correct to 2 decimal places
sin−1 0
...
4128’
...
Press shift
2
...
Press )
5
...
Enter 0
...
380848
...
Hence, sin−1 0
...
38◦ correct to 2 decimal
places
...
Find the acute angle cos−1 0
...
2437 means ‘the angle whose cosine is 0
...
Using a calculator,
1
...
Press shift
2
...
Press )
5
...
Press◦
7
...
Press cos
3
...
Enter 12
6
...
Press =
Answer = 2
...
Problem 10
...
481, correct to 4
significant figures
sin 1
...
481 radians
...
e
...
Therefore
a calculator needs to be on the radian function
...
481 = 0
...
Evaluate cos(3π/5), correct to 4
significant figures
As in Problem 10, 3π/5 is in radians
...
884955
...
3090
Since, from page 166, πradians = 180◦ ,
3
3π/5 rad = × 180◦ = 108◦
...
e
...
Check with your calculator that
cos 108◦ = −0
...
Enter 0
...
894979
...
6
...
93 is displayed
...
2437 = 75
...
Problem 15
...
4523 in
degrees and minutes
tan−1 7
...
4523’
...
Press shift
2
...
Press )
5
...
Enter 7
...
357318
...
6
...
35 is displayed
...
4523 = 82
...
Introduction to trigonometry
Problem 16
...
16,
calculate angle G
E
2
...
71
cm
F
2
...
3
...
4
...
16
With reference to ∠G, the two sides of the triangle given
are the opposite side EF and the hypotenuse EG; hence,
sine is used,
2
...
e
...
26406429
...
71
G = sin−1 0
...
from which,
5
...
6734 in degrees,
correct to 2 decimal places
...
Find the acute angle cos−1 0
...
7
...
4385 in degrees,
correct to 2 decimal places
...
Find the acute angle sin−1 0
...
9
...
8539 in degrees
and minutes
...
311360◦
i
...
∠G = 15
...
Hence,
Problem 17
...
2 tan 49◦26 − 3
...
1 cos 29◦34
By calculator:
26 ◦
= 1
...
9137 and cos 29◦ 34 = 0
...
681 (c) tan 3
...
Find the acute angle tan−1 0
...
11
...
17, determine angle θ, correct to 2 decimal places
...
2 tan 49◦ 26 − 3
...
1 cos29◦ 34
=
(4
...
1681) − (3
...
9137)
(7
...
8698)
4
...
3807 1
...
1756
6
...
2470 = 0
...
9
Figure 21
...
In the triangle shown in Figure 21
...
=
23
Now try the following Practice Exercise
Practice Exercise 84 Evaluating
trigonometric ratios (answers on page 349)
1
...
8
Figure 21
...
Evaluate, correct to 4 decimal places,
4
...
Evaluate, correct to 4 significant figures,
(3 sin 37
...
5 tan 57
...
1 cos12
...
5
Solving right-angled triangles
‘Solving a right-angled triangle’ means ‘finding the
unknown sides and angles’
...
2
=
, from which
AB
AB
6
...
343 mm
AB =
cos 42◦
Pythagoras, AB 2 = AC 2 + BC 2
√
√
from which AB = AC 2 + BC 2 = 5
...
22
√
= 69
...
343 mm
...
Sketch a right-angled triangle ABC
such that B = 90◦ , AB = 5 cm and BC = 12 cm
...
20
...
5 cm
Six pieces of information describe a triangle completely;
i
...
, three sides and three angles
...
Here are some worked problems to demonstrate the
solution of right-angled triangles
...
In the triangle ABC shown in
Figure 21
...
20
By Pythagoras’ theorem,
By definition: sin A =
AC =
52 + 122 = 13
opposite side 12
=
or 0
...
9231
hypotenuse
13
tan A =
opposite side 12
=
or 2
...
In triangle PQR shown in
Figure 21
...
2 mm
P
C
Figure 21
...
388
Q
In triangle ABC,
tan 42◦ =
AC
AC
=
BC
6
...
2 tan 42◦ = 5
...
5 cm
R
Figure 21
...
5
PQ = 7
...
5(0
...
860 cm
Introduction to trigonometry
cos 38◦ =
7
...
5
7
...
518 cm
◦
cos 38
0
...
5)2 + (5
...
59 = (9
...
Problem 21
...
22
A
35 mm
B
37 mm
XZ
, hence XZ = 20
...
0
= 20
...
3953) = 7
...
0 cos 23◦17
20
...
0(0
...
37 mm
Check: using Pythagoras’ theorem,
(18
...
906)2 = 400
...
0)2 ,
cos 23◦17 =
Now try the following Practice Exercise
Practice Exercise 85 Solving right-angled
triangles (answers on page 349)
C
Figure 21
...
sin C =
sin 23◦17 =
189
1
...
24(a) to (f), each correct to 4
significant figures
...
94595, hence
37
C = sin−1 0
...
08◦
708
13
...
08◦ = 18
...
92◦ = 37(0
...
0 mm
sin B =
(a)
15
...
0 mm
...
Solve triangle XYZ given
∠X = 90◦, ∠Y = 23◦17 and YZ = 20
...
Such a sketch is shown in
Figure 21
...
17
...
0 mm
(c)
238179
X
Figure 21
...
24
190 Basic Engineering Mathematics
E
4
...
0
x
D
8
...
0
J
(c)
L
6
...
438
(e)
278
K
M
(d)
7
...
0
538
P
(f)
Figure 21
...
Find the unknown sides and angles in the rightangled triangles shown in Figure 21
...
The
dimensions shown are in centimetres
...
0
5
...
0
(a)
Figure 21
...
25
Introduction to trigonometry
3
...
If the foot of the ladder is
2 m from the wall, calculate the height of the
building
...
Calculate the height of the pylon to the
nearest metre
Figure 21
...
A
4
...
26
...
29
tan 23◦ =
x
AB
AB
=
BC
80
Hence, height of pylon AB = 80 tan 23◦
= 80(0
...
96 m
= 34 m to the nearest metre
...
26
21
...
27, BC represents horizontal ground and
AB a vertical flagpole, the angle of elevation of the top
of the flagpole, A, from the point C is the angle that the
imaginary straight line AC must be raised (or elevated)
from the horizontal CB; i
...
, angle θ
...
A surveyor measures the angle of
elevation of the top of a perpendicular building as
19◦
...
Determine
the height of the building
The building PQ and the angles of elevation are shown
in Figure 21
...
P
A
h
478
C
B
Q
R
198
S
120
x
Figure 21
...
30
P
Hence,
Q
h
x + 120
h = tan 19◦(x + 120)
In triangle PQS, tan 19◦ =
R
i
...
h = 0
...
28
If, in Figure 21
...
e
...
(Note, ∠PRQ is
also φ − alternate angles between parallel lines
...
An electricity pylon stands on
horizontal ground
...
e
...
0724x
(1)
In triangle PQR, tan 47◦ =
Hence,
Equating equations (1) and (2) gives
0
...
0724x
0
...
3443)(120) = 1
...
3443)(120) = (1
...
3443)x
41
...
7281x
41
...
74 m
0
...
0724x = 1
...
74) = 60
...
Problem 25
...
Find the distance of the ship
from the base of the cliff at this instant
...
Determine the speed of the ship in
km/h
Figure 21
...
Since the angle
of depression is initially 30◦, ∠ACB = 30◦ (alternate
angles between parallel lines)
...
31
75
AB
=
hence,
BC
BC
75
BC =
tan 30◦
= 129
...
A vertical tower stands on level ground
...
Find the
height of the tower
...
If the angle of elevation of the top of a vertical
30 m high aerial is 32◦ , how far is it to the
aerial?
3
...
0 m high
the angle of depression of a boat is 19◦ 50
...
4
...
0 m high the
angles of depression of two buoys lying due
west of the cliff are 23◦ and 15◦, respectively
...
9 + x
5
...
He moves 50 m nearer
to the flagpole and measures the angle of elevation as 26◦22
...
6
...
At a point 200 m from the building
the angles of elevation of the top and bottom of the pole are 32◦ and 30◦ respectively
...
7
...
If the lighthouse is
25
...
Thus, the ship sails 76
...
e
...
From a window 4
...
Determine,
correct to the nearest centimetre, the width of
the road and the height of the building
...
16
=
m/s
Hence, speed of ship =
time
60
76
...
57 km/h
...
The elevation of a tower from two points, one
due west of the tower and the other due east
of it are 20◦ and 24◦ , respectively, and the two
points of observation are 300 m apart
...
Hence,
from which
129
...
06 m
tan 20◦
x = 206
...
9 = 76
...
The marks available are shown in brackets at
the end of each question
...
Determine 38◦48 + 17◦ 23
...
Determine 47◦43 12 − 58◦ 35 53 + 26◦17 29
...
683◦
(2)
3
...
Convert 77◦ 42 34 to degrees correct to 3 decimal
places
...
Determine angle θ in Figure RT8
...
to degrees and minutes
...
In Figure RT8
...
(3)
A
B
(2)
(3)
C
928
538
E
478
1248
D
298
Figure RT8
...
Find angle J in Figure RT8
...
Figure RT8
...
(2)
H
Determine angle θ in the triangle in Figure RT8
...
(2)
G
288
J
Figure RT8
...
Determine angle θ in Figure RT8
...
508
Figure RT8
...
(3)
328
Determine angle θ in the triangle in Figure RT8
...
(2)
438
688
Figure RT8
...
6
11
...
(2)
194 Basic Engineering Mathematics
K
12
...
7, determine angles x, y and z
...
60
y
598
378
z
J
x
5
...
10
Figure RT8
...
In Figure RT8
...
c
e
b
a
(5)
d
1258
608
16
...
Ship X
travels due west at 30 km/h and ship Y travels due
north
...
Calculate the velocity of ship Y
...
If sin A = , find tan A in fraction form
...
Evaluate 5 tan 62 11 correct to 3 significant
figures
...
Determine the acute angle cos 0
...
(2)
20
...
11, find angle P
in decimal form, correct to 2 decimal places
...
2
29
...
8
14
...
9, determine the length of AC
...
11
B
21
...
27◦ − 5 cos 7
...
81◦
...
In triangle ABC in Figure RT8
...
(4)
10 m
A
D
A
3m
C
8m
408 359
E
Figure RT8
...
In triangle J K L in Figure RT8
...
(b) sin L and tan K , each correct to 3 decimal
places
...
12
23
...
How far is point P
from the base of the pylon, correct to the nearest
metre?
(3)
List of formulae
Laws of indices:
Areas of plane figures:
a m × a n = a m+n
a m/n =
√
n m
a
am
an
= a m−n (a m )n = a mn
a −n =
Quadratic formula:
If ax 2 + bx + c = 0
1
an
Area = l × b
(i) Rectangle
a0 = 1
b
√
−b ± b2 − 4ac
x=
2a
then
Equation of a straight line:
l
(ii) Parallelogram Area = b × h
y = mx + c
Definition of a logarithm:
If y = a x
then
h
x = loga y
Laws of logarithms:
log(A × B) = log A + log B
A
= log A − log B
log
B
b
(iii) Trapezium
log An = n × log A
1
Area = (a + b)h
2
a
Exponential series:
ex = 1 + x +
x2 x3
+
+···
2! 3!
h
(valid for all values of x)
b
Theorem of Pythagoras:
b 2 = a 2 + c2
(iv) Triangle
Area =
1
×b×h
2
A
c
B
b
h
a
C
b
List of formulae
Area = πr 2 Circumference = 2πr
(v) Circle
(iii) Pyramid
If area of base = A and
perpendicular height = h then:
r
s
Volume =
1
× A×h
3
r
2π radians = 360 degrees
Radian measure:
h
For a sector of circle:
θ◦
(2πr) = rθ
360
(θ in rad)
1
θ◦
(πr 2 ) = r 2 θ
360
2
(θ in rad)
s=
arc length,
shaded area =
Equation of a circle, centre at origin, radius r:
x 2 + y2 = r 2
Equation of a circle, centre at (a, b), radius r:
Total surface area = sum of areas of triangles
forming sides + area of base
(iv) Cone
1
Volume = πr2 h
3
Curved Surface area = πrl
(x − a)2 + (y − b)2 = r 2
Total Surface area = πrl + πr2
Volumes and surface areas of regular
solids:
l
(i) Rectangular prism (or cuboid)
h
Volume = l × b × h
Surface area = 2(bh + hl + lb)
r
(v) Sphere
l
h
4
Volume = πr3
3
Surface area = 4πr2
b
(ii) Cylinder
Volume = πr2 h
Total surface area = 2πrh + 2πr2
r
r
h
337
338 Basic Engineering Mathematics
Areas of irregular figures by approximate
methods:
Trapezoidal rule
width of 1 first + last
Area ≈
interval
2 ordinate
+ sum of remaining ordinates
Mid-ordinate rule
Area ≈ (width of interval)(sum of mid-ordinates)
Simpson’s rule
1 width of
first + last
Area ≈
ordinate
3 interval
sum of even
sum of remaining
+4
+2
ordinates
odd ordinates
For a general sinusoidal function y = A sin (ωt ± α),
then
A = amplitude
ω = angular velocity = 2π f rad/s
ω
= frequency, f hertz
2π
2π
= periodic time T seconds
ω
α = angle of lead or lag (compared with
y = A sin ωt )
Cartesian and polar co-ordinates:
If co-ordinate (x, y) = (r, θ) then
y
r = x 2 + y 2 and θ = tan−1
x
If co-ordinate (r, θ) = (x, y) then
x = r cosθ and y = r sin θ
Mean or average value of a waveform:
area under curve
length of base
sum of mid-ordinates
=
number of mid-ordinates
mean value, y =
Triangle formulae:
Sine rule:
Cosine rule:
b
c
a
=
=
sin A sin B
sin C
a 2 = b2 + c2 − 2bc cos A
B
b
a
If a = first term and d = common difference, then the
arithmetic progression is: a, a + d, a + 2d,
...
The n’th term is: arn−1
Sum of n terms, Sn =
A
c
Arithmetic progression:
a (1 − r n )
a (r n − 1)
or
(1 − r )
(r − 1)
If − 1 < r < 1, S∞ =
a
(1 − r )
C
Area of any triangle
1
= × base × perpendicular height
2
1
1
1
= ab sin C or
ac sin B or
bc sin A
2
2
2
a +b+c
= [s (s − a) (s − b) (s − c)] where s =
2
Statistics:
Discrete data:
#
mean, x¯ =
x
n
)
(
#
(x − x¯ )2
standard deviation, σ =
n
List of formulae
Grouped data:
#
fx
mean, x¯ = #
f
)
#$
%(
f (x − x)
¯ 2
#
standard deviation, σ =
f
Standard integrals
y
axn
cos ax
Standard derivatives
sin ax
y or f(x)
dy
= or f (x)
dx
axn
anxn−1
sin ax
a cos ax
cos ax
−a sin ax
eax
aeax
ln ax
1
x
eax
1
x
&
a
y dx
x n+1
+ c (except when n = −1)
n +1
1
sin ax + c
a
1
− cos ax + c
a
1 ax
e +c
a
ln x + c
339
Answers
Answers to practice exercises
Chapter 1
Chapter 2
Exercise 1 (page 2)
1
...
7
...
13
...
17
...
16 m
3
...
£565
6
...
−36 121
9
...
1487
12
...
−70872
15
...
25 cm
d = 64 mm, A = 136 mm, B = 10 mm
1
...
4
...
7
...
5
...
13
...
Exercise 2 (page 5)
(a) 468 (b) 868
2
...
(a) 259 (b) 56
8
...
2
...
6
...
10
...
(a) 12 (b) 360
(a) 90 (b) 2700
(a) 3 (b) 180
(a) 15 (b) 6300
(a) 14 (b) 53 900
Exercise 4 (page 8)
2
...
68
3
...
5
DOI: 10
...
00040-5
3
...
10
1
14
...
1
21
6
...
16
...
2
6
8
2
...
35
9
11
3
1
7
...
5
13
5
3
2
12
...
3
2
5
12
4
3
1
17
...
13
4
9
(a) £60, P£36, Q£16
7
...
15
...
22
9
8
25
3
16
4
27
17
60
4
...
12
...
20
...
5
9
...
−33
10
...
1
2
12
14
...
71
8
11
15
3
16
51
8
52
17
20
19
...
15
5
...
4
20
...
2880 litres
Exercise 7 (page 14)
1
18
7
6
...
2
1
...
22
11
...
(a) 4 (b) 24
(a) 10 (b) 350
(a) 2 (b) 210
(a) 5 (b) 210
(a) 14 (b) 420 420
2
...
3
...
7
...
1
7
4
11
17
30
43
77
9
1
40
1
...
4
1
9
19
7
...
2
20
2
...
1
8
...
7
3
4
...
15
5
...
0
...
14
...
1
...
13
20
7
40
21
1
141
(b)
(c)
(d)
(e)
25
80
500
11
3
7
...
10
25
200
11
1
7
(b) 4
(c) 14
(d) 15
40
8
20
2
...
4
40
41
10
...
(a)
11
...
625
9
250
3
...
6
125
9
...
4
...
10
...
2
...
11
...
185
...
8307
5
...
1581
6
...
571
5
...
1
...
0
...
068
11
...
5 ×10
12
...
5 ×103
−6
−3
4
...
202
...
18
...
6
...
0
...
11
...
0
...
14
...
1
...
2
...
65
...
0
...
329
...
18
...
43
...
72
...
12
...
−124
...
4
...
0
...
−
9
10
4
...
732
8
...
0
...
0
...
0
...
−0
...
0
...
0
...
5
...
2
...
0
...
0
...
0
...
998 2
...
544
3
...
02 4
...
42
456
...
434
...
626
...
1591
...
444 10
...
62963
11
...
563 12
...
455
13
...
8
...
(a) 24
...
812
(a) 0
...
0064 17
...
4˙ (b) 62
...
4
...
0
...
3
...
13
...
50
...
53
...
36
...
12
...
0
...
46
...
1
...
2
...
2
...
30
...
0
...
219
...
5
...
5
...
52
...
0
...
25
...
591
...
69
...
17
...
4
...
10
...
11927
6
...
0944
10
...
325
2
...
30
...
84
...
10
...
2
...
Exercise 10 (page 19)
1
...
9
...
16
...
2
...
0
...
137
...
19
...
515
...
15
...
52
...
0
...
80
...
295
...
59 cm2
159 m/s
0
...
5
...
11
...
78 mm
0
...
8 m2
281
...
6
...
12
...
5
5
...
5
2
...
4
...
10
...
£589
...
508
...
V = 2
...
5
5
...
81 A 6
...
79 s
E = 3
...
I = 12
...
s = 17
...
184 cm2 11
...
327
(a) 12
...
p
...
(c) 13
...
15 h
342 Basic Engineering Mathematics
Exercise 26 (page 43)
Chapter 5
1
...
£66 3
...
450 g 5
...
56 kg
6
...
00025 (b) 48 MPa 7
...
76 litre
Exercise 21 (page 34)
1
...
32%
2
...
4% 3
...
7% 4
...
4%
5
...
5%
6
...
20
7
...
0125 8
...
6875
9
...
462% 10
...
2% (b) 79
...
(b), (d), (c), (a) 12
...
14
...
A = , B = 50%, C = 0
...
30,
2
17
3
F = , G = 0
...
85, J =
10
20
Exercise 27 (page 45)
1
...
170 fr
3
...
8 mm
4
...
(a) 159
...
5 gallons
6
...
4 MPa
7
...
2 mm 8
...
3
...
7
...
14
...
8 kg 2
...
72 m
(a) 496
...
657 g
(a) 14%
(b) 15
...
49% 11
...
2%
2
...
5
...
73 s 4
...
36% 6
...
76 g
9
...
17% 13
...
3
...
25%
37
...
7%
1
...
5 weeks
2
...
(a) 9
...
12 (c) 0
...
50 minutes
5
...
375 m2 (c) 24 × 103 Pa
Chapter 7
Exercise 29 (page 48)
Exercise 23 (page 38)
1
...
9
...
14
...
16
...
5%
2
...
£310
4
...
£20 000 7
...
45 8
...
25
£39
...
£917
...
£185 000 12
...
2%
A 0
...
9 kg, C 0
...
3 t
20 000 kg (or 20 tonnes)
13
...
5 mm 17
...
27
6
...
128
7
...
100 000
8
...
24
10
...
96
9
...
1 6
...
16 4
...
01 10
...
76
7
...
1000 9
...
36 13
...
34 15
...
25
1
1
1
17
...
49 19
...
5
20
...
128
2
...
36 : 1
2
...
5 : 1 or 7 : 2 3
...
96 cm, 240 cm 5
...
£3680, £1840, £920 7
...
£2172
Exercise 31 (page 52)
1
...
9
Exercise 25 (page 42)
1
...
76 ml
3
...
12
...
14
...
25 000 kg
147
148
17
13
...
2
...
±3
10
...
64
19
56
32
25
1
7
...
11
...
4
1
2
4
...
±
13
1
12
...
3
...
7
...
11
...
15
...
19
...
23
...
27
...
4
...
8
...
12
...
16
...
20
...
24
...
28
...
y
20
...
(x − y)(a + b)
1
...
5
...
9
...
13
...
2x(y − 4z)
2x(1 + 2y)
4x(1 + 2x)
x(1 + 3x + 5x 2 )
r(s + p + t )
2 p q 2 2 p2 − 5q
2x y(y + 3x + 4x 2 )
7y(4 + y + 2x)
2r
18
...
t
21
...
(a − 2b)(2x + 3y)
2
...
6
...
10
...
14
...
1
...
2
6
...
2
11
...
2
4
...
6
1
8
...
6
18
...
−10
17
...
0
14
...
12y 2 − 3y
4
...
1
7
...
6a 2 + 5a −
11
...
9x 2 +
1
...
−2
3
...
15
7
...
5
11
...
2
16
...
6
21
...
−3
1
4
1
3
10
...
10a 2 − 3a + 2
15
...
5
1
2
1
3
4
...
12
9
...
13
13
...
−11
15
...
3
19
...
10
23
...
±4
Exercise 44 (page 79)
1
...
5
...
10−7
2
...
3
...
8 (b) 30
digital camera battery £9, camcorder battery £14
800
7
...
12 cm, 240 cm2
4
...
30 kg
2
...
004
5
...
12 m, 8 m
3
...
£312, £240
9
...
5 N
Chapter 12
Exercise 46 (page 84)
1
...
3
Exercise 43 (page 76)
Exercise 41 (page 72)
1
...
4b − 15b2
3
5
...
2
c
p
V
5
...
r =
2π
3
...
a =
t
1
6
...
x =
m
2
...
R =
I
5
13
...
T =
10
...
C =
ω ωL −
12
...
f =
13
...
λ =
R2
5
345
+ , 63
...
r =
or 1 −
S
S
2
...
f =
AL
3F − AL
or f = F −
3
3
4
...
t =
R − R0
R0 α
6
...
b =
9
...
R =
t 2g
4π 2
360 A
12
...
080
14
...
L =
11
...
a =
m −n
3(x + y)
3
...
b = √
1 − a2
a( p2 − q 2 )
7
...
t2 = t1 +
11
...
725
√
v 2 − 2as
M
+ r4
π
mrCR
4
...
r =
x+y
2
...
965
10
...
03L
8
...
5
p = 2, q = −1
x = 3, y = 2
a = 5, b = 2
s = 2, t = 3
m = 2
...
5
x = 2, y = 5
2
...
6
...
10
...
14
...
x = 3, y = 4
x = 4, y = 1
x = 1, y = 2
a = 2, b = 3
x = 1, y = 1
x = 3, y = −2
a = 6, b = −1
c = 2, d = −3
Exercise 50 (page 94)
13
...
3
...
7
...
11
...
15
...
3
...
7
...
4
...
8
...
30, b = 0
...
x = , y =
2
4
1
1
3
...
c = 3, d = 4
3
7
...
a = , b = −
3
2
4
...
r = 3, s =
2
8
...
3
...
6
...
a = 0
...
5, c = 3
α = 0
...
56
a = 4, b = 10
2
...
47, I2 = 4
...
£15 500, £12 800
7
...
40
9
...
5, F2 = −4
...
x = 2, y = 1, z = 3
3
...
x = 2, y = −2, z = 2
4
...
7
...
10
...
x = 2, y = 4, z = 5 6
...
x = −4, y = 3, z = 2
x = 1
...
5, z = 4
...
4
...
8
...
1
...
0
...
905 A
0
...
38 m
1
...
835 m or 18
...
5
...
9
...
84 cm
0
...
78 cm
7m
Chapter 14
Exercise 58 (page 110)
Exercise 54 (page 104)
1
...
−1
...
5
7
...
13
...
4
−2 or −3
4 or −3
2
19
...
4 or −8
4
5
...
−5
11
...
2 or 7
17
...
−1
...
x = 1, y = 3 and x = −3, y = 7
6
...
x = , y = − and −1 , y = −4
5
5
3
3
9
...
15
...
23
...
5
1
4
25
...
5
1
1
26
...
or −
3
2
1
2 or −1
−4
3 or −3
1
8
1
24
...
8
5
30
...
22
...
x 2 − 4x + 3 = 0
33
...
x 2 − 36 = 0
3
...
3
7
...
−2
9
...
2
3
1
11
...
10 000 13
...
9 15
...
0
...
18
...
4
or −2
3
2
32
...
4x 2 − 8x − 5 = 0
36
...
7x − 1
...
4
3
...
−3
5
...
−3
...
268
3
...
468 or −1
...
2
...
307
1
8
3
...
−3
...
637
4
...
290 or 0
...
−2
...
351
1
...
log 12
2
...
log 500
3
...
log 100
4
...
log 6
9
...
log 1 = 0 11
...
log 243 or log 35 or 5 log3
13
...
log 64 or log26 or 6 log2
Exercise 56 (page 107)
1
...
5
...
9
...
13
...
637 or −3
...
781 or 0
...
608 or −1
...
851 or −2
...
481 or −1
...
167
4
...
438
2
...
6
...
10
...
0
...
792
0
...
693
1
...
232
2
...
086
4
...
676
7
...
641
15
...
5
16
...
5
19
...
x = 2
17
...
5 18
...
a = 6 22
...
1
...
3
...
0
...
6
...
2
...
3
...
2
...
−0
...
316
...
2
...
4
...
(a)
0
...
0988
(a) 4
...
04106
2
...
Exercise 67 (page 134)
0
...
064037
2
...
07482
120
...
446
8
...
08286
Exercise 63 (page 120)
1
...
0601
2
...
389 (b) 0
...
x − 2x 4
3
1
4
...
(a) Horizontal axis: 1 cm = 4 V (or 1 cm = 5 V),
vertical axis: 1 cm = 10
(b) Horizontal axis: 1 cm = 5 m, vertical axis:
1 cm = 0
...
2 mm
2
...
5 (d) 5
3
...
5
4
...
1 (b) −1
...
The 1010 rev/min reading should be 1070 rev/min;
(a) 1000 rev/min (b) 167 V
1 − 2x 2 −
Exercise 64 (page 122)
1
...
95, 2
...
(a) 28 cm3 (b) 116 min
2
...
65, −1
...
(a) 70◦C (b) 5 minutes
Exercise 65 (page 124)
1
...
3
...
11
...
17
...
55547 (b) 0
...
8941
(a) 2
...
33154 (c) 0
...
4904 4
...
5822 5
...
197
6
...
2
0
...
11
...
1
...
1
...
962 12
...
4
147
...
4
...
3
...
e
...
500 19
...
Missing values: −0
...
25, 0
...
25, 2
...
(a) 4, −2 (b) −1, 0 (c) −3, −4 (d) 0, 4
1
1
1 1
(b) 3, −2 (c) ,
2
2
24 2
4
...
(a) 2,
1
2
2
1
2
5
...
(a) (b) −4 (c) −1
5
6
7
...
(2, 1)
9
...
5, 6)
10
...
(a) 89 cm (b) 11 N (c) 2
...
4 W + 48
12
...
15 W + 3
...
a = −20, b = 412
Exercise 69 (page 144)
1
...
(a) 850 rev/min (b) 77
...
(a) 150◦ C (b) 100
...
(a) 0
...
25L + 12
2
...
21 kPa
3
...
32 volts (b) 71
...
(a) 1
...
293 m 5
...
45 s
6
...
37 N
7
...
04 A (b) 1
...
2
...
£2424
347
9
...
07 A (b) 0
...
5 N (e) 592 N (f) 212 N
4
...
003, 8
...
(a) 22
...
43 s (c) v = 0
...
5
6
...
9L − 0
...
(a) 1
...
89% (c) F = −0
...
21
8
...
00022 (c) 28
...
a = 0
...
3 kPa, 275
...
(a)
Chapter 18
9
...
6, 13
...
6, 0
...
6 or 0
...
x = −1
...
5 (a) −30 (b) 2
...
50
(c) 2
...
8
Exercise 74 (page 161)
Exercise 70 (page 149)
1
...
(a) y (b)
√
x (c) b (d) a
y
1
(c) f (d) e 4
...
(a) (b) 2 (c) a (d) b
x
x
6
...
5, b = 0
...
78 mm2 7
...
15
1
...
5, y = −5
...
(a) x = −1
...
5 (b) x = −1
...
24
(c) x = −1
...
0
3
...
(a) 950 (b) 317 kN
9
...
4, b = 8
...
4 (ii) 11
...
x = −2
...
5 or 1
...
x = −2, 1 or 3, Minimum at (2
...
1),
Maximum at (−0
...
2)
3
...
x = −2
...
4 or 2
...
x = 0
...
5
6
...
3, 1
...
8
7
...
5
Exercise 71 (page 154)
1
...
3
...
5
...
7
...
(a) lg y (b) x (c) lg a (d) lg b
(a) lg y (b) lg x (c) L (d) lg k
(a) ln y (b) x (c) n (d) ln m
I = 0
...
75 candelas
a = 3
...
5
a = 5
...
6, 38
...
0
R0 = 26
...
42
8
...
08e0
...
4 N, μ = 0
...
0 N, 1
...
5, y = 1
...
3, y = −1
...
4, b = 1
...
82◦ 27
2
...
51◦11 4
...
15 44 17 6
...
72
...
27
...
37◦ 57
10
...
reflex 2
...
acute 4
...
(a) 21◦ (b) 62◦ 23 (c) 48◦56 17
Chapter 19
1
...
5
...
Chapter 20
2
...
x = −1, y = 2
6
...
(a) Minimum (0, 0) (b) Minimum (0, −1)
(c) Maximum (0, 3) (d) Maximum (0, −1)
2
...
4 or 0
...
−3
...
9
4
...
1 or 4
...
−1
...
2
6
...
5 or −2, Minimum at (−1
...
1)
7
...
7 or 1
...
(a) ±1
...
3
6
...
(a) 60◦ (b) 110◦ (c) 75◦ (d) 143◦ (e) 140◦
(f ) 20◦ (g) 129
...
Transversal (a) 1 & 3, 2 & 4, 5 & 7, 6 & 8
(b) 1 & 2, 2 & 3, 3 & 4, 4 & 1, 5 & 6, 6 & 7,
7 & 8, 8 & 5, 3 & 8, 1 & 6, 4 & 7 or 2 & 5
(c) 1 & 5, 2 & 6, 4 & 8, 3 & 7 (d) 3 & 5 or 2 & 8
9
...
a = 69◦ , b = 21◦ , c = 82◦ 11
...
1
...
0
...
40◦55
Exercise 78 (page 173)
1
...
a = 40◦ , b = 82◦, c = 66◦,
d = 75◦, e = 30◦ , f = 75◦
3
...
52◦
5
...
5◦
6
...
40◦, 70◦, 70◦, 125◦, isosceles
8
...
a = 103◦, b = 55◦ , c = 77◦ , d = 125◦,
e = 55◦, f = 22◦, g = 103◦, h = 77◦ ,
i = 103◦, j = 77◦, k = 81◦
10
...
A = 37◦, B = 60◦ , E = 83◦
349
4
3
4
3
2
...
sin A = , tan A =
17
15
112
15
, cos X =
4
...
(a)
(b)
(c)
17
17
15
7
24
6
...
(a) 9
...
625
Exercise 79 (page 176)
1
...
proof
Exercise 84 (page 187)
1
...
5
...
13
...
7550 2
...
846
3
...
52
(a) 0
...
1010 (c) 0
...
33◦
6
...
25◦
7
...
78◦
8
...
41 54 11
...
05
12
...
3586 14
...
803
Exercise 80 (page 178)
Exercise 85 (page 189)
1
...
54 mm, y = 4
...
9 cm, 7
...
(a) 2
...
3 m
1
...
22 (b) 5
...
87 (d) 8
...
595 (f ) 5
...
(a) AC = 5
...
04◦ , ∠C = 30
...
928 cm, ∠D = 30◦, ∠F = 60◦
(c) ∠J = 62◦, HJ = 5
...
59 cm
(d) ∠L = 63◦ , LM = 6
...
37 cm
(e) ∠N = 26◦, ON = 9
...
201 cm
(f ) ∠S = 49◦, RS = 4
...
625 cm
Exercise 81 (page 180)
1–5
...
3
...
54 m
4
...
40 mm
Chapter 21
Exercise 82 (page 182)
Exercise 86 (page 192)
1
...
7
...
11
...
1
...
15 m
2
...
249
...
110
...
53
...
9
...
107
...
9
...
56 m
9
...
24 m
3
...
54 mm
20
...
7
...
11
...
11 mm 8
...
20 cm each (b) 45◦
10
...
81 km
3
...
132
...
94 mm
14
...
sin Z = , cos Z = , tan X = , cos X =
41
41
9
41
1
...
78◦ and 137
...
53◦ and 351
...
(a) 29
...
92◦ (b) 123
...
14◦
3
...
21◦ and 224
...
12◦ and 293
...
t = 122◦7 and 237◦53
5
...
θ = 39◦44 and 219◦44
Exercise 88 (page 202)
1
...
180◦
3
...
120◦
◦
◦
◦
5
...
2, 144
7
...
5, 720◦
7
9
...
6, 360◦ 11
...
5 ms
2
13
...
100 μs or 0
...
625 Hz 16
...
leading
Exercise 91 (page 209)
1
...
2 cm, Q = 47
...
65◦,
area = 77
...
p = 6
...
83◦, R = 44
...
938 m2
3
...
33◦, Y = 52
...
05◦,
area = 27
...
Z = 29
...
50◦ , Z = 96
...
(a) 40 (b) 25 Hz (c) 0
...
29 rad (or 16
...
3
...
7
...
(a) 122
...
80◦ , 40
...
54◦
(a) 11
...
55◦
4
...
4 m
BF = 3
...
0 m 6
...
35 m, 5
...
48 A, 14
...
(a) 75 cm (b) 6
...
157 s
(d) 0
...
94◦ ) lagging 75 sin 40t
3
...
01 s or 10 ms
(d) 0
...
61◦) lagging 300 sin 200πt
4
...
43) volts
π
A or
5
...
524)A
6
...
2 sin(100πt + 0
...
(a) 5A, 50 Hz, 20 ms, 24
...
093A (c) 4
...
375 ms (e) 3
...
C = 83◦ , a = 14
...
9 mm,
area = 189 mm2
2
...
568 cm, a = 7
...
65 cm2
3
...
0 cm,
area = 134 cm2
4
...
08 mm,
area = 185
...
J = 44◦29 , L = 99◦31 , l = 5
...
132 cm2 , or, J = 135◦ 31 , L = 8◦29 ,
l = 0
...
917 cm2
6
...
2 mm,
area = 820
...
19 mm, area = 174
...
80
...
38◦, 40
...
(a) 15
...
07◦
3
...
25 cm, 126
...
19
...
36
...
x = 69
...
130◦ 8
...
66 mm
Chapter 24
Exercise 94 (page 215)
1
...
3
...
5
...
7
...
(5
...
04◦) or (5
...
03 rad)
(6
...
82◦) or (6
...
36 rad)
(4
...
57◦) or (4
...
03 rad)
(6
...
58◦) or (6
...
54 rad)
(7
...
20◦) or (7
...
55 rad)
(4
...
31◦) or (4
...
12 rad)
(5
...
04◦) or (5
...
74 rad)
(15
...
75◦) or (15
...
37 rad)
Exercise 95 (page 217)
(1
...
830)
2
...
917, 3
...
362, 4
...
(−2
...
154)
(−9
...
400)
6
...
615, −3
...
750, −1
...
(4
...
233)
(a) 40∠18◦, 40∠90◦, 40∠162◦, 40∠234◦, 40∠306◦
(b) (38
...
36), (0, 40), (−38
...
36),
(−23
...
36), (23
...
36)
10
...
0 mm
1
...
5
...
9
...
p = 105◦ , q = 35◦
3
...
r = 142◦, s = 95◦
Exercise 97 (page 225)
1
...
91 cm
2
...
7 cm2 3
...
27
...
18 cm
6
...
(a) 29 cm2 (b) 650 mm2
8
...
3
...
6750 mm
11
...
30 cm2
12
...
4
...
9
...
13
...
18
...
113 cm2
2
...
1790 mm2
2
2
802 mm
5
...
1269 m2
2
1548 m
8
...
0 cm (b) 783
...
46 m 10
...
80 cm, 74
...
86 mm (b) 197
...
26
...
67 cm, 54
...
82
...
748
(a) 0
...
2 m2
17
...
47 m2
2
(a) 396 mm (b) 42
...
701
...
74 mm
Exercise 104 (page 237)
1
...
Centre at (3, −2), radius 4
3
...
Circle, centre (0, 0), radius 6
Chapter 27
Exercise 98 (page 226)
1
...
3
...
7
...
27 cm2 (b) 706
...
(a) 20
...
41 mm
(a) 53
...
9 mm2
6
...
89 m
Exercise 99 (page 228)
1
...
1624 mm2 3
...
918 ha (b) 456 m
Exercise 105 (page 243)
1
...
5
...
10
...
14
...
17
...
1
...
5 cm3
3
...
15 cm3 , 135 g
7
...
(a) 35
...
3 cm2
1
...
37
...
63 cm
13
...
709 cm, 153
...
99 cm
16
...
099 m2
8
...
22 m
18
...
5 min
4 cm
20
...
08 m3
Exercise 100 (page 229)
1
...
80 m2
3
...
14 ha
Chapter 26
Exercise 101 (page 231)
1
...
24 cm 2
...
5 mm 3
...
629 cm 4
...
68 cm
5
...
73 cm 6
...
97
...
201
...
0 cm2 2
...
68 cm3 , 25
...
113
...
1 cm2 4
...
131 cm 5
...
2681 mm3 7
...
083 cm3
(b) 20 106 mm2 or 201
...
8
...
(a) 512 × 106 km2 (b) 1
...
664
Exercise 102 (page 232)
Exercise 107 (page 251)
5π
5π
π
(b)
(c)
6
12
4
2
...
838 (b) 1
...
054
3
...
(a) 0◦ 43 (b) 154◦8 (c) 414◦ 53
1
...
4
...
1
...
90 cm2
(a) 56
...
82 cm2
3
...
57 kg
5
...
4 m2
29
...
5 cm3 (b) 84
...
4 cm3 (b) 32
...
0 cm3
352 Basic Engineering Mathematics
7
...
11
...
(b) 146 cm2 (vi) (a) 86
...
9 cm (b) 38
...
125 cm3
3
2
10
...
5 m
10
...
220
...
1 cm3 , 1027 cm2
2
(a) 1458 litres (b) 9
...
45
147 cm3 , 164 cm2
10480 m3 , 1852 m2
10
...
14 m
14
...
72◦ to the 5 N force
29
...
04◦ to the horizontal
9
...
70◦
9
...
89 m/s at 159
...
62 N at 26
...
07 knots, E 9
...
3
...
7
...
7
...
10
...
2
...
1707 cm2
6
...
(a) 54
...
16◦ (b) 45
...
66◦
2
...
71 m/s at 121
...
55 m/s at 8
...
83
...
6◦ to the vertical
2
...
22
...
78◦ N
Exercise 109 (page 256)
1
...
137
...
4
...
54
...
63
...
4
...
143 m2
Exercise 111 (page 260)
1
...
59 m3
2
...
20
...
(a) 2 A (b) 50 V (c) 2
...
0
...
1 A
5
...
13 cm2 , 368
...
3
...
7
...
i − j − 4k
−i + 7j − k
−3i + 27j − 8k
i + 7
...
6i + 4
...
9k
2
...
6
...
10
...
5j − 10k
2i + 40j − 43k
Chapter 30
Exercise 118 (page 279)
2
...
5 V (b) 3 A
4
...
83 V (b) 0
1
...
5 sin(A + 63
...
(a) 20
...
62) volts
(b) 12
...
33) volts
3
...
395)
Chapter 29
Exercise 119 (page 281)
Exercise 113 (page 266)
1
...
2
...
scalar
4
...
scalar
6
...
vector 8
...
vector
Exercise 114 (page 273)
1
...
3
...
5
...
35 N at 18
...
62◦ to the 12 m/s velocity
16
...
57◦ to the 13 N force
28
...
30◦ to the 18 N force
32
...
80◦ to the 30 m displacement
1
...
5 sin(A + 63
...
(a) 20
...
62) volts
(b) 12
...
33) volts
3
...
395)
Exercise 120 (page 283)
1
...
5 sin(A + 63
...
(a) 20
...
62) volts
(b) 12
...
33) volts
3
...
395) 4
...
11 sin(ωt + 0
...
8
...
173)
Answers to practice exercises
Exercise 121 (page 284)
11
...
324)
2
...
73 sin(ωt − 0
...
79 sin(ωt − 0
...
695 sin(ωt + 0
...
38 sin(ωt + 1
...
3 sin(314
...
233) V (b) 50 Hz
(a) 10
...
3t + 0
...
(a) 79
...
352)V (b) 150 Hz
(c) 6
...
3
...
5
...
7
...
(a) continuous (b) continuous (c) discrete
(d) continuous
2
...
If one symbol is used to represent 10 vehicles, working correct to the nearest 5 vehicles, gives 3
...
5,
6, 7, 5 and 4 symbols respectively
...
If one symbol represents 200 components, working
correct to the nearest 100 components gives: Mon 8,
Tues 11, Wed 9, Thurs 12 and Fri 6
...
3
...
4
...
5
...
6
...
7
...
P increases by 20% at the expense of Q and R
...
Four rectangles of equal height, subdivided as follows: week 1: 18%, 7%, 35%, 12%, 28%; week 2:
20%, 8%, 32%, 13%, 27%; week 3: 22%, 10%, 29%,
14%, 25%; week 4: 20%, 9%, 27%, 19%, 25%
...
9
...
5◦ , 22
...
5◦, 167
...
353
10
...
11
...
(a) £16 450 (b) 138
Exercise 124 (page 297)
1
...
3–39
...
5–39
...
7–39
...
9–40
...
1–40
...
3–40
...
5–40
...
7–40
...
2
...
35, 39
...
75, 39
...
and
heights of 1, 5, 9, 17,
...
There is no unique solution, but one solution is:
20
...
9 3; 21
...
4 10; 21
...
9 11;
22
...
4 13; 22
...
9 9; 23
...
4 2
...
There is no unique solution, but one solution is:
1–10 3; 11–19 7; 20–22 12; 23–25 11;
26–28 10; 29–38 5; 39–48 2
...
20
...
45 13; 21
...
45 37; 22
...
45 48
6
...
5, 15, 21, 24, 27, 33
...
5
...
3, 0
...
67, 2
...
5 and 0
...
7
...
95 2), (11
...
95 19), (12
...
95
42), (13
...
A graph of cumulative frequency against upper class
boundary having co-ordinates given in the answer
to problem 7
...
(a) There is no unique solution, but one solution is:
2
...
09 3; 2
...
14 10; 2
...
19 11;
2
...
24 13; 2
...
29 9; 2
...
34 2
...
07, 2
...
and heights of 3, 10,
...
095 3; 2
...
195 24; 2
...
295 46; 2
...
(d) A graph of cumulative frequency against upper
class boundary having the co-ordinates given
in part (c)
...
Mean 7
...
Mean 27
...
−2542 A/s
2
...
16 cd/V (b) 312
...
(a) −1000 V/s (b) −367
...
−1
...
(a)
15
2
3
4
...
(a)
5
...
7
...
9
...
(a) 8 x + 8 x3 +
x +c
5
7x 2
+c
2
3
(b) t 8 + c
8
5 4
x +c
(b)
24
3
(b) 2t − t 4 + c
4
(b)
(b) 4θ + 2θ 2 +
5
(a) θ 2 − 2θ + θ 3 + c
2
3
2
3
(b) x 4 − x 3 + x 2 − 2x + c
4
3
2
4
1
(a) − + c
(b) − 3 + c
3x
4x
4√ 5
1√
4 9
(a)
x +c
(b)
x +c
5
9
15 √
10
5
(b)
x +c
(a) √ + c
7
t
7
(b) − cos 3θ + c
3
1
(b) 18 sin x + c
3
−2
(b)
+c
15e5x
13
...
(a) 4x + c
3
sin 2x + c
2
1
11
...
(a) e + c
8
10
...
(a) 1
...
5
2
...
5
3
...
333
4
...
75 (b) 0
...
(a) 10
...
1667
6
...
(a) 1 (b) 4
...
(a) 0
...
638
9
...
09 (b) 2
...
(a) 0
...
099
Exercise 141 (page 334)
1
...
37
...
1
...
proof
6
...
5
9
...
67
3
...
1
10
...
29
Title: Basic Engineering Mathematics- introduction to trigonometry
Description: Basic Engineering Mathematics- introduction to trigonometry
Description: Basic Engineering Mathematics- introduction to trigonometry