Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Blueprint Series Physics in Biology and Medicine Complete Solution
Description: This is the complete solution of the book Physics in Biology and Medicine 5th ed. by Paul Davidovits (Elsevier publication). All chapters are covered and elaborate descriptions for the solutions are provided.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Blueprint

Solution
Manual

Page 1 of 43

s0010 CHAPTER 1
o0010

1-1
...
Toppling torque Ta 5 Fa × 1
...

1-2
...
1
...
E
...
2

f0010

L1

d1
q

q

L2

d2

p0040

The magnitudes of the two angles of the lever arm with respect to the
horizontal are equal therefore,
L1 ¼ d1 sin θ L2 ¼ d2 sin θ
L1 d 1
and
¼
L2 d2

Page 2 of 43

o0020

1-3
...
E
...
3, the sum of the two angles ω + 100o ¼ 180o
∴ ω ¼ 80o
x0 ¼ 30 × cos 80° ¼ 5:2 cm
y0 ¼ 30 sin 80° ¼ 29:4 cm
θ

¼

y0

tan —1

θ ¼ tan

x0 + 4
29:4
—1
5:2+4

¼ 72:6

°

f0015

100°
y
w

q
4 cm

x
o0025

1-4
...
1-13


Fm
10:5

¼ 335 N ¼ 75 lb

Page 3 of 43

o0030

1-5
...
E
...
5

f0020

y
160°
a


w

q


b

Fm
x



w

ω + 160° ¼ 180° ;ω ¼ 20°
a ¼ 30 sin 20 ¼ 10:3cm
b ¼ 30 cos 20 ¼ 28:2cm
a
10:3
θ ¼ tan—1
¼ tan—1
b +4
28:2+4
°
θ ¼ 17:7
p0065

The upper arm is at the same angle as in Fig
...
Using results from
Exercises 1
...
(1-10)
x component: Fm cos(θ + δ) ¼ Fr cos ϕ
y component: Fm sin(θ + δ) ¼ Fr sin ϕ + W
Torque is: 4 cm Fm sin (θ) ¼ 40 cm W × sin γ
From these we obtain 3 equations
1
...
7 ¼ Fr cos ϕ
2
...
7 ¼ Fr sin ϕ + 137 N
3
...
7 ¼ 10 × 137 × sin 30o
From 3
...
4o
Fr ¼ 2,386 N ¼ 536 lb

Page 4 of 43

o0050

1-6
...
1-12 (or 1-13) θ ¼ 72
...
1-12
4 cm × Fm sin θ ¼ 20cm × W
W ¼ 14 × 9:8 ¼ 137 N
Fm ¼ 720 N ¼ 162 lb

p0130

Following Eqs
...
(a) As in Eq
...
1-15
Fr cos ϕ ¼ 646 N
Fr sin ϕ ¼ 2, 060 — 2 × 137 ¼ 1, 790 N
F2r ¼ 3:61 × 106N2
Fr ¼ 1, 900 N
1, 790
°
tan ϕ ¼
¼ 2:77;ϕ ¼ 70:2
646

li7890
o0065
p0155
p0160
p0165

(b) yes
1-8
...

Referring to Problem 1-6
Added force Fm ¼ 720
¼ 103 N
7
Added force Fr ¼ 590
¼
84 N
7

Page 5 of 43

o0070

1-10
...
E
...
10 θ ¼ 72
...
3° ¼ 19
...

3:4

p0185

Speed of muscle contraction ¼ 4 cm=s
19:6 cm
Speed of weight displacement ¼
0:5s
¼ 38 cm=s:
Ratio of speeds is approximately inverse of mechanical advantage
...


Using data given in the text, torque regarding hip, torque about the
insertion point is:
Fm × 7cm ¼ W × 3+ ð7 — 5:56Þ0:185 W
;Fm ¼ 0:47 W

p0200

As seen from Fig
...
The y
components of forces set to 0 leads to:
Fm + W ¼ Fr + 0:185 W
1:47 W ¼ Fr + 0:185 W
Fr ¼ 1:28 W

Page 6 of 43

o0080

1-12
...

Angle of reaction force Fr at fifth lumbar with respect to y-axis is ϕ
x component of force ¼ 0
Fm sin 72° ¼ Fr sin ϕ
y comp of force ¼ 0
Fr cos ϕ ¼ 160 + 320 + Fm cos 72°
Fr sin ϕ ¼ 1, 902 N
Fr cos ϕ ¼ 1, 098 N
;Fr 2 ¼ 4:82 × 106 N2 and Fr ¼ 2, 200 N

o0085

(b) The added 20 kg mass is a force F ¼ 196 N
...
Torque conditions:

2
‘ × 356 + 320 cos 30 ° ¼ Fm ‘sin 12°
3
2
Fm ¼ 3, 220 N

p0225

Following 1-12 (a)
Fr sin ϕ ¼ 3, 062
Fr cos ϕ ¼ 356 + 320 + Fm cos 72° ¼ 1, 671 N
Fr 2 ¼ 12:17 × 106 N2 ;Fr ¼ 3, 490 N

o0090
p0235
p0240
p0250
f5780

1-13
...

From Fig
...
5 W
x component of force:
FT sin ϕ ¼ FA sin 15° ¼ 0
...
42 W
;F2T ¼ 12:1 N2

f0025

p0290

and FT ¼ 3
...
(a) Ff ¼ μ Fn Fn ¼ m g
μ ¼ 0
...
33 meters/sec
Work done by frictional force bringing the skater to a halt is Ffd
1
Ff d ¼ mv2
2
1 2
μmgd
mv
¼
2
ð8:33Þ2
v2

¼
¼ 354 meters
2μg 2 × 0:01 × 9:8
(b) The distance of coasting is independent of mass
...
As in Chapter 1 Eq
...
5 ¼ W × 0
...
(a) Let the force at point be B ¼ Fb
Let the force at point be C ¼ Fc
Equilibrium torque conditions about point A ¼ 0
FB × 2:5 cm=cos 45° ¼ ðFC × 3 cmÞ=cos 45°
2:5
;FC ¼
FB
3
Sum of forces perpendicular to the fin are equal to zero:
F sin 25° + FC ¼ FB

p0370
p0375

p0380

With F ¼ 0
...
1 by Eq
...
01,
;45° — θ ¼ 44:4° and θ ¼ 0:6°

2-4
...
Volume of residual saliva in the mouth ¼ 0
...

p0410
Let radius of the tongue (assumed to be a sphere) be rt and radius of the
oral cavity be rc
...
17 cm3 and (rc)3 ¼ 9
...
93 cm and rc ¼ 2
...
8¼cm3
p0435
Let the thickness of the coating¼Δr, then the volume of the saliva coating on the tongue and the oral cavity respectively is 4 π (rt)2 x Δr and 4 π
(rc)2 x Δr respectively
...
2 Δr + 56
...
8 cm3 or Δr ¼ 0
...
0775 mm
This is approximately ~0
...


Page 10 of 43

s0020 CHAPTER 3
o0125
p0470
p0475
p0480
p0485

o0130

p0495

3-1
...
3-12
Work done on the body ¼ W(c + H)
W ¼ 70 kg × 9
...
2 meters
∴ work done ¼ 823 J
work
823 J
Power ¼
¼
¼ 4, 120 W:
time 0:2 sec
3-2
...
Assuming as in the text that Fm W
¼
From Eq
...
Square Eq
...

Fr2 ¼ 5 W2 — 4W2 sin θ

p0510

Obtain
sin θ ¼

p0515

p0520

5W2 — F2r
4W2

Substitute into 3-20 and obtain quadratic equation Fr2 + 1
...
41 ∴ θ ¼ 65
...
From the text vo ¼ 3
...
7 × sin 45° ¼ 2
...
3-1
vy ¼ vy o + at

p0560

At maximum height of jump vy ¼ 0
Therefore

p0565

—a vy o
vy o
¼
a
g
2:62
¼
¼ 0:267 sec
9:8
Duration of jump ¼ 2t ¼ 0
...
(a) Eq
...

Because weight on the moon is
Eq
...
3-19 and Eq
...
1 and obtain
Fr2 + 0:236 Fr W — 3:97 W2 ¼ 0

p0595
p0600
p0605
p0610
p0615
p0620

Solve for Fr taking positive answer
Fr ¼ 1
...
707 × 1
...
665
θ ¼ 48
...
4 × 0
...
1 m2/sec2
From Eq
...
3-15
2 θ
2v
ðvo2Þ cos
22:1
o

¼ 0¼
¼ 3:39 m
2g0
4g 4 × 1:63
(c) From Eq
...
Duration of jump ¼ 2 × t ¼ 4
...

¼1:63

Page 12 of 43

o0160

3-6
...
3-24
vt ¼

W
CA

1=2

ρ ¼ density

4
W ¼ πr3ρ A ¼ πr2
3
C ¼ 0:88 kg=m3ðsee text section 3:7Þ
r ¼ 0:5 cm ¼ 5 × 10—3m
ρ ¼ 1g=cm3 ¼ 103kg=m3
vt ¼
¼

4rgρ
3c

1=2

4 × 5 × 10—3 × 9:8 × 103

1=2

3 × 0:88
¼ 8:6 m= sec
o0165

m=sec

3-7
...
3-24
W
A¼ 2
vt C
W ¼ 70 × 9:8N
v2t ¼ 196 m2 C ¼ 0:88 kg=m3

p0665
p0670
o0170
o0175

Therefore A ¼ 3
...
13 m
3-8
...
3-24
W
vt ¼
(a)
CA

1=2

ρ ¼ density ¼ 0:92 × 103kg=m3
4
W ¼ πr3ρ A ¼ πr2
3
C ¼ 0:88 kg=m3ðsee textÞ
r ¼ 5 × 10—3mρ ¼ 0:92 × 103kg=m3
vt ¼
¼

4rgρ
3C

1=2

4 × 5 × 10—3 × 9:8 × 0:92 × 103
3 × 0:98

1=2

m=sec

¼ 8:3 m= sec

Page 13 of 43

o0180

p0690
o0185

(b) Note from Eq
...
3 m/s × (4)1/2 ¼ 16
...
Work done in each step ¼ mv2 (see text Section 3
...
Assume area of runner is 0
...
7)
Wind velocity ¼ 30 km/hr ¼ 8
...
33 + 4
...
8 m/sec
Fa ¼ C Av2 ¼ 0
...
2 × 165 ¼ 29
...
Centrifugal force Fc
Mass of the arm ¼ (0
...
06)70 kg ¼ 9
...

R location of center of mass from shoulder ¼90 cm ¼ 0
Title: Blueprint Series Physics in Biology and Medicine Complete Solution
Description: This is the complete solution of the book Physics in Biology and Medicine 5th ed. by Paul Davidovits (Elsevier publication). All chapters are covered and elaborate descriptions for the solutions are provided.