Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Blueprint Series Physics in Biology and Medicine Complete Solution
Description: This is the complete solution of the book Physics in Biology and Medicine 5th ed. by Paul Davidovits (Elsevier publication). All chapters are covered and elaborate descriptions for the solutions are provided.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Blueprint

Solution
Manual

Page 1 of 43

s0010 CHAPTER 1
o0010

1-1
...
Toppling torque Ta 5 Fa × 1
...

1-2
...
1
...
E
...
2

f0010

L1

d1
q

q

L2

d2

p0040

The magnitudes of the two angles of the lever arm with respect to the
horizontal are equal therefore,
L1 ¼ d1 sin θ L2 ¼ d2 sin θ
L1 d 1
and
¼
L2 d2

Page 2 of 43

o0020

1-3
...
E
...
3, the sum of the two angles ω + 100o ¼ 180o
∴ ω ¼ 80o
x0 ¼ 30 × cos 80° ¼ 5:2 cm
y0 ¼ 30 sin 80° ¼ 29:4 cm
θ

¼

y0

tan —1

θ ¼ tan

x0 + 4
29:4
—1
5:2+4

¼ 72:6

°

f0015

100°
y
w

q
4 cm

x
o0025

1-4
...
1-13


Fm
10:5

¼ 335 N ¼ 75 lb

Page 3 of 43

o0030

1-5
...
E
...
5

f0020

y
160°
a


w

q


b

Fm
x



w

ω + 160° ¼ 180° ;ω ¼ 20°
a ¼ 30 sin 20 ¼ 10:3cm
b ¼ 30 cos 20 ¼ 28:2cm
a
10:3
θ ¼ tan—1
¼ tan—1
b +4
28:2+4
°
θ ¼ 17:7
p0065

The upper arm is at the same angle as in Fig
...
Using results from
Exercises 1
...
(1-10)
x component: Fm cos(θ + δ) ¼ Fr cos ϕ
y component: Fm sin(θ + δ) ¼ Fr sin ϕ + W
Torque is: 4 cm Fm sin (θ) ¼ 40 cm W × sin γ
From these we obtain 3 equations
1
...
7 ¼ Fr cos ϕ
2
...
7 ¼ Fr sin ϕ + 137 N
3
...
7 ¼ 10 × 137 × sin 30o
From 3
...
4o
Fr ¼ 2,386 N ¼ 536 lb

Page 4 of 43

o0050

1-6
...
1-12 (or 1-13) θ ¼ 72
...
1-12
4 cm × Fm sin θ ¼ 20cm × W
W ¼ 14 × 9:8 ¼ 137 N
Fm ¼ 720 N ¼ 162 lb

p0130

Following Eqs
...
(a) As in Eq
...
1-15
Fr cos ϕ ¼ 646 N
Fr sin ϕ ¼ 2, 060 — 2 × 137 ¼ 1, 790 N
F2r ¼ 3:61 × 106N2
Fr ¼ 1, 900 N
1, 790
°
tan ϕ ¼
¼ 2:77;ϕ ¼ 70:2
646

li7890
o0065
p0155
p0160
p0165

(b) yes
1-8
...

Referring to Problem 1-6
Added force Fm ¼ 720
¼ 103 N
7
Added force Fr ¼ 590
¼
84 N
7

Page 5 of 43

o0070

1-10
...
E
...
10 θ ¼ 72
...
3° ¼ 19
...

3:4

p0185

Speed of muscle contraction ¼ 4 cm=s
19:6 cm
Speed of weight displacement ¼
0:5s
¼ 38 cm=s:
Ratio of speeds is approximately inverse of mechanical advantage
...


Using data given in the text, torque regarding hip, torque about the
insertion point is:
Fm × 7cm ¼ W × 3+ ð7 — 5:56Þ0:185 W
;Fm ¼ 0:47 W

p0200

As seen from Fig
...
The y
components of forces set to 0 leads to:
Fm + W ¼ Fr + 0:185 W
1:47 W ¼ Fr + 0:185 W
Fr ¼ 1:28 W

Page 6 of 43

o0080

1-12
...

Angle of reaction force Fr at fifth lumbar with respect to y-axis is ϕ
x component of force ¼ 0
Fm sin 72° ¼ Fr sin ϕ
y comp of force ¼ 0
Fr cos ϕ ¼ 160 + 320 + Fm cos 72°
Fr sin ϕ ¼ 1, 902 N
Fr cos ϕ ¼ 1, 098 N
;Fr 2 ¼ 4:82 × 106 N2 and Fr ¼ 2, 200 N

o0085

(b) The added 20 kg mass is a force F ¼ 196 N
...
Torque conditions:

2
‘ × 356 + 320 cos 30 ° ¼ Fm ‘sin 12°
3
2
Fm ¼ 3, 220 N

p0225

Following 1-12 (a)
Fr sin ϕ ¼ 3, 062
Fr cos ϕ ¼ 356 + 320 + Fm cos 72° ¼ 1, 671 N
Fr 2 ¼ 12:17 × 106 N2 ;Fr ¼ 3, 490 N

o0090
p0235
p0240
p0250
f5780

1-13
...

From Fig
...
5 W
x component of force:
FT sin ϕ ¼ FA sin 15° ¼ 0
...
42 W
;F2T ¼ 12:1 N2

f0025

p0290

and FT ¼ 3
...
(a) Ff ¼ μ Fn Fn ¼ m g
μ ¼ 0
...
33 meters/sec
Work done by frictional force bringing the skater to a halt is Ffd
1
Ff d ¼ mv2
2
1 2
μmgd
mv
¼
2
ð8:33Þ2
v2

¼
¼ 354 meters
2μg 2 × 0:01 × 9:8
(b) The distance of coasting is independent of mass
...
As in Chapter 1 Eq
...
5 ¼ W × 0
...
(a) Let the force at point be B ¼ Fb
Let the force at point be C ¼ Fc
Equilibrium torque conditions about point A ¼ 0
FB × 2:5 cm=cos 45° ¼ ðFC × 3 cmÞ=cos 45°
2:5
;FC ¼
FB
3
Sum of forces perpendicular to the fin are equal to zero:
F sin 25° + FC ¼ FB

p0370
p0375

p0380

With F ¼ 0
...
1 by Eq
...
01,
;45° — θ ¼ 44:4° and θ ¼ 0:6°

2-4
...
Volume of residual saliva in the mouth ¼ 0
...

p0410
Let radius of the tongue (assumed to be a sphere) be rt and radius of the
oral cavity be rc
...
17 cm3 and (rc)3 ¼ 9
...
93 cm and rc ¼ 2
...
8¼cm3
p0435
Let the thickness of the coating¼Δr, then the volume of the saliva coating on the tongue and the oral cavity respectively is 4 π (rt)2 x Δr and 4 π
(rc)2 x Δr respectively
...
2 Δr + 56
...
8 cm3 or Δr ¼ 0
...
0775 mm
This is approximately ~0
...


Page 10 of 43

s0020 CHAPTER 3
o0125
p0470
p0475
p0480
p0485

o0130

p0495

3-1
...
3-12
Work done on the body ¼ W(c + H)
W ¼ 70 kg × 9
...
2 meters
∴ work done ¼ 823 J
work
823 J
Power ¼
¼
¼ 4, 120 W:
time 0:2 sec
3-2
...
Assuming as in the text that Fm W
¼
From Eq
...
Square Eq
...

Fr2 ¼ 5 W2 — 4W2 sin θ

p0510

Obtain
sin θ ¼

p0515

p0520

5W2 — F2r
4W2

Substitute into 3-20 and obtain quadratic equation Fr2 + 1
...
41 ∴ θ ¼ 65
...
From the text vo ¼ 3
...
7 × sin 45° ¼ 2
...
3-1
vy ¼ vy o + at

p0560

At maximum height of jump vy ¼ 0
Therefore

p0565

—a vy o
vy o
¼
a
g
2:62
¼
¼ 0:267 sec
9:8
Duration of jump ¼ 2t ¼ 0
...
(a) Eq
...

Because weight on the moon is
Eq
...
3-19 and Eq
...
1 and obtain
Fr2 + 0:236 Fr W — 3:97 W2 ¼ 0

p0595
p0600
p0605
p0610
p0615
p0620

Solve for Fr taking positive answer
Fr ¼ 1
...
707 × 1
...
665
θ ¼ 48
...
4 × 0
...
1 m2/sec2
From Eq
...
3-15
2 θ
2v
ðvo2Þ cos
22:1
o

¼ 0¼
¼ 3:39 m
2g0
4g 4 × 1:63
(c) From Eq
...
Duration of jump ¼ 2 × t ¼ 4
...

¼1:63

Page 12 of 43

o0160

3-6
...
3-24
vt ¼

W
CA

1=2

ρ ¼ density

4
W ¼ πr3ρ A ¼ πr2
3
C ¼ 0:88 kg=m3ðsee text section 3:7Þ
r ¼ 0:5 cm ¼ 5 × 10—3m
ρ ¼ 1g=cm3 ¼ 103kg=m3
vt ¼
¼

4rgρ
3c

1=2

4 × 5 × 10—3 × 9:8 × 103

1=2

3 × 0:88
¼ 8:6 m= sec
o0165

m=sec

3-7
...
3-24
W
A¼ 2
vt C
W ¼ 70 × 9:8N
v2t ¼ 196 m2 C ¼ 0:88 kg=m3

p0665
p0670
o0170
o0175

Therefore A ¼ 3
...
13 m
3-8
...
3-24
W
vt ¼
(a)
CA

1=2

ρ ¼ density ¼ 0:92 × 103kg=m3
4
W ¼ πr3ρ A ¼ πr2
3
C ¼ 0:88 kg=m3ðsee textÞ
r ¼ 5 × 10—3mρ ¼ 0:92 × 103kg=m3
vt ¼
¼

4rgρ
3C

1=2

4 × 5 × 10—3 × 9:8 × 0:92 × 103
3 × 0:98

1=2

m=sec

¼ 8:3 m= sec

Page 13 of 43

o0180

p0690
o0185

(b) Note from Eq
...
3 m/s × (4)1/2 ¼ 16
...
Work done in each step ¼ mv2 (see text Section 3
...
Assume area of runner is 0
...
7)
Wind velocity ¼ 30 km/hr ¼ 8
...
33 + 4
...
8 m/sec
Fa ¼ C Av2 ¼ 0
...
2 × 165 ¼ 29
...
Centrifugal force Fc
Mass of the arm ¼ (0
...
06)70 kg ¼ 9
...

R location of center of mass from shoulder ¼90 cm ¼ 0
...
From Eq
...
(b) Assume as before that center of mass (m) of arm is at mid-length
of the arm
...
45 m
Let the force along the arm be Fa; this force is at 60° with respect to the
horizontal
...
Following Eq
...
The length of the step is 1m therefore, the runner does 100 steps in 10 sec
...
1 sec
Using the pendulum analogy,
T ¼ 2 × 0
...
2sec
A ¼ length of step (See Fig
...
4-11
amax ¼

o0215

1=2

1=2

2 0:9
¼ 2π 3 × 9:8

1=2

¼ 1:6 sec:

As discussed in text, time for 1 step is T2 ¼ 0:80 sec
Length of step is 0
...
The period of the arm swing is
T ¼ 2π

p0865
o0225
p0875

2

0:9
×

1=2

¼ 1:6 sec:

3 9:8
Same as that for the leg
4-8
...
of steps/sec 5 speed/length of step 5 vA(from Fig
...
of steps
...
4-12
T

Page 16 of 43

I ¼ m‘3 from Appendix A;
‘ ¼ length of leg
vmax
ωmax ¼

Maximum energy/step 5 Er
2

p0880
p0885

p0890

1 2
Er ¼ Iωm see text
2
1 m‘2 π2v2 π2 2
¼
2 ¼ 6 mv
2 3 ‘2
¼ 1:64 mv
o0230

4-9
...
4
...
2 is
m‘2

‘ ¼ 2m
3
m‘2
T ¼ 2π
mg‘=2
¼ 2π

2‘
g

1=2

1=2

¼ 6:28 ×

4
9:8

1=2

¼ 4:0 sec:
p0905
o0235
p0915

Time of falling is T4 ¼ 1 sec
4-10
...
45 5 26
...
7° 5 0
...
)
The distance the center of mass is raised in the course of one step
is: 1m – 0
...
11m 5 11cm
...
From Eq
...
1)

SB ¼ 10 dyn=cm
2 y
14 × 100 × 1018
¼
2 14 × 1010
¼ 143 J

p0930

8

¼ 14:3 × 10 erg

Therefore the kinetic energy of runner that may cause fracture is
obtained from
1 2
mv ¼ 143 Jm ¼ 50 kg
2
v ¼ 2:39 m=sec ¼ 8:6 km=hr
¼ 5:3 m:p:h

o0245
p0940

5-2
...
However,
if the area of impact is smaller the maximum speed of fracture would correspondingly decrease
...
An impact force FB that will fracture the skull is
FB ¼ 1 cm2 × 109dyn=cm2 ¼ 109dyn
4

¼ 10 N
p0970

The impulsive force of the falling body is


mv
1=2
;v ¼ ð2ghÞ
Δt

Page 18 of 43

p0975
p0980
p0985

Therefore F ¼ (m(2gh)1/2)/Δt
Fracture will occur when F ¼ 104 N
or
F2Δt2

108 × 10—6



o0255

p0995

o0260

¼
¼ 5:1m
m22g 1 × 2 × 9:8
5-4
...
A1-4)
v v2
¼
t 2s
Therefore t ¼ 2sv
s ¼ 30 cm ¼ 0:3m
v ¼ 70 km=hr ¼ 19:4 m= sec ~ 20 m=sec
0:6

¼ 3 × 10—2 sec
20
5-5
...
1 rupture strength on stretching, (as in whiplash) is
83 × 107 dyn/cm2
FB ¼ 1 cm2 × 83 × 107 ¼ 83 × 102N
mv

p1005
p1010

Impulsive force is F ¼ Δt
Therefore the collision velocity that may fracture the neck is


FB
83 × 102 × 10—2
Δt ¼
5
m
¼ 17m=sec
¼ 60 km=hr
¼ 37 m:p:h

o0265

5-6
...
A 1-8
v2
v ¼ 62:5 m= sec s ¼ 1m
2s
2
a ¼ ð62:5Þ ¼ 1:95× 103m=sec 2
2
The decelerating force is


p1020

F ¼ ma ¼ 137 × 103N
¼ 137 × 10 8 dyn
p1025
p1030
p1035

Area of impact
5 0
...
3 8 × 104 cm2
Force/cm2 on the body 5 137×10 ¼ 4:6 × 106dyn=cm2
0:3×104

This is below the rupture limit
...
Let m ¼ mass of hand
M ¼ mass of bag
V ¼ rebound velocity
mv ¼ MV
m
5
V ¼ v ¼ × 7 ¼ 0:7m=sec
M
50
1

mv2
2
¼ 122:5J
1 2
Final K:E:
mv
¼2

Initial K:E:

¼

¼ 12:25 J
p1060

Kinetic energy is not conserved
...


Page 20 of 43

s0035 CHAPTER 6
o0275

p1075

6-1
...
The upward force must restore the insect to the original height during the same time interval
...

During the downward wing stroke (which raises the insect) a force FW is
applied to the insect by the wings
...
To raise the insect in the same time interval Δt
FW — W ¼ W ;FW ¼ 2W

o0280

6-2
...
03

l

70°

p1085
o0285

Therefore ‘ ¼ 0
...
Energy stored in resilin is


1 YAΔ‘2

ðEq: 6 — 11Þ
2

As given for a flea A ¼ 10—4cm2
‘ ¼ 2 × 10—2cm
Δ‘ ¼ 10—2cm
Y ¼ 1:8 × 107 dyn=cm2

Page 21 of 43

p1095

Energy stored per leg
E ¼

p1100
p1105

1 1:8 × 107 × 10—4 × 10—4

¼ 4:5 erg
2
2 × 10—2
Total stored in 2 legs ¼ 9
...

E ¼ mgh m ¼ 0:5 × 10—3 g
g ¼ 980 cm=sec 2
9:0

0:5 × 10—3 × 980

o0290

¼ 18:4 cm

6-4
...
As the limbs of area A move down a distance ‘, they sweep out a volume
A × ‘
...

Therefore volume swept out per unit time is
Aב
¼ Av
t

p1145
p1150

p1155
p1160

The mass swept out per unit time is Avρw
...
7-11
...
7-11 and 7-13
P ¼

1
2

Aρωv

3

1
gvðρ — f ρ !3=2
ωÞ
¼ Aρω
1=2
2
ðAρω Þ
3=2
1 ½W ð1 — f ρω =ρÞ]
¼
2
ðAρωÞ1=2
p1165
o0300
p1175
p1180

which is Eq
...
A ¼ 600 cm2 ¼ 6 × 10–2 m2
ρω ¼ 103 kg/m3
From 7-14
P ¼

o0305

1 ½50 × 9:8ð1 — 0:95Þ]
3

3=2

¼ 7:8 W

1=2

6 × 10—2

2

× 10

7-3
...
7-13 substitute
ðρw — ρÞ for ðρ — f ρwÞ then
gVðρω — ρÞ
Aρ ω



P ¼
o0310
p1195
p1200

1
2

W

1=2

ρω
—1
ρ

3=2

ðAρω Þ1=2

7-4
...
H
...
7-15
7-5
...

Weight of the column of unit area ¼ Pressure
150 × 102 cm × 980 cm/sec2 × 1
...
1 × 106 dyn/cm2
1 atm ¼ 1
...
The density of the air bladder is negligible
...
7-15 becomes
1:026 ¼

p1240
p1245
o0325

and
x ¼ 3
...
W1 ¼ ρ2V1 V1 ¼

ð100 — xÞ1:067
100

W1
ρ2

W2 ¼ ðρ2V1 — ρ1V1Þ ¼ V1ðρ2 — ρ1Þ
p1255

Substitute for V1 ¼ Wρ 1
2

W2 ¼

W1ðρ2 — ρ1Þ
ρ
2

p1260

Solve for ρ2
ρ2 ¼ ρ 1

o0330
p1270
p1275
p1280

W 1— W 2
7-8
...
7-20 to substitute for h
we obtain
P ¼

p1285

W1

2T cos θ
R

With θ ¼ 0 R ¼ 10–3 cm
T ¼ 72:8 dyn=cm
2 × 72:8

¼ 1:46 × 10 5 dyn=cm 2
10—3

Page 24 of 43

o0335

p1295

7-11
...
Using the analogy of the rubber band, the maximum force generated by
the reduced surface tension is
F ¼ ðT1 — T2ÞL
¼ ð73 — 50Þ dyn=cm × 3 × 10—1
¼ 6:9 dyn
F
6:9
2
2
¼ ¼
¼
2:3
×
10
cm=s
m
3 × 10—2
Speed at ¼ 2:3 × 102 × 0:5 ¼ 115cm=sec
a

¼ 1:15 m=sec

Page 25 of 43

s0045 CHAPTER 8
o0345
p1315

8-1
...
51 × 10–4 torr
From Eq
...
Q ¼ 8 × 10 cc=min ¼ 133 cc=sec

η ¼ 0:04 R ¼ 0:5 cm
L ¼ 30 cm
Using Eq
...
1 torr ¼ 1
...
33 × 105 dyn/cm2 ¼ ρgh
1:33 × 105
h ¼
¼ 129 cm
8-4
...
(a) Q ¼ πR ð8ηL
Flow is proportional to R4
4

o0370
p1355

Q1

¼

Q2
(b)

o0375

R1
R2

4

R1

4

R2

¼ 0:1

R1
R2

o0385
p1375
p1380

¼ 0:41

Therefore

p1365

o0380

4

0:08
0:1

¼

8-6
...
The blood flow is constant throughout the body
...
3cm3/sec A × v × no
...
From Eq
...
As shown in the text the K
...
of the blood at a flow rate of 5‘/min is
3
...
E + P)/cm3 ¼ 83 + 160 ¼ 243 x 103 erg/cm3
Q ¼25‘/min ¼ 417 cm3/sec
Power ¼ Q × Energy/cm3 ¼ 417 × 243 × 103 ¼ 10
...
1 W
8-10
...
33 × 103 erg/cm3
Pressure at the right ventricle is 1206 torr ¼ 20 torr ·
Note 1 torr ¼ 1
...
33 × 103dyn/(torr cm2) ¼ 26
...
E
...
33 + 26
...
3 cm3/sec
Power ¼ E × Q ¼ 30 × 103 × 83
...
25 × 10 erg/sec
¼ 0
...
E
...
33 × 103 × (5)2 ¼ 83
...
7 × 103 erg/cm3
Energy ¼ K
...
+ P ¼ (83
...
7) × 103erg/cm3 ¼ 110 × 103 erg/cm3
Q ¼ 25‘/min ¼ 417 cm3/sec
Power ¼ Q × E ¼ 417 × 110 × 103 erg/sec ¼ 4
...
5 W
8-12
...
That is,
L ¼ (Volume of the liquid) / (surface area of volume)
...

Therefore, L ¼ (l x w x d) / 2 (l x w) ¼ d/2
(b) The Reynold’s number R ¼ vρL/ η
The values provided in the Exercise are: v the average flow speed¼
1 cm/s, ρ ¼ g/cm3, η fluid viscosity ¼ 0
...

With these values, we obtain, R ¼vρL/ η ¼ (1 x 1 x 5x10—4)/10—2 ¼
5x10—2
This is well within laminar flow
...
Boyle’s law (Eq
...
That is as pressure changes so does volume so that
P1V1 ¼ P2V2

p1560

At 40 m depth the additional pressure above the surface pressure P2 is
ΔP ¼ h × ρ × g h ¼ 40 × 102 cm
ρ ¼ 1 g=cm3

p1565

Therefore
ΔP ¼ 40 × 102 × 1 × 980
¼ 3:92 × 10 dyn=cm
6

2

1 atm ¼ 1:01 × 106dyn=cm2
ΔP ¼ 3:88 atm
V1 ¼ 6‘ P1 ¼ ΔP + 1 atm: ¼ 4:88 atm
V2 ¼ ? P2 ¼ 1
P1V1
4:88 × 6
V2 ¼
¼ 29:3 ‘
P2 ¼
1
o0430

9-3
...
As an analogy consider the particles to be on a conveyer belt rather than in a
beam
...
As the conveyer starts moving the number of
meters of conveyer belt that pass by per second is VD
...

o0445
p1590
o0450

—5

4

9-5
...
5 ‘/hr ¼ 4
...
02 cm3/sec × 2
...
08 × 1020 molec/sec
9-6
...
5 ‘ of O2 per hour
...
7)
Each breath under resting conditions consists of 1/2 ‘ of air (see text)
The fraction of O2 exchanged is 0
...
163 ¼ 0
...
3) No
...
5 × 0
...
0232 ‘ of O 2
...
of breath per min ¼ 14:5
¼ 10:4
60×0:0232

Page 30 of 43

o0455

o0460

9-7
...
Therefore oxygen needed is
14:5‘
4
3
¼ 2:07 × 10— ‘=cm hr
70 × 103

p1610
p1615

Maximum radius of animal is obtained from
2
...
71 × 10–5 × area of animal
4
2:07 × 10—4 × πr3 ¼ 1:71 × 10—5 × 4πr2
3

p1620
o0465

r ¼ 0
...
5 cm
9-8
...
87 × 10–5 atm
ΔP ¼ 29
...
12 × 103 × 9
...
87 atm
9-9
...
Therefore if lung area
can decrease by 10, r can increase by 10
...
Kleiber’s law stating that the basal metabolic rate (BMR) is proportional to M3/4 can be expressed as an equality using a pre-multiplicative
constant C
...
e
...
75) with an intercept of log C
...
As stated in the text, 4
...
The volume of the room is 27 m3 ¼ 27 × 106 cm3 ¼ 27 × 103
liter of this volume, 27 × 103 × 0
...
4 × 103 liter is oxygen
...
83 cal/liter ×
5
...
1 × 103 Cal
From the text the basal metabolism of the person is 70 Cal/hour
3
×10 ¼ 373 hours
Therefore the person can survive at most 26:170
11-5
...
70 ¼ 1
...
83 Cal
(See Section 11
...
08
¼
× 10 liter
Container volume required


4:08 × 105

100
¼ 4:05 m 3

o0490
p1715
p1720
p1725
p1730
p1735
p1740

3

¼ 4:08 × 10 ‘

11-6
...
70 ¼ 476 Cal
16 hour rest ¼ (16 × 40) × 1
...
Surface area of person from Eq
...
202 × 600
...
40
...
47 m2
Difference in caloric consumption between sleeping and sitting upright
(50 – 35) × 1
...
Heat flow from Eq
...
5 cm ¼ 4 × 10 m
ΔT ¼ 38 – 25 ¼ 13°C
18 × 4 × 10—2 × 13

¼ 18:7 Cal=h
0:5
Typically a person with a surface area of about 1
...
(a) Multiplying out the right hand side of the equation we obtain
T4 + T3Tr + T2T2 + T3Ts — T3Tr — T2T2 — TsT3 — T4
s

4 s

4

¼ Ts — Tr
o0510
p1825
p1830
p1835
p1840
p1845
p1850

p1855
o0515
p1865
p1870
p1875

2

s

r

r

s

s

r

r

r

(b) At Tr ¼ 40°C ¼ 313 K, Ts ¼ 35°C ¼ 308 K
Ts3 + Ts2Tr + Ts Tr 2 + Tr3
¼ 3083 + 3082 × 313 + 308 × 3132 + 3133
¼ 2
...
97 × 107 + 3
...
07 × 107
¼ 11
...
92 × 107 + 2
...
26 × 106
+ 2
...
8 × 107
11:98—9:8
Percent change ¼ 9:8 ¼ 0
...
11
...
5 m2, e ¼ 1
TS – Tr ¼ 32 – 25 ¼ 7°C
63
2

r
1:5×1×7 ¼ 6
...
Volume of breath/h ¼ 20 × 0
...
24 × 1016/cm3
...
24 × 1016 ×
103 × 24 ¼ 7
...
32 × 10–2 × 600 ‘/h × 0
...
07 Cal/h
11-12
...
11-4
Hc0 ¼ Kc0 Ac ðTS — Ta Þ
¼ 10 × 1 × ð299 K — 233 KÞ
¼ —660 Cal=m 2h

o0530
p1915

p1920
o0535

p1935

p1940

o0545

p1950
p1955
p1960
p1965

11-13
...
8 mole
The amount of heat required to heat the air from –40°C to + 37°C
(ΔT ¼ 77C°) is
H ¼ 6
...
8 mole/h) × 77°C ¼ 14
...
(a) As stated in the formulation of the exercise, the basal metabolism of
a 70 kg person is about 70 Cal/hour¼ 1,680 Cal/day
...
75 ¼ 1,680 x 2
...

Considering typical lion activities, the actual energy consumption
is likely to be twice that of basal metabolism, that is about 49,640
Cal/week
...
Such an
antelope provides 20 kg of food at 3 Cal/gm ¼ 3,000 Cal/kg
...

Thus, the number of antelopes required by one lion per week is
(49,640 Cal/week)/60,000 Cal/antelope ¼ 0
...

This calculation of course entailed several gross approximations
...
At 1 m the intensity of riveting is 10–7 W/cm2
Threshold of hearing is 10–16 W/cm2
Let R be the distance at which the sound intensity of the riveter is
10–16 W/cm2
R2

p1990
p1995
o0555
p2005
p2010
o0560

10—7

¼ —16
I
10
2
∴ R ¼ 109 m2
R ¼ 3
...
6 km
12-2
...
From Eq
...


p2030

Therefore P0 ¼ (I2ρv)1/2 ¼ (10–9 ×2 2 × 1
...
3 × 104)1/2
–4
¼ 2
...
In 70 msec the
sound pulse must travel 2D (There and back)
...
5 m
2 ¼
2

12-8
...
1, threshold of hearing is 10 —16 W/cm2
...
70 m x 3dB/m¼ 2
...
21
p2055
(Sound level at the source)/10—16 W/cm2 ¼ 100
...
62
p2060
(Sound level at the source) ¼ 1
...
62x10—16
W/cm2 ¼ π r2 x 1
...
14x0
...
62x10—16 ¼ 2
...

o0570

Page 35 of 43

o0575
p2085
p2090
p2095
p2100

o0580
p2110
p2115
p2120
p2125
p2130
p2135
p2140
p2145

12-9
...
That is,
f x λ ¼ v with f ¼ λ ¼ v/f
with v ¼ 1,540 m/s, and f ¼ 5x106 Hz
λ ¼ v/f ¼ 1,540/5x106 ¼ 3
...
308 mm
This is approximately the smallest the size of objects in soft tissue that
can be detected
12-11
...
15 cm3 tissue is:
12 W x 1 s ¼ 12 J ¼ 12 J x 0
...
87 cal
...

m ¼ 0
...
15 g
...

ΔT ¼ (Heat input)/ (heat capacity x mass) ¼ (2
...
15 g) ¼ 19
...
1) oC
o
¼ 56
...


Page 36 of 43

s0065 CHAPTER 13
o0585
p2160

13-1
...
02 × 1020 ¼ 9
...
5 × 10–12/meters3 ¼ 78
...
of Na+/meter of axon ¼ 78
...
03 × 1018 ¼ 7
...

13-2
...
13-4 by RT + Rm
R2T + RTRm ¼ 2R RT + 2RRm + RTRm
R2 + 2RRT — 2R Rm ¼ 0

p2190
o0600
p2200

p2205
o0605

o0610

Solving for RT yields Eq
...
Using the voltage divider relationship with
R0 ¼ R i ¼ R
Rm RT
VA
Rm + RT
VB ¼
RmRT + 2R
R m + RT
Multiply by Rm + RT and divide by Rm RT yields Eq
...
Substituting in Eq
...
V2 ¼ V1 1 — Δxλ
V3 ¼ V2 1 —

p2220

RT ¼ rΔx + r2Δx2 +

Δx
λ

¼ V1 1 —

Δx

2

λ

Proceeding section by section we obtain Eq
...
The expansion shown follows from the binomial theorem
ð1 — yÞn ¼ 1 — ny +


p2230
p2235
p2240

o0620

o0625

p2260

nðn — 1Þðn — 2Þy3
+⋯
3!

with y ¼ Δx
,
λ
with nΔx ! x
and n – 1 ≈ n – 2 ≈ n etc
1—

p2245

Δx
λ

n

¼1—

nx
x2
x3
+

λ
2!λ2
3!λ3

This is the series for e–x/‘
13-8
...

Therefore, to generate 500 volts the number of cells connected in
500
series is —1
10 ¼ 5,000 cells
(b) From Problem 13–1 number of ions entering per meter of cell per
pulse is 3 ×
10–8 coulomb
Therefore current flowing per pulse into one cell is


p2265
p2270

p2275
p2280

nðn — 1Þy2
2!

ΔQ × ‘

Δt
‘ ¼ length of cell ¼ 10–5 m
Δt ¼ duration of pulse
3 × 10—8 × 10—5
—11
amp

¼
3
×
10
10—2
To produce 80—2ma ¼ 8
...
7 × 109 cells connected in parallel
3×10—11

Page 38 of 43

s0070 CHAPTER 14
o0630
p2295
p2300

14-1
...


¼ 11:1 × 10—6F:

1
2E
400 J
E ¼ CV 2 ;C ¼ 2 ¼
2
V
36 × 106
6
Q ¼ CV ¼ 11:1 × 10— × 6 × 103 ¼ 66:6 × 10—3C
Q 66:6 × 10—3
i¼ ¼
¼ 13:3 amp:
Δt
5 × 10—3

Page 39 of 43

s0075 CHAPTER 15
o0635

p2315

15-1
...
A 3-6
1 1 1
+ ¼ f ¼ 1:5 cm
p q f
q ¼ 6 m ¼ 600 cm
1 1
1
¼

p 1:5 600
1
p

p2320
p2325

o0640

¼

600 — 1:5
1:5 × 600

¼

598:5
¼ 0:665
900

p ¼ 1
...
5 cm
...
004 cm
15-3
...
A 3-10
1
nL — n1
nL — n2
¼

f
R1
R2

p2335
p2340
p2345

For the cornea: From Table 15-1
nL ¼ 1
...
33
R1 ¼ +0
...
0073
1
1:38 — 1
1:38 — 1:33
¼

f
0:0078
0:0073

p2350
p2355
p2360
p2365

¼ 48
...
8 ¼ 41
...

nL ¼ 1
...
33
Minimum power R1 ¼ 0
...
006 m
1
1:40 — 1:33
1:40 — 1:33
¼
+
f
0:01
0:006

p2370
p2375

¼ 7 + 11
...
7 diopters
Maximum power R1 ¼ 0
...
0055
1
1:40 — 1:33
1:40 — 1:33
¼
+
f
0:006
0:0055
¼ 11:7+ 12:7 ¼ 24:4 diopter

Page 40 of 43

o0645
p2385
p2390

15-4
...
A 3-10
n1 ¼ n2 ¼ 1
...
0078 R2 ¼ 0
...
41 – 6
...
39 diopter
15-5
...
33, nL ¼ 1
...
002 m R2 ¼ –0
...
Using Eq
...
5 cm ¼ 15 mm

15-7
...
15-6, the separation between point a and b on the
retina is 4μm ¼ 4 × 10–6 m (one cone that is unexcited plus 2 ×
radius of the excited cones)
—6
From Figs
...
tan—1 2θ ¼ D x ¼ the size of the whites of the eyes D is the distance from
–4
which they can be seen θ ¼ 5 × 10 rad for small θ
x
x
1 cm
θ¼
D
¼ ¼
D
θ 5 × 10—4
+4
¼ 0:2 × 10 cm
¼ 20 m
15-9
...
15-6, we obtain Eq
...
(a) Magnitude of force F ¼ K l ¼ 1 N/m × 0
...
5 10–9 N
...
R is the
distance between charges measured in meters
...
5 10–9 N
Q2 ¼ (0
...
6 × 10–38 C2 and
Q ¼ 2
...
4 10–19/1
...

This is effectively 1
...
5 protons facing each other,
distributed over and area defined by the sampling tip-surface overlap
...
Radius of particle ¼ R Radius of atom ¼ r
number of silver atoms on particle surface ¼
2
(areaofparticlesurface)/(crosssectionalareaofatom) ¼ 4πR2/πr¼
4R2/r2
number of silver atoms in particle volume ¼
(volume of particle)/(volume of atom) ¼ (4/3πR3)/(4/3πr3)¼ R3/r3
number ratio of surface to volume atoms ¼ (4R2/r2)/(R3/r3) ¼ 4r/R
(a) R ¼ 10 nm; r ¼ 0
...
Number ratio of surface to volume
atoms ¼ 4r/R ¼ (4x0
...
12
(b) R ¼ 1 mm ¼ 106 nm; r ¼ 0
...

Number ratio of surface to volume atoms ¼ 4r/R ¼ 4x0
...
2x10—6
To be inserted in the in the “Answers to numerical Exercises"
...
(a) Number ratio of surface to volume atoms ¼ 0
...
2x10-6
18-7
...
23 x 10—16 cm3
With density of particle ¼ 1g/cm3, mass per particle ¼ 5
...
23 x 10—16 g/particle) ¼ 2
...
of particles entering the lung one breath ¼ (2
...
15x107

Page 43 of 43


Title: Blueprint Series Physics in Biology and Medicine Complete Solution
Description: This is the complete solution of the book Physics in Biology and Medicine 5th ed. by Paul Davidovits (Elsevier publication). All chapters are covered and elaborate descriptions for the solutions are provided.