Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Complex Numbers problems and solutions
Description: In this 10-page note I solved 42 rich exercises in the topic of Complex Numbers in details which every Science and Engineering student should know. I tested them many times in the class. Good Luck

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


UNIVERSITY TEXT/CALCULUS I/COMPLEX NUMBERS
PROBLEMS
M
...
complex numbers problems
1
...

i) i5 + i15

ii) i2019 + i2021 + i2023 + i2024

2 + 3i
(3i − 2)i

iv)

v)

99
Y

i

vi)

n
Y

ik

iii) (2 + i)4

vii)

ik
...

i) i5 + i15 = i5 (1 + i10 ) = i · i4 (1 + (i4 )2 · i2 ) = i(1 − 1) = 0
ii) i2019 + i2021 + i2023 + i2024 = i2019 (1 + i2 + i4 + i5 ) = (i2 )
1009

= (−1)

1009

· i(1 − 1 + 1 + i)

2

i(1 + i) = −(i + i ) = 1 − i

iii) Using the Binomial expansion (a + b)n =
4

(i2 = −1 and i4 = 1)

v)

3

2

k=0
3

2

k

an−k bk we have,

(2 + i) = 2 + 4 × 2 ×i + 6 × 2 × i + 4×2×i + i4 = −7 + 24i
iv)

4

n  
X
n

2 + 3i
2 + 3i
(2 + 3i)(−3 + 2i)
−12 − 5i
1
=
=
=
= − (12 + 5i)
(3i − 2)i
(−3 − 2i)
(−3 − 2i)(−3 + 2i)
13
13
99
Y

99

}|
{
z
i = i × i × i ×
...
× i = i

...
Indeed, by division
theorem n = 8q + r, r = 0, 1, 2,
...
Therefore,
(8q + r)(8q + r + 1)
r(r + 1)
n(n + 1)
=
= 4q(8q + 2r + 1) +

...
, 7
...
+ in = i(1 + i +
...
+ in−1 )(1 − i)
1−i

2

M
...
Hence, in = ir = 1, i, −1, −i and
Pn
k
thereof k=1 i = 0, or i, or i − 1, or − 1
...
Solve the following equations
...
i) Using substitution z 2 = u, we have the quadratic equation u2 +u+1 = 0
...

2
2
The other two solutions to the equation are :


−1 − i 3
1+i 3
z=
and z =

...

Lemma 1
...
if z is a root of a real valued coefficient polynomial Pn (x) = an xn +
an−1 xn−1 +
...

ii) z 4 + 16 = 0
...

p
i(2kπ+π)
Arg(−16) = π
(−16)1/4 = 4 |−16|e 4
k = 0, 1, 2, 3
...

4
4
By Lemma 1
...

As an another approach one can easily find the latter two roots by direct calculation
...
We exert an absolute value to this equation
...
|z| = 0 implies z = 0
...


UNIVERSITY TEXT/CALCULUS I/COMPLEX NUMBERS

3

Hence, we should compute the forth roots of −1, and these are as follows:
(−1)1/4 = ei(
z1 = e


4

,

2kπ+π
)
4

z2 = e

i 3π
4

k = 0, 1, 2, 3
...


Therefore, the roots of the given equation are,
1
1
1
1
0, √ (1 + i), √ (−1 + i), √ (1 − i), √ (−1 − i)
...
Note that z = |z| = z z¯
...
That is, z
is a real number
...

2
2
v) (1 + z)3 = (1 − z)3
...



(1 + z) − (1 − z) (1 + z)2 + (1 + z)(1 − z) + (1 − z)2 = 0
2z(z 2 + 3) = 0
2z = 0,
z = 0,

z 2 = −3


z = ± −3 = ±i 3

vi) z 4 + (3 − 6i)z 2 − 8 − 6i = 0
...

t2 + (3 − 6i)t − 8 − 6i = 0
p
−(3 − 6i) ± (3 − 6i)2 − 4(1)(−8 − 6i)
t=
2

−3 + 6i ± 5 − 12i
=
2p
−3 + 6i ± (3 − 2i)2
=
2
−3 + 6i ± (3 − 2i)
=
2
t1 = z 2 = −3 + 4i = (1 + 2i)2 and t2 = z 2 = 2i = (1 + i)2
z = ±(1 + 2i)

and z = ±(1 + i)

vii) z 6 = −1 − z 3
...
Then the given equation reduces to a quadratic
one
...

2
2

4

M
...

2


−1 − i 3

...


10π
i

π
π 

= cos( ) + i sin( ) w2 = e 9 = − cos( ) + i sin( )
w1 = e
9
9
9
9
16π
i


w3 = e 9 = cos( ) − i sin( )
9
9
viii) z 4 + z 3 + z 2 + z + 1 = 0
...
+
z + 1), ∀z ∈ C
...


z4 + z3 + z2 + z + 1 =

All fifth roots of unity excluding 1 are solutions of the given equation
...


consequently,
11/5 = ei(
0

2kπ
5 )

z1 = e = 1,

k = 0, 1, 2, 3, 4
...
Indeed, using the
identities cos(3x) = 4 cos3 (3x) − 3 cos x and sin(2x) = 2 sin x cos x we have,

π
π

π 3π
π
) = 4 cos3 ( ) − 3 cos( ) and cos( ) = sin( −
) = sin( )
10
10
10
10
2
10
5
π
π
π
3 π
2 sin( ) cos( ) = 4 cos ( ) − 3 cos( )
(sin(2x) = 2 sin x cos x)
10
10
10
10
π
π
(cos2 x = 1 − sin2 x)
4 sin2 ( ) + 2 sin( ) − 1 = 0
10
10


π
−1 ± 5
π
−1 + 5
sin( ) =
⇒ sin( ) =
10
4
10p
4

r
10 + 2 5
π
π
cos( ) = 1 − sin2 ( ) =
10
10
4
p


π
π
π
−1 + 5
10 + 2 5
sin( ) = 2 sin( ) cos( ) = 2 ×
×
5 q
10
10
4
4

p
p


(−1 + 5)2
10 + 2 5
10 − 2 5
=2×
×
=
4
4
4
s


r
π
10 − 2 5
1+ 5
2 π
cos( ) = 1 − sin ( ) = 1 −
=
5
5
16
4
cos(

UNIVERSITY TEXT/CALCULUS I/COMPLEX NUMBERS

5



π 2π
π 2π
π
π
) + i sin( ) = sin( −
) + i cos( −
) = sin( ) + i cos( )
5q
5
2
5
2
5
10
10

√ 
1
− 1 + 5 + i 10 + 2 5
=
4
π
π
π
π
z3 = ei4π/5 = cos(π − ) + i sin(π − ) = − cos( ) + i sin( )
5
5
5
5
q

√ 
1
− 1 − 5 + i 10 − 2 5
=
4
q

√ 
π
1
π
z4 = ei6π/5 = − cos( ) − i sin( ) = − 1 + 5 + i 10 − 2 5
...

p


1 + i ± (1 + i)2 − 4 × 2(1 + i)
1 + i ± −8 − 6i
1 + i ± i 8 + 6i
z=
=
=
2
2
2
p
1 + i ± i (3 + i)2
1 + i ± i(3 + i)
=
=
2
2
1 + i − i(3 + i)
1 + i + i(3 + i)
z1 =
= 1 − i,
z2 =
= 2i
2
2
3
...
z = 1 − i satisfies the given equation
...
T hus,

b − 2a − 4 = 0,
4 − 2a = 0,

⇒ a = 2,

b = 8
...
Find real values a and b such that z = 1 + i is a solution of the equation
z 4 − 6z 3 + az 2 − 34z + b = 0
...

Solution
...
Thus,
(1 + i)4 − 6(1 + i)3 + a(1 + i)2 − 34(1 + i) + b = 0
(2i)2 − 6(2i)(1 + i) + a(2i) − 34(1 + i) + b = 0
b − 26 + i(2a − 46) = 0 ⇒ a = 23, b = 26
...

Hence, (z − (1 − i))(z − (1 + i)) = z 2 − 2z + 2 is a factor of the equation
...
So the other factor is


−9
z 2 − 4z + 13
...
Thus, the roots of the equation are :
1
1 + i, 1 − i, 2 − 3i, 2 + 3i
...
If α and β are roots of the equation z 2 − 2z + 2 = 0, show that α2n + β 2n =
2
cos( nπ
2 )
...

z=




1

−1

=1±i

6

M
...

= 2n+1 cos(
4
2
6
...
Prove that
α=1−i=

• i) z11 + z12 + z13 = 0
• ii)z12 + z22 + z32 = 0
Solution
...

|z1 |

ii) Squaring the equation z1 + z2 + z3 = 0, we get that,
z12 + z22 + z32 + 2(z1 z2 + z2 z3 + z3 z1 ) = 0
z12 + z22 + z32 + 2 × 0 = 0
z12
7
...
to i))

= 0
...


i


tan θ + √
tan θ + i cot θ
tan
θ = tan θ + i

i) √
=√
i
tan θ − i
tan θ − i cot θ
tan θ − √
tan θ
sin θ + i cos θ
i(cos θ − i sin θ)
=
=
sin θ − i cos θ
−i(cos θ + i sin θ)
ie−iθ
=
= −e−2iθ = −(cos(2θ) − i sin(2θ))
...
prove that

• i) 2 |z| ≥ |Rez| + |Imz|
• ii) |z1 − z2 | ≥ ||z1 | − |z2 ||

1
z
• iii) Re 1−z
≥ − , whenever |z| ≤ 1
2
z1
1|
• iv) ||z2|z
|−|z3 || ≥ z2 +z3
• v) When does equality hold in triangle inequality?
Solution
...

Likewise, |z2 | − |z1 | ≤ |z2 − z1 | = |z1 − z2 |
Consequently,
− |z1 − z2 | ≤ |z1 | − |z2 | ≤ |z1 − z2 |
||z1 | − |z2 || ≤ |z1 − z2 |
...


iv) Referring to ii) we have,

||z2 | − |z3 || ≤ |z2 − z3 | = |z2 + z3 |
(z3 → −z3 )
1
1

||z2 | − |z3 ||
|z2 + z3 |


z1
|z1 |
|z1 |


...
YEGAN

Re(z1 z¯2 ) = |z1 | |z2 | = |z1 z¯2 |

(z + z¯ = 2Rez)
2

Referring to the relations Rez = |z| and (Rez)2 + (Imz)2 = |z| we conclude
Imz = 0
...

x2
y2

Thus,
Re(z1 z¯2 ) = |z1 z2 | = x1 x2 + y1 y2 = k(x21 + y12 ) ≥ 0
and thereof k ≥ 0, that is, one of the numbers is a positive constant multiple of the
other
...

That is, equality holds
...

• i) Prove the some of all nth (n ≥ 2) roots of a complex number is zero
...

Find the sum z11 + z12 + z13 + z14 + z15
...
i) The nth roots of a complex number z are,
p
p
2kπ+θ
2kπ
θ
z 1/n = n |z|ei n = n |z|ei n ei n , k = 0, 1,
...

2kπ

But ei n , k = 0, 1,
...
Putting w = ei n , then
1, w, w2 ,
...

n−1
X

p
n

|z|ei

2kπ+θ
n

θ

=

p
n

|z|ei n

=

p
n

θ
in

k=0

n−1
X

ei

2kπ
n

k=0

|z|e

(1 + w + w2 +
...
+ wn−1 )
1−w
p
θ
n
|z|ei n (1 − wn )
=
(wn = 1)
1−w
= 0
...
Hence, z11 , z12 ,
...
So by i) their sum is zero
...
If θ1 , θ2 and θ3 are the angles of a triangle, then what is the value of the
following expression ?
(sin θ1 − i cos θ1 )(sin θ2 − i cos θ2 )(sin θ3 − i cos θ3 )
i) −i

ii) −1

iii) i

iv) 1

UNIVERSITY TEXT/CALCULUS I/COMPLEX NUMBERS

9

Solution
...

(π/17)+i sin (π/17)
11
...


π
16π
cos (π/17) + i sin (π/17)
e 17
= − i16π = ei( 17 + 17 ) = eiπ = −1
...
Let 1, w, w2 , w3 , and w4 be the fifth roots of unity
...

(1 − w)(1 − w2 )(1 − w3 )(1 − w4 ) = (1 − w)(1 − w4 )(1 − w2 )(1 − w3 )
= (1 − w − w4 + w5 )(1 − w2 − w3 + w5 )
= (2 − w − w4 )(2 − w2 − w3 )

(w5 = 1)

= 4 − (w + w2 + w3 + w4 )
= 5 − (1 + w + w2 + w3 + w4 )
(1 + w + w2 + w3 + w4 )(1 − w)
1−w
1 − w5
=5−
=5−0=5
1−w
=5−

13
...


(1+i)15
(1−i)13

?
iv) 3
...

−i13π/4
2 e

14
...
z = z¯ ⇒ z = z¯
3

2

2

|z| = |z| ⇒ |z| (|z| − 1) = 0
|z| = 0 ⇒ z = 0,
2
|z| = 1 ⇒ z 2 ·z 3 = z 2 ·¯
z 2 ⇒ z 5 = |z| = 1
...
YEGAN

The fifth roots of unity are : 1, w, w2 , w3 , w4 , where w = ei2π/5 = cos(2π/5) +
i sin(2π/5)
...


15
...
Arg(3 + i 3) = , and 3 + i 3 = 12
6


n √ n

12(cos(π/6) + i sin(π/6)) = 12 cos(nπ/6) + i sin(nπ/6)
(3 + i 3)n =
√ n
sin(nπ/6) = 0 implies (3 + i 3) ∈ R
...

Only 2022 is an integer multiple of 6
...

(3 + i 3)2022 = 12
16
...
What is the value of
1
1
i) −1
ii) √
iii) − √
iv) 1
2
2
Solution
...
Let z = (1+2i)(2+3i)(3+4i)(4+5i)
(4−3i)(5−4i)
i) 65
ii) 65 + 45i
iii) 45
iv) 45 + 65i
Solution
...
Suppose z = 3 + i 3, then Arg(¯
z 3 ) is :
π
π
i) −
ii) −π
iii) π
iv)
2
2



π
Solution
...
Thus, Arg(¯
19
...
eiθ ei3θ · · ·ei(2n−1)θ = ei(1+3+
...
Therefore θ = 2kπ
n2
20
...

ez = ex+iy = ex eiy = ex (cos y + i sin y) = 1 ⇒ ex cos y = 1

and ex sin y = 0
...
That is, z = 2miπ, m ∈ Z and the equation has countless solutions
...
com


Title: Complex Numbers problems and solutions
Description: In this 10-page note I solved 42 rich exercises in the topic of Complex Numbers in details which every Science and Engineering student should know. I tested them many times in the class. Good Luck