Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: propiedades
Description: propiedades potencia

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


1_
A- 78
...
5 = 5−2+1 = 5−1
(−4)+(−2)+5
C- (−8)−4
...
(−8)5 = (−8){
= (−8)−1
D- 76
...
7−1 = 76+(−4)+(−1) = 71 = 7
E- 93 ÷ 97 = 93−7 = 9−4
F- 3−5 ÷ 34 = 3−5−4 = 3−9
G- (8−5 )2 = 8−5
...
(−4)

((−6)3 )−4 = (−6){
= (−6)−12
6
...
4) = 20
5−5
...
3−5 = (5
...
3)−5 = 60−5
75
...
√52
...
53
...
√63
...
62
...
52
...
(2)

P- (27 ) = 273

1

= 275

5

= 2−12

12

= 5 6 = 52
10

= 6 2 = 65

1

5

1

(1+4+5)
2

5

2_ A- 22
...
22 = 22+2+2 = 2
B-(𝑚

3
4

1
5
÷ 𝑚2 )

3

1

= (𝑚

4

1
3
5
−2
4

) = (𝑚

3

1

1

10

= 2 2 = √210

1
(3−8) 5
4

1

5 1

5
−4 5

4

(12−10+16+5)
20

1

23

C- 25
...
25 ÷ 2−4 = 25+(−2)+5−(−4) = 2
1

D-

𝑟 3
...
𝑥 7
(𝑟 2 )4
...
𝑏4)
...
𝑏7)3
4

√𝑝3
c-𝑝2
...
𝑝2

(𝑟 4 )
...
4
...
4
...
4 𝑥 7

𝑎 3
...
𝑏4
...
𝑎 2
𝑎 3
...
𝑏7
...
4
...
4
...
𝑟6 = 𝑟6

(𝑎 3)
...
𝑎 2
(𝑎 5 )3
...
(5) = 𝑚−4 = √𝑚−1

𝑝4
(4+1)
𝑝 2

3

=

1

3
5−2 2

) = (𝑠

𝑝4
5
𝑝2

𝑎 3
...
5
...
𝑎 2 = 1
...
𝑎 2 = 𝑏−1
...
(2) = 𝑠 4

𝑎2
𝑏

5

1

6

4_ a-√𝑚5
...
𝑚2
...
𝑤 7
...
𝑤 5 = √𝑟 3
...
𝑟 5
...
𝑤 7+5 = √𝑟 8
...
𝑤 12 )4 = (𝑟 8 )4
...
1

𝑟 4
...
1
4

15
√𝑎25
𝑏

10

10

= 𝑟2
...
√𝑛6
...
𝑛15
...
𝑛5
...
2)
...
3)
...
7 = √4
...
14 = √4
...
√14 = 2
...
√14 = 6√14
3

3

3

3

3

3

b- √135 = √3
...
3
...
5 = √33
...
√5
4

4

4

4

4

c-√1875 = √5
...
5
...
3 = √54
...
3
...
5
...
2
...
2

3

=

√32
...
5

=

√32
...
√5

3

√23
...
2

e-√875 = √5
...
5
...
7 =

3

√53
...
5
...
𝑥 5 = √52 5𝑥 5 = √52
...
3
...
3
...
3
...
√3
...
√𝑦 20 = √2
...
2
...
3𝑥 7
...
2
...
𝑥 7
...
√32
...
𝑦 10 ==
2
...
√2𝑥 7
...
𝑦 10
4

4

4

4

4

4

i- √48𝑟 33 = √2
...
2
...
3𝑟 33 = √24
...
√3𝑟 33 = 2√3𝑟 33
3

3

3

3

3

3

3

3

3

3

J- √𝑎13 𝑏25 = √𝑎13
...
√𝑏24+1 = √𝑎12
...
𝑏 = √𝑎12
...
√𝑏24
...
3√𝑎
...
√𝑏
4
4
4
4
4
4
4
4
4
4
k- √64𝑟 21 𝑧 34 = √64
...
√𝑧 32+2 = √24
...
√𝑟 20
...
√𝑧 32
...
𝑟 5
...
𝑧 8
...
3
...
𝑐 3

=

5

5

5

√55 √ 𝑎 5
...
𝑏3
5

5

35

√35 5√3 √𝑏 √𝑐 3

=

5

5𝑎 5√𝑎
...
√𝑏3
...
𝑏
5

3 5√3
...
√29 √𝑎 2
...
√𝑑3+2

3

=

√ 2 3
𝑏
...
√𝑐 3 3√𝑐
3

33

5
...
𝑐 3√𝑐
3

5
...
5 = √3 + √2 − √5 + √2
...
3
...
2
...
√13 + √22 √13 = 3√13 + 2√13 = 5√13
√150 − √294 = √2
...
52 − √2
...
72 = √52
...
√6 = 5√6 − 7√6 = −2√6
2√18 − 5√8 + √50 = 2√2
...
2 + √52
...
5 − 4√22
...
5 + 3√52
...
3 + √3 − 2√34
...
2 − 3√23
...
2 = 3 √2 − 6√2 − 5√2 = 8√2
1

1

1

m- −3√2 − 5√32 + √8 = −3

1
√2



5
√24
...
2

=−

3
√2

5

1

− 4√2 + 2√2 =

−12−5+2
4√2

15

= − 4√2

n- √100𝑥 + 3√16𝑥 = √22
...
3
...
3 = 2𝑎√3 − 6𝑎√3 − 3𝑎√3 =
−7𝑎√3
p- √50 + √75 − √18 − √12 = √52
...
3 − √22
...
√10 = √3
...
√2
...
√5
...
√2 = 5√3
...
3
...
√2
...
5
...
3 = 2√32
...
2 = 6√5
...
√3
...
√3
...
3
...
√3
...
√3
...
2
...
3√7 = √4
...
√7 =
2
...
√7 = 6√7
3
3
3
3
3
3
3
d- √162 ÷ √3 = √33
...
2 ÷ √3 = 3 √6 ÷ √3 = 3√2
5
5
5
5
e- √𝑎 4
...
√2 + √2
...
2 − √32
...
√2 + √3
...
√2 + √2
...
12√37 = 12√38+7 = 12√315 = 12√312+3 = 12√312
...
12√29
...
2 = 4 12√2

12_
a- √3
...
√60 + √3
...
2
...
3
...
3
...
22
...
7 − 6√5 = 6√5 + 3√7 − 6√5 = 3√7

4
4
4
4
4
4
4
b- 3√√80
...
25 − √125 = 6√125 − √125 = 5 √125

c- (2√6 + √3)(√2 − √6) − √6 + 12 + 3√2 = 2√6
...
√6 + √3
...
3
...
3
...
3
...
3
...
(√5 + √7) = −
...
3(√5+√7)
√6−√7

=

√6(√5+√7)
√6−√7

=

=

√2
...
(√5
√7

+ √7)

2

e- (2 + √3) − 7 + 2√27 = 4 + 4√3 + 3 − 7 + 2√32
...
3 + 3 + √22
...
3 − 8 = 2√5
...
3 = 4√15

𝑝 = 2𝑎2𝑏 = 2(√18 − 1)
...
2 + 2√22
...
𝑎 = (√18 − 1)(√8 + 3) = √144 + 3√18 − √8 − 3 = 12 + 9√2 − 2√2 − 3 = 9 + 7√2

14_
abcdefghij-

15-

3

3√7
√7
= 7
√7
√7 √7
√2
√2 √6
√2
...
= 6 = 6
√6
√6 √6
3
1
1 3√2
√2
= 3
...


√3
4

4

4

√3


...
3

=

4

√33

3
3
√27 √3
√27
...
2−√2 = 4−2 = 2
3+√3
√3(√3+1)
√3 √3+1
=

...

= 10−7 =
3
√10+√7
√10+√7 √10−√7
√27
1
2+√2
√3
√3−1
4

2

2

(√5+√2)
(√5+√2)
√5+√2 √5+√2

...

=
𝑏−𝑎 2
√𝑏−𝑎
√𝑏−𝑎 √𝑏+𝑎
√𝑒(1+√𝑒)
√𝑒
√𝑒 1+√𝑒
√𝑒+𝑒
= 1−√𝑒
...
△1 = 6
...
5 = 15
2

2√5
+ 2√5 = √5 + 2√5 = 3√5
2

b𝐴 = 𝑏
Title: propiedades
Description: propiedades potencia