Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Limit and derivatives
Description: Important points in limit and derivatives chapter
Description: Important points in limit and derivatives chapter
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Remesh’s Maths Centre
[DIFFERENTIAL CALCULUS]
13
...
99,1
...
9999, …
...
Similarly, if x take values 2
...
001,2
...
Even then the numerical difference
between x and 2 gets closure to 0
...
In general, x a means that the variable x and x takes values either less than or greater than that
of a and the numerical difference between x and a can be made as small as we please
...
It can be symbolically written as: lim f ( x) k
...
x a
xa
(ii) lim Area of polygon of n sides Area of circle
nx
STANDARD RESULTS
Limit of a constant function is a constant
...
e
...
f ( x) k
...
g ( x) = lim f ( x) lim g ( x)
xa
xa
xa
xa
lim f ( x)
f ( x ) x a
=
, g x 0
lim g ( x)
xa g ( x)
lim
x a
lim n f ( x) = n lim f ( x)
xa
Hsslive
...
com
...
lim
E
...
:
x 2 2x 5 2 2 2 2 5 4 4 5 3
3 2 5
65
11
x2 3x 5
x 2 3x 2 22 3 2 2 4 6 2 0
iii
...
lim
iv
...
g
x a ( x ) 0
xa
xa
lim
The form
0
is called indeterminate form
...
We cannot find the limits such functions directly
...
Factorization Method:
a) Factorize the numerator and denominator and cancel the common factors from the numerator and
the denominator
...
c) Apply quotient rule of limit
...
g
...
Substitution Method:
f ( x)
f ( a h)
= lim
...
As x a , h 0
...
sin x sin 0
x x 0
E
...
: Evaluate lim
Hsslive
...
com
...
Rationalization Method:
a) Rationalize the expression, which involve square roots
...
1 x 1
1 0 1 1 1 0
x
0
0
0
E
...
i
...
x
x0
x
lim
lim
x0 x 1 x 1
x0
1
1 0 1
1
1
1
1 1 2
2
1 x 1 x
x0
sin 1 x
ii) Evaluate lim
1 x 1
1
1 x 1 x 1 1 0
0
0
x0
sin 1 x
The expression lim
put x sin
...
1 sin 1 sin
lim
0
1 sin
1 sin
1 sin 1 sin
lim
0
1 sin
1 sin
1 sin 1 sin
2 sin
lim
lim
0 1 sin 1 sin 0 1 sin 1 sin
sin
2
2
lim
1
0
1 sin 1 sin
1 0 1 0
Hsslive
...
com
...
Please refer the class room note)
(1 x) n 1
x
x0
E
...
: i) Evaluate lim
The expn
...
1n1 n
(
1
x
)
1
1 x 1
lim
1n 1
9
9
x 2
9 2 91 9 2 8
x 9 512
x 9 29
lim
lim x 2
9 2 85 9 2 3 72
ii) lim
x2 x 4 16
x2 x 4 2 4 x2 x 4 2 4 4 2 41 4 2 3
x2
If x is measured in radians, then
1
...
lim sin x 0
x0
lim cos x 1
x0
3
...
x
1
x0 sin x
5
...
lim
x
x 0 tan x
7
...
lim
sin ax a
sinbx b
9
...
in
| rchciit@gmail
...
4
Remesh’s Maths Centre
[DIFFERENTIAL CALCULUS]
OTHER IMPORTANT THEOREMS
1
...
e x 1
log e 1
x0 x
3
...
g
...
Meaning of x a
Similarly, If the variable x takes values, which are close to a constant a and always remains on
the right of a then we say that x approaches to a from right and we write as x a
...
Working rule:
1
...
in
h0
| rchciit@gmail
...
5
Remesh’s Maths Centre
[DIFFERENTIAL CALCULUS]
2
...
If lim f ( x) lim f ( x) , then lim f ( x) does not exist
...
If lim f ( x) lim f ( x) , then lim f ( x) exists and is equal to lim f ( x) is equal to f (a)
...
g
...
lim f ( x) does not exist
...
Suppose f ( x)
1
...
Hsslive
...
com
...
i
...
A function f (x) is said to be a derivable function on the closed interval a, b ,
a
...
it is derivable at x a from right
c
...
Then corresponding to each point x a, b , we get
a unique real number equal to the derivative of f (x) and are denoted by f (x) or
i
...
,
dy
or Dy y1 or y , etc
...
The process of obtaining the derivative of
dx h0
h
dx h0
h
a function is called differentiation
...
Let f (x) is
differentiable at x c
...
Then slope of the chord PQ
f x f c
...
e
...
As Q P , the chord PQ becomes tangent at P
...
r
...
t = y
dt
dt
d
dx
derivative of x w
...
t
...
dt
dt
Note: derivative of y w
...
t
...
Let x be a small increment in x and y be the
corresponding increment in y respectively
...
in
| rchciit@gmail
...
7
Remesh’s Maths Centre
[DIFFERENTIAL CALCULUS]
Then y y f x x
y f x x f x
f x x f x
y
=
x
x
taking limits we have,
y
f x x f x
= lim
x
x
x0
x0
lim
dy
f x
dx
i
...
,
d
f x f x
...
r
...
r
...
This
dx
method is called first principles or delta ( or ) method or differentiation by definition or ab initio
...
dx
Note: If y f (x) is a real function defined at a real constant ‘h’, then
f x lim
f x h f h
h 0
h
Find the derivative of the following functions using the first principle:
1
...
e
...
x h 2 x 2
lim
x h x x h x
Let f x e x
f x h e xh
Hsslive
...
com
...
lim e
e x eh 1
h 0
h
h
x
h 0
1
h
x
lim e 1 log e 1
x0 x
dy
e x 1 e x
dx
d x
e ex
dx
3
...
lim a
a x ah 1
h 0
h
dy
a x 1 a x
dx
x
h 0
h
1
h
ax 1
log a
lim
x 0
x
d x
a ax
dx
x
lim a 1 log a
x0 x
dy
a x log a a x
dx
d x
a a x
...
Let f x x
f x h x h
f x h f x x h x
Hsslive
...
com
...
x h x h
h
1
xh x
dy
dx
1
x
h 0
d
dx
[DIFFERENTIAL CALCULUS]
x0 x
1
xh x
1
x x
1
2 x
1
2 x
Let f x
1
x 2
2
x
f x h
1
x h
2
x h
2
f x h f x x h x 2
f x h f h
f x lim
h 0
2
h
lim
x h 2 x2
h 0
6
...
h
=
x h n x n
n
n 1
n x n 1 n x n 1
x h x x h x
x
lim
Let f x sin x
f x h sinx h
Hsslive
...
com
...
e
...
h
2 x h sin 2
lim cos
h
h 0
2
2
h
as h 0, 0
2
cos x 1 cos x
sin x
1
lim
x0 x
d
sin x cos x
dx
Let f x cos x
f x h cos x h
xh x xhx
2x h h
f x h f x cos x h cos x 2 sin
sin
2 sin
sin
2
2
2 2
f x
f x h f x
lim
h
h0
h
2x h h
sin
2 sin
sin
2
2 2 lim 2 sin 2 x h
lim
h
h
0
h 0
h
2
2
2
h
sin
2x h
2
lim sin
h 0
h
2
2
2x 0
sin
1
2
i
...
,
Hsslive
...
com
...
Let f x tan x
f x h tan x h
f x h f x
f x lim
h 0
h
sin x h sin x
lim tan x h tan x lim
h 0
h 0 cos x h
cos x
sin x h cos x cos x h sin x
cos x h cos x
sin x h x
1
sinh
lim
lim
h 0 cos x h cos x h
h
h0 cos x h cos x
sin x
1
lim
x
x0
1
1
cos x 0 cos x
dy
dx
1
1
sec 2 x
2
cos x cos x
cos x
d
tan x sec 2 x
dx
10
...
in
| rchciit@gmail
...
sin x
1
lim
x0 x
12
Remesh’s Maths Centre
[DIFFERENTIAL CALCULUS]
1
sinh
1
lim
1
h 0 sin x h sin x
h sin x 0 sin x
dy
dx
1
1
2 co sec2 x
sin x sin x
sin x
d
cot x cos ec 2 x
dx
11
...
sec x
...
cos x cos x cos x
dx
d
sec x sec x tan x
dx
12
...
in
| rchciit@gmail
...
13
Remesh’s Maths Centre
[DIFFERENTIAL CALCULUS]
f x h f x
f x lim
h 0
h
sin x sin x h
1
1
lim cos ec x h cos ecx lim
lim
h 0
h 0 sin x h
sin x h0 sin x h sin x
x x h x x h
2 x h h
2 cos
2 cos
sin
sin
2
2
2 2
lim
lim
h 0
sin x h sin x h
h0 sin x h sin x x
2x h
h
2x h
h
sin
2 cos 2 sin 2
cos 2
lim
2
lim
h 0 sin x h sin x
h
h
0
h
sin x h sin x
2
2
2
2x h
h
2x 0
sin cos
cos 2
2
2
1
lim
h 0 sin x h sin x
h sin x 0 sin x
2
sin x
1
lim
x0 x
cos x
1 cos x
dy
...
cot x
sin x
...
cot x
STANDARD RESULTS
f (x)
f x
sin x
cos x
cos x
sin x
tan x
sec 2 x
cos ecx
cos ecx cot x
sec x
sec x tan x
cot x
cos ec 2 x
xn
nx n1
ex
ex
Hsslive
...
com
...
log a
1
x
2 x
log x
1
x
x
1
x2
2x
1
x
n
1
x
1
x
1
x2
n 1
1
x2
2
x3
y
dy
dx
y2
2y
dy
dx
Note: Derivative of any trigonometric function starting with ‘co’ is negative
...
Differential coefficient of a constant is zero
...
e
...
g
...
dx
d
5 0 , d 10 0 , etc
...
If u and v are functions of x , then
d
d
d
(u v )
( u) ( v )
dx
dx
dx
d
5 sin x log x d 5 sin x d log x 5 d sin x d log x 5 cos x 1
dx
dx
dx
dx
dx
x
d
d
d
d x
d
2e x tan x
2e x tan x 2
e tan x 2e x sec 2 x
dx
dx
dx
dx
dx
Hsslive
...
com
...
Product rule: If u and v are functions of x , then derivative of the product of two functions is equal to
first function x derivative of the second function + (plus) second function x derivative of the first
function
...
e
...
(v ) v
...
g
...
d
d 3x
= e3x sin 4 x sin 4 x
...
cos 4 x
...
e3x
...
dy
dx
x2
d
tan x tan x d x 2
dx
dx
x 2 sec 2 x tan x
...
( w ) vw
...
(v )
dx
dx
dx
dx
y x 2 e x tan x
E
...
:
dy
d
tan x e x tan x d x 2 x 2 tan x d e x
x 2e x
dx
dx
dx
dx
x 2 e x sec 2 x e x tan x
...
e x
xe x x sec 2 x 2 tan x
...
xe x x sec 2 x 2 x tan x
...
QUOTIENT FORMULA: If u and v are any two functions of x , then quotient of two functions is
equal to (2nd function x derivative of the 1st function minus 1st function x derivative of the 2 nd
function) divided by square of the 2nd function
...
e
...
g
...
in
v
...
(v )
dx
dx
v2
Sin x Cos x
...
d sin x cos x sin x cos x d sin x cos x
=
dx
sin x cos x 2
dx
| rchciit@gmail
...
16
Remesh’s Maths Centre
[DIFFERENTIAL CALCULUS]
=
sin x cos x cos x sin x sin x cos x cos x sin x
sin x cos x 2
=
sin x cos x
...
cos x cos 2 x (sin 2 x 2 sin x
...
cos x cos 2 x sin2 x 2 sin x
...
cos x 2 sin x
...
2 sin x
...
Note:
d
f x f x x
dx
E
...
: f x =
f x
ii
...
y sin x
dy
d
2 sin x sin x 2 sin x cos x sin 2 x
dx
dx
n
iv
...
R
...
in
| rchciit@gmail
...
17
Title: Limit and derivatives
Description: Important points in limit and derivatives chapter
Description: Important points in limit and derivatives chapter