Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: IIT JEE advanced pyq with solutions
Description: Hello everyone!you will get notes and pyq with solutions of JEE advanced and mains.Hope it will help you! IIT JEE main+advanced

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


VECTOR ALGEBRA

VECTOR ALGEBRA
1
...
If c be a vector such that the


Let a  iˆ  ˆj  kˆ

7
...


 
6 3  3 

(a) 6 3  3

(b) 3  3

(c)

(d) 6

and bˆ

Let aˆ



 





3 1

between aˆ

and bˆ,

 S1 : 2 aˆ  bˆ

 aˆ  bˆ

If    0,  

is the angle





aˆ on aˆ  bˆ is

(a) Only (S1) is true
(b) Only (S2) is true
(c) Both (S1) and (S2) are true
(d) Both (S1) and (S2) are false

Let a  a1iˆ  a2 ˆj  a3 kˆ ai  0, i  1, 2,3







5
...



4
5
(c)
6

Let a   iˆ  2 ˆj  kˆ


4
3
(d)
4

and b  2iˆ   ˆj  kˆ,



(b) 

where

  R
...
Let v be a vector in the plane of a


2

and b whose projection on c is

...
Also, let the projection of a on the

vector 3iˆ  4 ˆj be 7
...
If a , b and x-axis are coplanar,

then projection of a vector b on 3iˆ  4 ˆj is equal to

4
...
let the angle between

   


a and b be acute
...
If



 

c  2 2 a  b  2b , then the angle between b and c

be two unit vectors such that

aˆ  bˆ  2 aˆ  bˆ  2
...





and c  2iˆ  3iˆ  2k
...
,10 is :

6
...


equal to
(a) 10
(b) 7
(c) 9
(d) 14

Let a be a vector which is perpendicular to the vector







j  2kˆ
...
Let
and
a   iˆ  3 ˆj  kˆ,
b  3iˆ   ˆj  4k
 ˆ
c  i  2 ˆj  2k ,  , R , be three vectors
...
Let A, B, C be three points whose position vectors
respectively are :

VECTOR ALGEBRA

a  iˆ  4 ˆj  3kˆ

b  2iˆ   ˆj  4kˆ,   R

c  3iˆ  2 ˆj  5kˆ

4
5

16
...
Let
be
a
triangle
such
that
ABC
      

BC  a , CA  b , AB  c , a  6 2, b  6 3, and
 
b  c  12
consider
the
statements
:
 
 

 S1 : a  b  c  b  c  6 2 2  1

(c)



 







 2
 S 2  : ABC  cos  
...
Let a  iˆ  ˆj  2kˆ and b be a vector such that

 
 
a  b  2iˆ  kˆ and a  b  3
...
Let a   iˆ  ˆj  k and b  2iˆ  ˆj   kˆ, and   0
...
A vector a is parallel to the line of intersection of the
plane determined by the vectors iˆ, iˆ  ˆj and the plane

(a)

determined by the vectors iˆ  ˆj , iˆ  kˆ
...
Then the

 

projection of b  2a on b  a is equal to

(c)

(d)

(a) 2

(b)

39
5

(c) 9

(d)

46
5


and b   iˆ   ˆj  2kˆ
...
Let


a  2iˆ  ˆj  5kˆ



If



(d) 17


18
...
Let a vector b be
(c)

21

such that for every  x, y   R  R   0, 0  , the vector




xa  yb is perpendicular to the vector 6 ya  18 xb
...
Let S be the set of all a  R for which the angle

between the vectors u  a  log e b  iˆ  6 j  3kˆ and

v   log e b  iˆ  2 j  2a  log e b  kˆ,  b  1 is acute
...
Let a  3iˆ  ˆj and b  iˆ  2 ˆj  kˆ
...
If b c are non-parallel,





then the value of  is:
(a) 5
(b) 5
(c) 1
(d) –1
21
...
If  is the angle between the
4
and aˆ  2bˆ  22 aˆ  bˆ , then the







value of 164 cos 2  is equal to :
(a) 90  27 2

(b) 45  18 2

(c) 90  3 2

(d) 54  90 2

VECTOR ALGEBRA
  
22
...
If the product
14
of
their
magnitudes
is
and
   
   
   
a  b  b  c  b  c   c  a    c  a   a  b  168
  
then a  b  c is equal to :





 







(a) 10
(b) 14
(c) 16
(d) 18


ˆ
23
...
If a is a vector such that
 
 
and a  b  21  0,
then
a  b  13iˆ  ˆj  4kˆ
   
  
b  a  k  j  b  a  i  kˆ is equal to


24
...
Given a  b  1 and a  b  3
...
Let a, b , c be three non-coplanar vectors such that

 
  
 

a  b  4c , b  c  9a and c  a   b ,   0
...

36


27
...
Then
2
a is equal to ………
...
(c)

2
...
(b)

4
...
(d)

6
...
(d)

8
...
(c)

10
...
(a)

12
...
(a)

14
...
(a)

16
...
(b)

18
...
(b)

20
...
(a)

22
...
14

24
...
00 25
...
00

26
...
00

27
...
00

Solutions
1
...


2



 aˆ  bˆ   2  aˆ  bˆ   2,   0,  
 aˆ  bˆ  2  aˆ  bˆ   aˆ  bˆ  2  aˆ  bˆ  4
aˆ  bˆ  4  aˆ  bˆ   0  4
2

2

Let the angle be  between aˆ and bˆ
2  2 cos   4 sin 2   4
2  2 cos  – 4 cos 2   0
Let cos   t then
2t 2 – t – 1  0
2t 2 – 2t  t – 1  0
1
or t  1
2
1
cos   –
2
not possible as    0,  
2

3

t–

Now,
 
 2 
S1 2 a  b  2sin 

 3 
 
 2 
a – b  1  1 – 2 cos 

 3 
 1
 2 – 2  – 
 2

VECTOR ALGEBRA
 3
S1 is correct
...




aˆ  aˆ  bˆ
aˆ  bˆ



 2 

3 
2
2  2 cos
3

  1  cos 

1
2
1

1–

1
2
(c) option is true
...



a  a1iˆ  a2 ˆj  a3 kˆ

 1 ˆ 1 ˆ 1 ˆ  ˆ ˆ ˆ

a  
i
j
k 
i  jk
3
3 
3
 3


Now projection of a on b  7
 
a b
  7
b







ˆ ˆ ˆ
ˆ
ˆ
 i  j  k   3i  4 j 
7
5
3

 5 3

a  5 iˆ  ˆj  kˆ

Now b  5 iˆ  ˆj  kˆ    i 
 
a b  0









 25  3  5  0
 15    0    –15

b  5 –2iˆ  ˆj  kˆ

b 5 3





1

  

2


5
b 
–2iˆ  ˆj  kˆ
2

Projection of b on 3iˆ  4 ˆj is

b  3iˆ  4 ˆj
5  –6  4 


 2
5
2 5 





4
...


   

 


 














v   a  b

v   1,1, 2     2, –3,1

v    2  ,  – 3 , 2   

2
 ˆ
 c
v  j  7v   
c
3
 
 – 3  7 v  c  2

  2  –   3  2    2
2  6   2
  3  1
 – 3  7
2  8
4
  –1

We get v   2, 7, 7 
6
...



a  iˆ  ˆj – kˆ

c  2iˆ – 3 ˆj  2k
  
b c  a

b  1, 2
...

 
Now a  c  2 – 3 – 2  –3  0
  
This b  c  a is not possible
...
of vectors b  0

VECTOR ALGEBRA

1  
 
ab  2 2  ab  4 2
2
   

a  1 and a  b  a  b

Area 

 cos   sin 

 
4



 
 a  b  4 2  a b sin  4 2
4

 b 8


 
Now, c  2 2 a  b – 2b




c 

2 2 

2



 


 2
a b  2 b

2

 16 2

 
2
Now, b  c  –2 b
 8  16 2  cos   –2
...


2

 

3
4



a   iˆ  2 ˆj – kˆ, b  –2iˆ   ˆj  kˆ,

Area of parallelogram  aˆ  bˆ
aˆ  bˆ 

  2 

2

  – 2    2  4 
2

Given aˆ  bˆ  15  2  4 

2  2  4    2  4   15  2  4 
2



2

 4   13  2  4 
2

  2  4  13   2  9
2
  2
2 a  a b b





2
a   2  4 1   2 5
2
b  4   2 1   2  5

a  b  –2  2 –1  –1
2
  2
2 a  ab b





2  2  5  – 1 2  5    2  5  14

2

VECTOR ALGEBRA

9
...


 
a  c 10
 
c
3

  6  2 10

  2
1 4  4 3
ˆj


And 3 –  4  –6iˆ  ˆj  kˆ
1 2 –2


 2  – 8  –6    1
  3

11
...


9
9
82
 16  
4
4
2

  
a b c  0
  
b c  a
2 2
  2
b  c  2b  c  a
2
c  36

c 6
    
S1: a  b  c  b – c
   
a  c  b – c

VECTOR ALGEBRA
  
–b  b – c
0 – 6  –6
  
S2 : a  b  c  0
 

b  c  –a
2 2
 
2
a  b – 2 a b cos  ACB   c
cos  ACB  

13
...


21

 
a  b  1 –   iˆ   2 – 2  ˆj   – 2  kˆ
 
Projection of a  b on iˆ  2 ˆj  2kˆ
 
a  b  iˆ  2 ˆj  2kˆ

 30
3







 2 2    91  0
   7, 

15
...
R of a  iˆ  kˆ

D
...




2 3

3
4



Let a   iˆ  ˆj   kˆ, b  3iˆ  5 ˆj  4kˆ
 
a  b  iˆ  9 ˆj  12kˆ


3

ˆj




–5 4
1

  4  5  iˆ   3 – 4  ˆj   5  3 kˆ
 iˆ  9 ˆj  12kˆ
 4  5  1,3  4  9, 5  3  12

  1,   3


 a  3iˆ  ˆj  kˆ, b  3iˆ  5 ˆj  4kˆ
 
 a  b   4 jˆ  3kˆ
2
2
a  11, b  50
 
a  b  9   5  4
Title: IIT JEE advanced pyq with solutions
Description: Hello everyone!you will get notes and pyq with solutions of JEE advanced and mains.Hope it will help you! IIT JEE main+advanced