Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

Volume of Cones£2.50

Title: C1 Notes Edexcel
Description: C1 Notes for Edexcel

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Core Mathematics 1 Notes
Algebra and Functions
Indices
ο‚·
ο‚·
ο‚·
ο‚·

π‘Ž π‘š Γ— π‘Ž 𝑛 = π‘Ž π‘š+𝑛
π‘Ž π‘š Γ· π‘Ž 𝑛 = π‘Ž π‘šβˆ’π‘›
(π‘Ž π‘š ) 𝑛 = π‘Ž π‘šπ‘›
1
π‘Žβˆ’π‘š = π‘Ž π‘š

ο‚·
ο‚·

π‘Žπ‘š= βˆšπ‘Žπ‘›
π‘Ž0 = 1

𝑛

π‘š

Surds
ο‚·

√(π‘Žπ‘) = √ π‘Ž Γ— βˆšπ‘

ο‚·

βˆšπ‘ =

π‘Ž

βˆšπ‘Ž
βˆšπ‘

Rationalising the denominator of a fraction when it is a surd
ο‚·
ο‚·
ο‚·
ο‚·

1
1
βˆšπ‘Ž
βˆšπ‘Ž
β†’
Γ—
=
π‘Ž
βˆšπ‘Ž
βˆšπ‘Ž
βˆšπ‘Ž
1
1
π‘Žβˆ’ βˆšπ‘
π‘Žβˆ’ βˆšπ‘
β†’
Γ—
= 2
π‘Ž+ βˆšπ‘
π‘Ž+ βˆšπ‘
π‘Žβˆ’ βˆšπ‘
(π‘Ž )βˆ’ 𝑏
1
1
π‘Ž+ βˆšπ‘
π‘Ž+ βˆšπ‘
β†’ π‘Žβˆ’ Γ— π‘Ž+ = (π‘Ž2 )βˆ’ 𝑏
π‘Žβˆ’ βˆšπ‘
βˆšπ‘
βˆšπ‘
1
1
(√ π‘Žβˆ’ βˆšπ‘)
(√ π‘Žβˆ’ βˆšπ‘)
β†’
Γ—
=
(√ π‘Ž+ βˆšπ‘)
(√ π‘Ž+ βˆšπ‘)
(√ π‘Žβˆ’ βˆšπ‘)
π‘Ž+𝑏

Quadratic Functions
Factorising
2𝓍 2 + 8𝓍 + 8 = 0
Which 2 integers create the product of +16 and sum of +8?
2𝓍 2 + 4𝓍 + 4𝓍 + 8 = 0
2𝓍(π‘₯ + 2) + 4(π‘₯ + 2) = 0
(2π‘₯ + 4)(𝓍 + 2) = 0
π‘₯ = βˆ’2

Completing the square

2𝓍 2 + 8𝓍 + 8 = 0
2(𝓍 2 + 4) + 8 = 0
2((𝓍 + 2)2 βˆ’ 4) + 8 = 0

2(𝓍 + 2)2 βˆ’ 8 + 8 = 0
2(𝓍 + 2)2 = 0
(𝓍 + 2)2 =

0
2

π‘₯ + 2 = √0
π‘₯ = βˆ’2 Β± √0
π‘₯ = βˆ’2

Solutions
If x is equals to 0, y is equals to

𝑦 = 2𝓍 2 + 8𝓍 + 8
𝑦=8
If y is equals to 0, x is equals to
(2π‘₯ + 4)(π‘₯ + 2) = 0
2𝓍 + 4 = 0 π‘œπ‘Ÿ 𝓍 + 2 = 0
2π‘₯ = βˆ’4 π‘œπ‘Ÿ 𝓍 = βˆ’2
π‘₯ = βˆ’2 π‘œπ‘Ÿ 𝓍 = βˆ’2
π‘₯ = βˆ’2

Quadratic graph
The y-intercept will always be y-solutions of the equation

𝑦=8
The roots will always be the x- solutions of the equation
π‘₯ = βˆ’2 π‘œπ‘Ÿ 𝓍 = βˆ’2
The minimum or maximum will always be the negative of the β€˜completing the square’ equation:
2(π‘₯ + 2)2 Β± 0 = 0
π‘₯ = +2 π‘Žπ‘›π‘‘ 𝑀𝑖𝑙𝑙 π‘π‘’π‘π‘œπ‘šπ‘’ βˆ’ 2
𝑦 = Β± 0 π‘Žπ‘›π‘‘ 𝑀𝑖𝑙𝑙 π‘π‘’π‘π‘œπ‘šπ‘’ Β± 0

Quadratic Formula

ο‚·

βˆ’π‘Β±βˆšπ‘2 βˆ’4π‘Žπ‘
2π‘Ž

Discriminants

ο‚·

𝒃 𝟐 βˆ’ πŸ’π’‚π’„
o
o
o
o
o
o

If
If
If
If
If
If

𝑏2
𝑏2
𝑏2
𝑏2
𝑏2
𝑏2

> 4π‘Žπ‘
= 4π‘Žπ‘
< 4π‘Žπ‘
> 4π‘Žπ‘
= 4π‘Žπ‘
< 4π‘Žπ‘

π‘Žπ‘›π‘‘ π‘Ž > 0 then it is a βˆͺ shaped quadratic graph with 2 different roots
π‘Žπ‘›π‘‘ π‘Ž > 0 then it is a βˆͺ shaped quadratic graph with equal roots
π‘Žπ‘›π‘‘ π‘Ž > 0 then it is a βˆͺ shaped quadratic graph with no real roots
π‘Žπ‘›π‘‘ π‘Ž < 0 then it is a ∩ shaped quadratic graph with 2 different roots
π‘Žπ‘›π‘‘ π‘Ž < 0 then it is a ∩ shaped quadratic graph with equal roots
π‘Žπ‘›π‘‘ π‘Ž < 0 then it is a ∩ shaped quadratic graph with no real roots

Equation and Inequalities
Solving simultaneous linear equations by substitution
2π‘₯ βˆ’ 𝑦 = 6 [1]
4π‘₯ + 3𝑦 = 22 [2]
Rearrange [1] to make 𝒙 the subject
2π‘₯ = 6 + 𝑦 [1β€² ]
Substitute [1’] into [2]
2(2π‘₯) + 3𝑦 = 22
12 + 2𝑦 + 3𝑦 = 22
12 + 5𝑦 = 22
5𝑦 = 10
𝑦=2

Substitute 𝑦 into [1]
2π‘₯ βˆ’ 2 = 6
2π‘₯ = 8
π‘₯=4

Solving simultaneous linear equations by elimination
2π‘₯ βˆ’ 𝑦 = 6 [1]
4π‘₯ + 3𝑦 = 22 [2]
Multiply [1] to make π‘‘β„Žπ‘’ π‘₯ π‘œπ‘Ÿ 𝑦 π‘’π‘žπ‘’π‘Žπ‘™
4π‘₯ βˆ’ 2𝑦 = 12 [1β€²]
Subtract [2] from [1’]
4π‘₯ + 3𝑦 = 22 [2]
4π‘₯ βˆ’ 2𝑦 = 12 [1β€²]
5𝑦 = 10
𝑦=2
Substitute 𝑦 into [1]
2π‘₯ βˆ’ 2 = 6
2π‘₯ = 8
π‘₯=4

Linear inequalities
5π‘₯ + 3 < 7
5π‘₯ < 4
4
π‘₯<
5
Two Inequalities
3π‘₯ βˆ’ 4 < π‘₯ + 8 π‘Žπ‘›π‘‘ 5π‘₯ > π‘₯ βˆ’ 8
3π‘₯ βˆ’ 4 < π‘₯ + 8

5π‘₯ > π‘₯ βˆ’ 8

3π‘₯ < π‘₯ + 12

4π‘₯ > βˆ’8

2π‘₯ < 12

4π‘₯ > βˆ’8

π‘₯<6

π‘₯ > βˆ’2

π‘œπ‘£π‘’π‘Ÿπ‘™π‘Žπ‘π‘π‘–π‘›π‘” π‘£π‘Žπ‘™π‘’π‘’π‘  π‘ π‘œ βˆ’ 2 < π‘₯ < 6
...

If 2 line are perpendicular to each other, the product of their gradients is -1
...


Proof
𝑆 =

+ (π‘Ž + 𝑑)

π‘Ž

+ β‹― + (π‘Ž + (𝑛 βˆ’ 2)𝑑)

𝑆 = (π‘Ž + (𝑛 βˆ’ 1)𝑑 + (π‘Ž + (𝑛 βˆ’ 2)𝑑) + β‹― + (π‘Ž + 𝑑)

+ (π‘Ž + (𝑛 βˆ’ 1)𝑑)
+ π‘Ž

2𝑆 = (2π‘Ž + (𝑛 βˆ’ 1)𝑑 + (2π‘Ž + (𝑛 βˆ’ 2)𝑑) + β‹― + (2π‘Ž + (𝑛 βˆ’ 1)𝑑) + (2 π‘Ž + (𝑛 βˆ’ 1)𝑑)
Each term is the same and there are 𝑛 terms so you multiply by 𝑛
2𝑆 = 𝑛 Γ— (2π‘Ž + (𝑛 βˆ’ 1)𝑑
𝑛
𝑆 = (2π‘Ž + (𝑛 βˆ’ 1)𝑑
2

ο‚·

βˆ‘10 2𝑛 β†’ sum of 2n from n=1 to n=10
𝑛=1

Differentiation
ο‚·

The gradient of a curve 𝑦 = 𝑓(π‘₯) at any specific point is equal to the gradient of the tangent to
the curve at that point
Title: C1 Notes Edexcel
Description: C1 Notes for Edexcel